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Abstract: Background: Although spinopelvic radiographs analysis is the standard for a pathological
diagnosis, it cannot explain the activities of the spine in daily life. This study investigates the
correlation between sagittal parameters and spinal range of motion (ROM) to find morphological
parameters with kinetic implications. Methods: Six L1–S1 human lumbar specimens were tested
with a robotic testing device. Eight sagittal parameters were measured in the three-dimensional
model. Pure moments were applied to simulate the physiological activities in daily life. Results: The
correlation between sagittal parameters and the ROM was moderate in flexion and extension, but
weak in lateral bending and rotation. In flexion–extension, the ROM was moderately correlated with
SS and LL. SS was the only parameter correlated with the ROM under all loading conditions. The
intervertebral rotation distribution showed that the maximal ROM frequently occurred at the L5–S1
segment. The minimal ROM often appeared near the apex point of the lumbar. Conclusion: Sagittal
alignment mainly affected the ROM of the lumbar in flexion and extension. SS and apex may have
had kinetic significance. Our findings suggest that the effect of sagittal parameters on lumbar ROM is
important information for assessing spinal activity.

Keywords: sagittal parameters; range of motion; human lumbar spine; correlation analysis;
in vitro experiment

1. Introduction

The transition from a C-shaped to an S-shaped spine has led to humans being the only
vertebrates in the world that evolved to walk upright. Lumbar lordosis is unique to humans
and not found in other species. The sagittal S-shaped curve of the human spine minimizes
the energy expenditure of the back muscles while maintaining balance and stability [1].
Sagittal alignment of the spine is a recent and booming concept for understanding and
treating spinal pathology.

Over the past 15 years, epidemiological and clinical studies have demonstrated that
these sagittal parameters vary in a range of normality and are correlated with each other to
maintain proper alignment in healthy subjects [2,3]. Roussouly et al. proposed four types of
sagittal alignment of the normal spine that significantly differ from each other [4]. Multiple
studies demonstrated the importance of sagittal balance in developing therapeutic strategies
for many spinal disorders [5–7]. Therefore, the analysis of full spinopelvic radiographs is
the standard for providing information on pathological diagnosis or preoperative planning
in clinics [5,8].
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Several spinopelvic sagittal parameters were described as realignment goals in patients
with various spinal disorders [9,10]. While previous analytical studies mainly focused on
imaging parameter analysis of the spinopelvic sagittal alignment [11,12], it is rare to see
reports on the relationship between variations in the normal alignment and range of motion
(ROM) of the spine. Indeed, standard radiographs are produced in a constrained position
and restrained environment. In these conditions, how the radiographic spinal alignment
affects the activities of the spine in daily life it cannot be explained, and the validity of this
parameter assessment is questioned.

Therefore, this study preliminarily investigates whether different sagittal alignment
morphotypes have various kinetic characteristics based on in vitro biomechanical tests of
the cadaveric spine. The relationship between the sagittal parameters and the ROM of
the spine was analyzed under different daily loading scenarios to find real morphological
parameters with the kinetic implications. These results partially address this lack of basic
knowledge of whether and how various sagittal alignments affect the activity of the spine
in daily life.

2. Materials and Methods
2.1. Specimen Preparation

The experimental scheme in this study was approved by the biological and medical
ethics committee of Beihang University (no.: BM20190009). Six lumbar specimens (L1–
S1, 3 males, 3 females, mean age 46.7 years, range 32–64) were employed from a human
donor spine. To ensure healthy conditions of the lumbar specimen, a history of back
surgery, bony defects, disc degeneration, tumors, scoliosis, or prolonged bed rest before
death was excluded from this study. Spiral computed tomography (CT) with a slice
thickness of 0.6 mm (Light Speed Pro16, GE, Waukesha, WI, USA) was used to measure
the sagittal parameters of each specimen in the next step. The specimen was carefully
dissected to remove soft tissues while preserving intervertebral discs, ligaments, and facet
joints [13]. The upper surface of vertebra L1 and the caudal end of S1 were embedded in
polymethylmethacrylate (PMMA) and mounted in custom containers of the testing device.
All specimens were wrapped in cling film to minimize water loss, and stored at −20 ◦C [14].

2.2. Sagittal Parameter Measurement

Eight sagittal parameters of the lumbar–pelvic specimen were measured in this study,
namely, pelvic incidence (PI), sacral slope (SS), pelvic tilt (PT), lumbar lordosis (LL), the
apex of the lordosis (Apex), upper arc, the lumbar title angle (LTA), and the number of
vertebrae in the lordosis (NVL), as shown in Figure 1. The definition of each parameter
was based on the study published by Duval-Beaupere and Roussouly [4,15].
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Figure 1. Measurement of sagittal parameters in 3D lumbopelvic model. (a) Coronal view, (b) sagittal
view, and (c) axial view of CT images; (d) 3D lumbopelvic model; (e) definition of lumbopelvic
parameter; (f) measurement in 3D lumbopelvic model.
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2.3. Testing Devices

In this study, a robotic testing device (NX100MH6, Kabushiki-gaisha Yasukawa Denki,
Kitakyushu, Japan) was performed that had been previously published to measure the force-
displacement behavior of lumbar segments [14], as shown in Figure 2. A force-moment
sensor (Gamma, ATI Industrial Automation, Apex, NC, USA) was attached to the head
of the robotic arm to record forces and moments, and provide feedback. The L1 vertebra
was also attached to the head of the robotic arm next to the sensor, and the S1 vertebra
was fixed to the base frame. A three-dimensional opt-electric camera system (Optotrak
Certus, Northern Digital Inc., Waterloo, ON, Canada) was applied to capture the rotation
and displacement of the lumbar by recording the position of a set of markers. The default
algorithm of the photoelectric camera system was used to determine the three-dimensional
coordinates of the center of the S1 and principal directions. Five markers were fixed on L1,
L2, L3, L4, and L5.

Bioengineering 2022, 9, x FOR PEER REVIEW 3 of 11 
 

 

Figure 1. Measurement of sagittal parameters in 3D lumbopelvic model. (a) Coronal view, (b) sag-

ittal view, and (c) axial view of CT images; (d) 3D lumbopelvic model; (e) definition of lumbopelvic 

parameter; (f) measurement in 3D lumbopelvic model. 

2.3. Testing Devices 

In this study, a robotic testing device (NX100MH6, Kabushiki-gaisha Yasukawa 

Denki, Kitakyushu, Japan) was performed that had been previously published to measure 

the force-displacement behavior of lumbar segments [14], as shown in Figure 2. A force-

moment sensor (Gamma, ATI Industrial Automation, Apex, NC, USA) was attached to 

the head of the robotic arm to record forces and moments, and provide feedback. The L1 

vertebra was also attached to the head of the robotic arm next to the sensor, and the S1 

vertebra was fixed to the base frame. A three-dimensional opt-electric camera system 

(Optotrak Certus, Northern Digital Inc, Waterloo, ON, Canada) was applied to capture 

the rotation and displacement of the lumbar by recording the position of a set of markers. 

The default algorithm of the photoelectric camera system was used to determine the three-

dimensional coordinates of the center of the S1 and principal directions. Five markers 

were fixed on L1, L2, L3, L4, and L5.  

 

Figure 2. Image of robotic testing device with embedded specimen. Figure 2. Image of robotic testing device with embedded specimen.

2.4. Testing Protocol

A pure load control protocol was used for testing at a constant loading rate of 1.0◦/s [13,16].
Specimens were tested under six pure moments, including 7.5 Nm in flexion and extension,
7.5 Nm in lateral bending, and 5 Nm in axial rotation [17,18]. The optimal loading path
was determined by the robotic system at a 10% increment of the target load (7.5/5 Nm),
and 4.5 loading cycles were applied to the specimen. The first 1.5 was used as the front
cycle to minimize the viscoelastic effect, and the last 3 cycles were for subsequent analysis.
Specimens were kept moist with 0.9% saline during the testing processing.

2.5. Data Analysis

Data were analyzed using SPSS software (IBM Corp, Armonk, NY, USA). The sagittal
parameter and the intersegmental ROM of each lumbar specimen were measured and
analyzed in all loading conditions. Spearman’s correlations were used to analyze the
relationships between sagittal parameters and the ROM under all the loading conditions
(using correlation coefficient and significance values r and p). Correlations were assumed
to be strong (r = 0.80–1.00), moderate (r = 0.50–0.79), weak (r = 0.20–0.49), or no correlation
(r < 0.20). A significant correlation was defined when p < 0.05.
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3. Results
3.1. Specimen Sagittal Parameters

The lumbopelvic parameters of the six specimens are shown in Table 1. The average
values for PI, PT, and SS were 46.88◦, 10.67◦ and 36.22◦, respectively. The average value for
LL was 49.37◦. The number of lumbar vertebrae is 5.01, that is, the inflection point of the
spine from kyphosis to lordosis was near the thoracolumbar junction (T12–L1). The apex of
lumbar lordosis appeared, on average, below the center of L4, from proximal upper L3 to
the upper endplate of S1. The upper arc was the difference between LL and SS, with an
average value of 14.90◦. LTA averaged −4.75◦, with a range from −5.2◦ to −5.9◦.

Table 1. Sagittal parameters of lumbar–pelvic specimens.

Number 1 2 3 4 5 6 Mean ± SD

Sex Female Male Male Female Male Female –
PI 36.9 39.6 44.2 47.5 54.1 59.0 46.88 ± 7.74
PT 9.4 10.2 11.4 10.1 10.7 12.2 10.67 ± 0.92
SS 27.5 29.4 32.8 37.4 43.4 46.8 36.22 ± 7.06
LL 40.3 43.2 48.2 52.4 53.9 58.2 49.37 ± 6.18

Apex Upper L5 Base L4 Base L4 Middle L4 Middle L4 Base L3 –
Upper arc 14.0 13.9 15.4 14.8 14.7 16.6 14.90 ± 0.91

LTA −5.2 −4.4 −4.2 −5.7 −5.9 −3.07 −4.75 ± 0.97
NVL 4.3 4.6 4.9 5.0 4.8 5.0 4.77 ± 0.25
Type Type 1 Type 2 Type 2 Type 3 Type 3 Type 4 –

3.2. Intervertebral Rotations

Under different loading conditions, the torque–displacement curves of the six speci-
mens in vitro were hysteresis circles, as shown in Figure 3. The ROM was described as the
average of the six values on the upper and lower boundaries of the hysteresis curve. Under
the same loading conditions, the whole ROM of the L1–S1 segments varied between lumbar
specimens due to structural and organizational differences. In general, the maximal ROM
of the L1–S1 segments occurred in flexion ranging from 15.32◦ to 23.46◦, and the minimum
appeared in axial rotation ranging from 4.72◦ to 9.44◦. The ROM varied between 9.37◦

and 22.18◦ MPa, and 10.50◦ and 20.46◦ under extension and lateral bending, respectively
(Figure 4). The standard deviation of measurement was between 0.23◦ and 0.88◦, and the
error was within 5%.
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3.3. Correlation Analysis

Correlation between sagittal parameters of lumbopelvic and intervertebral rotations
under different loading conditions is shown in Table 2. Correlation between sagittal
parameters and the ROM was moderate under flexion and extension loading, but weak
under lateral bending and axial rotation loading. Under flexion and extension loading,
the ROM was moderately correlated with SS (r = 0.63 and r = 0.53) and LL (r = 0.51 and
r = 0.67), while the Upper Arc (r = 0.42 and r = 0.41), Apex (r = 0.33 and r = 0.36) and PI
(r = 0.36 and r = 0.34) had weak effect on the ROM. Under the lateral bending and axial
rotation loadings, the ROM was weakly correlated with the SS, with the r ranging from 0.28
to 0.36. There was no correlation between Roussouly’s classification [4,11] of the specimens
and the ROM under all loading conditions.

Table 2. Correlation between lumbar–pelvic parameter and range of motion.

Type PI (◦) SS (◦) PT (◦) LL (◦) Apex Upper Arc (◦) LTA (◦) NVL

Flexion 0.28 0.36 * 0.63 * 7 −0.15 0.51 * 4 0.33 * 0.42 * −0.14 −0.06
Extension 0.19 0.34 * 0.53 * −0.04 0.67 * 0.36 * 0.41 * 0.17 0.15

Left-
bending 0.10 −0.171 0.32 * −0.29 −0.20 0.16 0.24 −0.20 −0.26

Right-
bending 0.24 0.14 0.35 * 0.15 −0.27 0.24 0.20 0.30 * 0.27

Left-
rotation 0.13 −0.06 0.36 * −0.08 −0.20 0.21 −0.07 0.24 0.21

Right-
rotation −0.04 0.19 0.28 * 0.12 −0.07 0.13 −0.06 0.13 −0.11

* Significant difference p < 0.05.

3.4. Intervertebral Rotation Distribution

The distribution of the intervertebral rotation for L1–L2, L2–L3, L3–L4, L4–L5, and
L5–S1 segments was ranged in the six specimens under different loading conditions, as
shown in Figure 5. Under flexion, extension, and lateral bending loading, the maximal
ROM appeared at the L5–S1 segment. The minimal ROM occurred at the L3–L5 segments
near the apex point. The ROM of the lumbar from L1 to S1 segments decreased first and
then increased, presenting a smile curve. Under the axial rotation loading, the ROM of
each vertebra varied and fluctuated in six lumbar specimens. In addition, for the Type 1
specimen (1), the L5–S1 segment accounted for a larger proportion of the overall ROM of
the lumbar spine under flexion and extension loads (Figure 6). Under the same loading
condition, the ROM distribution of Type 2 specimens (2 and 3) showed a certain gradient,
while that of Types 3 and 4 (4–6) was evenly distributed in the lumbar spine specimens.
Under left–right bending loading, different types of specimens showed similar trends
in the ROM distribution. Under the axial rotation loading, the ROM distribution varied
between specimens.
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4. Discussion

As the loss of functional ROM is one of the main components leading to spinal
disease, ROM analysis may also serve as a tool for patient identification and subsequent
diagnostic purposes. The sagittal alignment of the spine is a recently developed concept
to understand the mechanical equilibrium mechanism and the geometric characteristics
of pathological deformity of the spine. Although clinical studies show that the functional
ROM of the spine is determined by its structural morphology, the interrelation between the
lumbar ROM and spinopelvic parameters remains unclear. In this in vitro biomechanical
study utilizing human lumbar specimens, we preliminarily investigated the relationship
between sagittal parameters and lumbar ROM under different daily loading scenarios. The
correlation between the sagittal parameters and lumbar ROM was strong in flexion and
extension, moderate in lateral bending, but weak in axial rotation. According to the classical
Roussouly’s sagittal classification, the intervertebral rotation distribution for L1–L2, L2–L3,
L3–L4, L4–L5, and L5–S1 segments was in a range in different types of normal lumbar
sagittal alignment.

The present study reported functional ROM of L5–S1 segments in sagittal alignment
ranging from 15.32◦ to 23.46◦ in flexion and 9.37◦ and 22.18◦, which was in agreement
with the 21.5 ± 7.3◦ in flexion and 9.3 ± 3.2◦ in extension reported by Rohlmann et al. [19].
Renner et al. [20] also reported that the normal functional ROM of L1–S1 segments was
49.7 ± 9.7◦ under pure-moment loading (8 Nm, flexion; 6 Nm, extension). Our measured
ROM fell within the higher range of its measurements. The sagittal parameters of the
human lumbar spine specimens in this study were mainly derived from normal Chinese
adults, and the average of PI, PT, SS, and LL were less than those of the previously studied
Caucasians by Roussouly et al. [4,21]. Roussouly et al. [4] reported that PI, SS, PT, and
LL were 51.91 ± 10.71◦,11.99 ± 6.46◦, 39.92 ± 8.17◦, and 61.43 ± 9.72◦, respectively. Our
measurements are consistent with those published by Endo et al. [22] in Japanese youth,
with PI PT, LL, and SS values of 46.7 ± 8.9◦, 13.2 ± 8.2◦, 34.6 ± 7.8◦, and 43.4 ± 14.6◦,
respectively. Our study reproduced the experimental results in both lumbar sagittal param-
eters and ROM to a good extent, although it is difficult to make direct comparisons with
other studies due to inconsistent structural parameters and simulated loading conditions.

Sagittal alignment plays a critical role in keeping the biomechanical adaptation and
compensation of the spine and is the main influencing factor for obtaining an economic
physiological position and motion. In this study, sagittal parameters had a moderate and
weak effect on the ROM response of the lumbar spine under sagittal loading conditions
(in flexion and extension) and lateral bending, respectively, but almost no effect under
axial rotation loading. During the flexion and extension loading, the ROM was moderately
correlated with SS and LL, and weakly correlated with Upper Arc, PI, and Apex. However,
there was only a weak correlation between the ROM and SS in lateral bending and axial
rotation. It is worth noting that SS is the only sagittal parameter associated with ROM
under all loading conditions. That suggested that SS had the possibility of reflecting lumbar
motion capacity, and explained its biomechanical significance as a decisive parameter for
Roussouly sagittal classification.

The intervertebral rotation distribution showed that the maximal ROM frequently
occurred at the L5–S1 segment under the flexion, extension, and lateral bending loading.
Coherently with clinical evidence, the L5–S1 segments are at higher risk for disc degen-
eration and herniation. Gay et al. [23] found that degenerative grade had a significant
effect on dynamic range of motion with differences between normal discs and higher grade
degenerative discs. The minimal ROM often occurred at the L3–L5 segments near the Apex
point. The specific anatomic turning point of the Apex may determine the stability center
of the relative motion of the lumbar spine. Sebaaly et al. [6] noted that restoring the sagittal
apex of lumbar lordosis helped reduce the incidence of proximal connection kyphosis from
41.4% to 13.5%. On the basis of Rousslouly’s sagittal classification of the lumbar, the L5–S1
segment of the Type 1 specimen accounted for a proportion of the overall ROM of the
lumbar spine under flexion and extension loadings, while Type 3 and 4 models with a good
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lordosis shape had a more uniform rotation distribution at each motor function segment.
In clinical cases, Type 1 patients frequently developed disc degeneration and herniation at
the L5–S1 level. Roussouly and Adams et al. [11,24] also suggested that Type 1 patients
were prone to early disc degeneration and herniation.

Our findings showed a relationship between sagittal parameters and lumbar ROM
under different daily loading scenarios, and led to the hypothesizing about the kinetic
significance of SS and apex. However, there are several limitations to the current study.
First, due to the lack of in vitro lumbar specimens and the difficulty in obtaining CT data
of the cadaver spine, the number of specimens that met the experimental requirements
was limited. Second, due to the complexity of the in vitro experiment process and the
customization of the loading device, our test results cannot be directly compared with
other experimental results. Third, the mechanical loading of specimens in this experiment
did not take into account the influence of muscles and other soft tissues, and the results
were somewhat different from the real state of the lumbar spine in the body. Despite these
limitations, our study can provide insights into how lumbar morphology influences lumbar
motion and better understanding of the kinetic implications of sagittal parameters.

5. Conclusions

Our study demonstrated that sagittal spinopelvic alignment mainly affected the mo-
tion response of the lumbar under sagittal loading conditions (in flexion and extension), and
SS and LL were the main factors correlated to the ROM. The effect of sagittal parameters
on the lumbar ROM is important information for assessing the function and stability of
the spine. Further study should focus on the relationship between ROM and changes in
sagittal plane alignment in patients with degenerative spinal diseases.
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