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Abstract

Background

Aberrant DNA methylation acts epigenetically to skew the gene transcription rate up or

down, contributing to cancer etiology. A gap in our understanding concerns the epigenomics

of stagewise cancer progression. In this study, we have developed a comprehensive

computational framework for the stage-differentiated modelling of DNA methylation land-

scapes in colorectal cancer (CRC).

Methods

The methylation β-matrix was derived from the public-domain TCGA data, converted into M-

value matrix, annotated with AJCC stages, and analysed for stage-salient genes using an

ensemble of approaches involving stage-differentiated modelling of methylation patterns

and/or expression patterns. Differentially methylated genes (DMGs) were identified using a

contrast against controls (adjusted p-value <0.001 and |log fold-change of M-value| >2), and

then filtered using a series of all possible pairwise stage contrasts (p-value <0.05) to obtain

stage-salient DMGs. These were then subjected to a consensus analysis, followed by

matching with clinical data and performing Kaplan–Meier survival analysis to evaluate the

impact of methylation patterns of consensus stage-salient biomarkers on disease

prognosis.

Results

We found significant genome-wide changes in methylation patterns in cancer cases relative

to controls agnostic of stage. The stage-differentiated models yielded the following consen-

sus salient genes: one stage-I gene (FBN1), one stage-II gene (FOXG1), one stage-III gene

(HCN1) and four stage-IV genes (NELL1, ZNF135, FAM123A, LAMA1). All the biomarkers

were significantly hypermethylated in the promoter regions, indicating down-regulation of

expression and implying a putative CpG island Methylator Phenotype (CIMP) manifestation.
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A prognostic signature consisting of FBN1 and FOXG1 survived all the analytical filters, and

represents a novel early-stage epigenetic biomarker / target.

Conclusions

We have designed and executed a workflow for stage-differentiated epigenomic analysis of

colorectal cancer progression, and identified several stage-salient diagnostic biomarkers,

and an early-stage prognostic biomarker panel. The study has led to the discovery of an

alternative CIMP-like signature in colorectal cancer, reinforcing the role of CIMP drivers in

tumor pathophysiology.

Introduction

Colorectal adenocarcinoma (CRC) is a major malignant disease with devastating incidence

and mortality, being the cancer with the third highest global burden of disease, after lung and

breast cancers, and accounting for 1.36 million new cases annually [1]. The etiology of CRC

involves chromosomal instability (involving accumulation of mutations in oncogenes and

tumor suppressor genes), microsatellite instability (MSI) (leading to loss of DNA mismatch

repair) and CpG island methylator phenotype (CIMP), observed in nearly 85%, 15% and 10–

40% respectively of all reported sporadic cases [2–4]. Epigenetic dysregulation is a key driver

of these processes, and DNA methylation is the most important epigenetic modification [5, 6].

DNA hypomethylation could cause gain-of-function of oncogenes [7], and might aid severe

tumor progression [8]. It has been found that large hypomethylation blocks are a universal

characteristic of colorectal cancers and other solid tumors [9]. Hypomethylation could also

contribute to tumor initiation and progression by a general increase in genomic instability

[10]. DNA hypermethylation could cause loss-of-function of tumor suppressor genes, and

hypermethylation in the germline could cause heritable loss of gene expression through geno-

mic imprinting [11]. Aberrant hypermethylation of specific CpG islands has been observed to

occur in colorectal cancer. The CpG island methylator phenotype (CIMP) was originally dis-

covered in a subset of colorectal cancers [12], and subsequently refined to the involvement of

five genes CACNA1G, IGF2, NEUROG1, RUNX3, and SOCS1 [13]. Methylation changes con-

tributing to phenotypic aberrations need not be localized to promoter regions but could occur

in the gene coding regions and intron-exon structures [14–17]. The persistence of such modi-

fications throughout the tumor cell lifetime has also been demonstrated by Lengauer et al.

[18], who showed that methylation aberrations and genome instability were correlated, sug-

gesting a key role for such aberrations in tumorigenic chromosomal segregation processes.

The Cancer Genome Atlas (TCGA) is a comprehensive resource of genome-wide mutation,

expression and DNA methylation profiles of 46 different types of cancers [19]. Besides the

TCGA, the International Human Epigenetic Consortium is devoted to data-driven under-

standing of the role of epigenomics in normal vs disease states [20]. Methylation patterns con-

stitute an emerging class of promising prognostic factors mainly due to: (i) the persistence of

widespread DNA methylation changes; (ii) the occurrence of such changes much ahead of the

consequent changes in gene expression; and (iii) the ability to detect these changes in body flu-

ids and blood plasma [21]. Few methylation markers have been previously translated to clini-

cally applicable biomarkers [22], but it is known that tumorbehavior corresponds with

epigenomic changes as reflected in differential DNA methylation [23]. Early detection may

reduce the mortality rate via tailored adjustments to the treatment regimen, with the result of
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fewer side-effects and better patient compliance. Chen et al., demonstrated a method to screen

multiple types of cancer using a methylation-based blood test four years before conventional

diagnosis [24]. A consensus approach to identifying significant methylation signatures in each

stage of colorectal cancer progression would increase the utility and reliability of putative bio-

markers. This motivated our interest in a systematic investigation of stage-salient epigenetic

factors using several model-driven approaches, with the main objective of obtaining diagnostic

and prognostic biomarkers.

Methods

Data preprocessing

Methylation data from 27k assays was used, since it is preferentially enriched in epigenetic pro-

files in the proximal promoter regions (relative to 450k assays which are enriched in probes in

the gene body and intergenic regions) [25]. Processed Level-3 27k CRC methylation data was

retrieved from TCGA [26]. All samples in the dataset were processed and submitted by a single

organization (namely 05: JHU_USC center), ensuring uniformity in data processing. MBatch

analysis yielded low (<0.3) Dispersion Separability Criterion (measured as the ratio of

between-batch dispersion to within-batch dispersion), indicating negligible batch effects and

obviating the need for batch-correction (https://bioinformatics.mdanderson.org/public-

software/mbatch/). The data containing the methylation β-values for each probe in each sam-

ple was converted into a matrix with probes as rows and cases as columns. Each probe corre-

sponds to one CpG site in the genome. A single gene may be under the control of multiple

epigenetic sites, hence multiple probes may be associated with the same gene. It is noted that

multiple probes usually exist for the same gene. The probes which have ‘na’ values were dis-

carded from the analysis. To transform the range of methylation values from (0,1) to (-1,

+1), we used the following function on the β-matrix values, to obtain the M-value matrix

[27]:

Mi ¼ log
2
½bi=ð1� biÞ� ð1Þ

In our study, two M-value matrices were considered: one, where all the probes were used in

the analysis; and two, where the probes corresponding to one gene were represented by an

average of their values (‘avereps’), thus reducing the M-value matrix from a probe:sample

matrix to a gene:sample matrix. Further, we filtered out the probes/genes showing little change

in methylation (defined as σ< 1) across all cases in the M-value matrices. The latest clinical

data (clinical.cases_selected.tar.gz) was obtained from the GDC by matching on the patient

barcode [28]. The stages were annotated for both the β-matrix and M-value matrices using the

‘Pathologic_stage’ attribute encoded in the clinical data. Cases with unknown stage (‘NA’ val-

ues) were discarded. The stage information was mapped to the American Joint Committee on

Cancer (AJCC) Tumor-Node-Metastasis (TNM) classification system [29] (Table 1).

The final β and M-value matrices were subjected to stage-differentiated contrast analysis

with a battery of six different methods, described below. All analysis was carried out on R [30].

Modelling

To compensate for the assumptions specific to individual modelling approaches, an ensemble

of models was explored.

(1) Linear modelling with M-values. Linear modelling is essential to identify linear

trends in expression across cancer stages and thereby detect stage-sensitive patterns. We used
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the R package limma [31] for linear modelling of stagewise expression using the complete M-

value matrix, with multiple probes per gene (S1 Table in S1 Text).

(2) Linear modelling with avereps matrix. This is essentially similar to the above model,

except that the input was the ‘avereps’ matrix, where the methylation of each gene was repre-

sented by the average of its M-values across all its probes (S2 Table in S1 Text). Such alternative

representations of the methylation data negotiate a tradeoff with respect to information loss

and interpretability.

In both the linear models, the controls contributed to the intercept of the design matrix,

while the stages were represented as indicator variables [32]. The linear fit was subjected to

empirical Bayes adjustment to obtain moderated t-statistics. These results were then used for

the stage-differentiated contrast analysis

(3) Association between methylation status and phentoype. The strength of the associa-

tion between the methylation levels of CpG sites and the phenotype of interest (CRC-stage)

could enable the identification of relevant markers. We used the R package CpGassoc [33] to

estimate this association based on ANOVA with multiple hypothesis correction. The β-matrix

was used as input, and five factors (control, stage I, stage II, stage III, stage IV) were specified

as the target phenotype.

(4) The Chip Analysis Methylation Pipeline (ChAMP). The Chip Analysis Methylation

Pipeline (ChAMP) integrative analysis suite uses limma to identify differentially methylated

probes (DMPs) from the β-matrix [34]. A mapping of sample IDs with the pathological stage

phenotype was provided as an additional input file. In addition, the identification of differen-

tially methylated regions (DMRs), consisting of polygenic genomic blocks, was performed

using DMRcate in ChAMP (with preset p-value cutoff<0.05) [35]. GSEA was used to identify

the enrichment of DMPs and DMRs in the MSigDB pathways [36], using the Fisher Exact test

calculation with adjusted p-value < 0.05.

Table 1. AJCC cancer staging.

TCGA Stage TNM Classification Cases

I T1N0M0 50

II - 17 86

IIa T3N0M0 64

IIb T4aN0M0 5

III - 16 60

IIIa T1-T2N1/NcM0 3

T1N2aM0

IIIb T3-T4aN1/NcM0 21

T2-T3N2aM0

T1-T2N2bM0

IIIc T4aN2aM0 20

T3-T4bN2bM0

T4bN1-N2M0

IV - 35 36

IVa Any-T Any-N M1a 1

CONTROL - 42

NA - 1

The correspondence between the AJCC staging and the TCGA staging for COADREAD is noted. ‘NA’ denotes cases

where the stage information is unavailable. Sample sizes are successively aggregated to the parent stage.

https://doi.org/10.1371/journal.pone.0249151.t001
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(5) Correlation between gene methylation and expression. We used MethylMix2.0 to

estimate the correlation between the methylation and actual expression patterns of each gene

[37]. The expression data for the cases of interest were retrieved from TCGA (gdac.

broadinstitute.org_COADREAD.Merge_rnaseqv2_illuminaga_rnaseqv2_unc_edu_Level_3_

RSEM_genes_data.Level_3.2016012800.0.0.tar.gz). MethylMix was executed with the preset

correlation cutoff (> |0.3|), and statistical significance was assessed using Wilcoxon Rank Sum

test with adj. p-value < 0.05.

(6) Modelling expression from methylation. We used the R package BioMethyl to model

the aggregate expression level of a gene from its methylation patterns [38]. The gene expres-

sion matrix was estimated using the methylation β-matrix and then subjected to linear model-

ling with limma, followed by stage-differentiated contrast analysis.

Stage-differentiated contrast analysis

A directed two-tier set of contrasts was performed in limma to drill down to the stage-salient

genes:

1. Tier I: Stage-differentiated contrast against controls. Four pairwise contrasts were per-

formed, one for each of the stages I, II, III and IV. To identify reliable DMGs, the following

criteria were used: |lfc M-value| >2, and adj. p-value <0.001.

2. Tier II: Inter-stage contrasts. Six pairwise contrasts between the stages (namely: I-II, I-III,

I-IV, II-III, II-IV, and III-IV) were performed (p-value for each contrast: <0.05).

To illustrate, a putative DMG identified in Tier I would undergo three inter-stage contrasts

in Tier II, to ensure stage-salience. For example, a putative stage-II DMG established by Tier I,

would have to pass the following inter-stage contrasts: stage-II vs stage-I, stage-II vs stage-III

and stage-II vs stage-IV, for confirmation as stage II-salient DMG.

Identification of stage-salient biomarkers

Finding the consensus of a set of methods with different algorithms overcomes the biases spe-

cific to individual methods, and enables screening out false positives. Consensus was obtained

by finding the agreement among the results of the various methods used. At least three meth-

ods should agree on a given DMG’s stage-salience, for confirmation as consensus stage-salient

biomarker.

Survival analysis

The survival data for each case was obtained from the following attributes encoded in the clini-

cal data: patient.vital_status, patient.days_to_followup, and patient.days_to _death. The associ-

ation between consensus stage-salient DMGs and case overall survival (OS) was evaluated by

univariate Cox proportional hazards regression model using the R survival package [39]. This

uncovered potential prognostic stage-salient genes from the methylation analysis, using a sig-

nificance cutoff< 0.05. Such prognostic genes were used as the independent variables in a

regression model to estimate the survival risk of each case. Based on this risk score, cases with

colorectal cancer were categorized into high and low groups using the optimal cut point deter-

mined by the maxstat (maximally selected rank statistic) [40]. Kaplan-Meier estimation was

then applied to the median survival times of these two groups for flagging significant differ-

ences, providing a prognostic assessment of the biomarkers of interest.
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Results

Linear modelling with M-values (at the probe-level)

The number of significant genes present in each stage-control pair from the Tier-I contrasts is

shown in Fig 1A. Using the top 100 DM genes of the linear model (given in S3 File in S1 Text),

we found a clear separation between controls and stage samples (Fig 1B). The top genes in

each stage (by adjusted p-value of contrast with control) are shown in Table 2, with |lfc M-

Fig 1. Linear modelling with M-value matrix, all probes. (A) Venn distribution of significant DM genes in each stage relative to control. (B) Distribution

of samples based on the top two principal components of the top 100 genes shows a clear separation of cancer cases (labelled by stage) from controls. (C)

Stagewise methylation portraits of the top four significant stage-specific DMGs. The contrast with the control is especially evident. Also shown are the

stagewise methylation levels of (D) TMEM179, and (E) MEOX2.

https://doi.org/10.1371/journal.pone.0249151.g001

Table 2. Top ten genes of the linear model at the probe level.

ID Stage I lfc (β1) Stage I lfc (β2) Stage III lfc (β3) Stage IV lfc (β4) Adj. P-val Methylation status

GPR75-ASB3 2.28 2.19 2.16 2.32 1E-82 Hyper

TM4SF19 -3.63 -3.58 -3.72 -3.71 1E-82 Hypo

CNRIP1 2.74 2.60 2.68 2.97 1E-78 Hyper

PDE4A 1.68 1.58 1.60 1.71 1E-71 Hyper

KRTAP11-1 -2.36 -2.30 -2.37 -2.40 1E-70 Hypo

ADHFE1 3.15 2.97 3.00 3.43 1E-69 Hyper

FAM123A 3.56 3.18 3.43 3.90 1E-69 Hyper

KHDRBS2 2.30 2.16 2.10 2.34 1E-68 Hyper

AJAP1 2.52 2.44 2.46 2.64 1E-68 Hyper

NALCN 2.96 2.80 2.94 3.25 1E-68 Hyper

The log fold-change of M-value of the probe in each stage relative to the controls, followed by p-value adjusted for the false discovery rate, and the methylation status of

the gene in the cancer stages with respect to the control.

https://doi.org/10.1371/journal.pone.0249151.t002
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value| and inferred regulation status. The top four genes of each stage were used to construct a

stagewise methylation heatmap (Fig 1C). Fig 1D and 1E show boxplots of stagewise methyla-

tion levels for two representative genes: TMEM179, mutations in which could cause MSI [41];

and MEOX2 whose promoter methylation status is a known CRC marker [42]. The stagewise

methylation patterns of the top linear model genes are shown in Fig 2. It is notable that a natu-

rally occuring read-through fusion protein GPR75-ASB3 is the top linear model gene with sig-

nificant differential expression in all stages relative to the control. GPR75-ASB3 is positively

differentially expressed in the lung as well as different keratinocyte cell types, and evidence is

emerging of its role in other cancers [43]. In this light, GPR75-ASB3 could play a significant

role in colorectal cancers which are of epithelial origin. The top 100 significant stage-specific

genes, listed in S3 File in S1 Text, were used in the consensus analysis.

Linear modelling with avereps matrix (at the gene-level)

The methylation levels of genes with multiple probes were averaged using limma’s avereps

function, and summarized to one value. The number of genes present in each stage-control

pair from the Tier-I contrasts is shown in Fig 3A. Using the top 100 genes of the linear model

(given in S4 File in S1 Text), we found a clear separation between controls and stage samples

(Fig 3B). The top genes in each stage (by adjusted p-value of contrast with control) are shown

in Table 3, with |lfc M-value| and inferred regulation status. The top four genes of each stage

were used to construct a stagewise methylation heatmap (Fig 3C). Fig 3D and 3E shows the

boxplots of stagewise methylation levels for two representative genes, NALCN and GLRX.

Fig 2. Top DMGs identified from linear modelling. (A) GPR75-ASB3, (B) TM4SF19, (C) CNRIP1, (D) KRTAP11-1, (E) ADHFE1 and (F) PDE4A. For each

gene, notice that the trend in methylation could be either hyper-or hypo-methylation relative to the control. TM4SF19 and KRTAP11-1 are hypomethylated

whereas CNRIP1, GPR75-ASB3, ADHFE1, PDE4A are hypermethylated.

https://doi.org/10.1371/journal.pone.0249151.g002
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Mutations in NALCN have been reported in sporadic CRC [44]; here NALCN is seen to be sig-

nificantly hypermethylated, indicating the same outcome (loss of function) could be effected

in multiple ways. GLRX is a target of the activating transcription factor MEOX2 [45]. It is

observed that LY6H showed both hypermethylation and hypomethylation when compared to

the controls, indicating the role of experimentation necessary to clarify its role in colorectal

cancer progression. The top significant 100 genes of each stage, listed in S4 File in S1 Text,

were used for the consensus analysis.

Fig 3. Linear modelling with M-value matrix, avereps transformation. (A) Venn distribution of significant DM genes in each stage relative to control.

(B) Distribution of samples based on the top two principal components of the top 100 genes shows a clear separation of cancer cases (labelled by stage) and

controls. (C) Stagewise methylation portraits of the top four significant stage-specific DMGs. The stark contrast with the control is especially evident. Also

shown are the stagewise methylation levels of (D) NALCN, and (E) GLRX.

https://doi.org/10.1371/journal.pone.0249151.g003

Table 3. Top ten genes of linear modelling with averaging of multiple probes.

ID Stage I lfc (β1) Stage I lfc (β2) Stage III lfc (β3) Stage IV lfc (β4) Adj. P-val Methylation status

TM4SF19 -3.63 -3.57 -3.72 -3.71 1E-82 Hypo

GPR75-ASB3 2.28 2.19 2.15 2.32 1E-82 Hyper

CNRIP1 2.74 2.60 2.67 2.97 1E-77 Hyper

KRTAP11-1 -2.36 -2.30 -2.38 -2.40 1E-70 Hypo

ADHFE1 3.15 2.96 2.99 3.43 1E-69 Hyper

FAM123A 3.56 3.18 3.42 3.89 1E-68 Hyper

AJAP1 2.53 2.44 2.46 2.64 1E-67 Hyper

NALCN 2.96 2.79 2.95 3.25 1E-65 Hyper

IRF4 1.99 1.83 1.89 2.13 1E-65 Hyper

PRKAR1B 3.38 3.13 3.24 3.50 1E-65 Hyper

The log fold-change of M-value of the gene in each stage (relative to the control) is given, followed by p-value adjusted for the false discovery rate and the methylation

status of the gene in the cancer stages with respect to the control. A consistent methylation pattern is observed for all the top genes.

https://doi.org/10.1371/journal.pone.0249151.t003
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Association with phenotype

The ANOVA from CpGassoc yielded p-values and log fold-changes, which were used to iden-

tify significant genes for each stage using the criteria given in Methods. The top 100 genes of

each stage from this analysis (given in S5 File in S1 Text) were used for the consensus

investigation.

DMP analysis with ChAMP

The summary features of the β matrix dataset were evaluated using ChAMP (Fig 4). The

DMPs were identified using ChAMP analysis from the β matrix. All the inter-stage con-

trasts yielded null results (i.e, no significant genes), except for stageII–stageIV contrast.

Due to this, the top 100 DMPs from the stage vs control contrasts were used for the con-

sensus analysis directly. Contrasts that showed significant DMPs were subjected to a fur-

ther DMR analysis, to enable identification of DM genes. The stage-salient DMR regions

(genes) determined are provided in S6 File in S1 Text, and summarized in Table 4. The

stage-II vs stage-IV DMR contrast yielded three genes, namely PLAG1, SOCS2, and

NNAT. It is observed that these genes might be critical players in the transition to malig-

nancy. Interestingly, some genes were differentially methylated in all the stagewise con-

trasts with the control; such genes are differentially methylated agnostic of stage and

could serve as valuable drug targets for CRC therapy. The top such genes included

EYA4, WT1, DCC, RP11, GATA4, MSX1, DLX5, BNC1, WT1-AS, and ZIM2. A total of

31 such genes were identified and tabulated in S7 Table in S1 Text. The DMPs and

DMRs from the analysis were subjected to GSEA and these results could also be found in

S6 File in S1 Text. Fig 5 shows representative DMP and DMR plots using ChAMP.

Fig 4. Distribution of probes based on (A) genomic position: opensea, shore, island, shelf; (B) gene context:

transcription start site (TSS), exons, untranscribed regions (UTRs), and intergenic regions (IGR).

https://doi.org/10.1371/journal.pone.0249151.g004

Table 4. Contrast-wise counts of DM probes and DM regions.

Contrast DMPs DMRs

Control and Stage 1 11045 34

Control and Stage 2 11254 35

Control and Stage 3 11254 36

Control and Stage 4 11108 34

Stage 2 and Stage 4 404 3

No DM regions were found for the contrasts not shown, namely the stage-pairs: [(1,2), (1,3), (1,4), (2,3), (3,4)].

https://doi.org/10.1371/journal.pone.0249151.t004

PLOS ONE Stage-differentiated methylomics of CRC progression

PLOS ONE | https://doi.org/10.1371/journal.pone.0249151 February 24, 2022 9 / 23

https://doi.org/10.1371/journal.pone.0249151.g004
https://doi.org/10.1371/journal.pone.0249151.t004
https://doi.org/10.1371/journal.pone.0249151


Methylation and expression correlation analysis

Differential methylation (DM) calculated from stage vs control contrasts ranged from -0.7 to

+0.8, and genes could be hyper- or hypo-methylated based on the sign of the DM value. There

were 209, 441, 275, and 134 driver genes in each of the contrasts with the controls (stage-I,

stage-II, stage-III and stage-IV, respectively). All between-stages contrasts yielded null DM

genes. The results from this analysis, including driver genes for all the contrasts, are provided

in S8 File in S1 Text. It is notable that the top genes from an overall cancer vs control compari-

son included GATA4, CCDC88B, and WAS. Top 100 genes from each comparison with the

controls were taken forward for consensus analysis. Certain genes emerged common to all the

four comparisons with the controls, thereby suggesting stage-agnostic differential methylation

events. The top such stage-agnostic differentially methylated genes included CCDC88B,

C1orf59, CHFR, ZP2, HOXA9, ELF5, FAM50B, MUC17, TBX20, and VSIG2. Stage-agnostic

genes hold promise as therapeutic targets for the treatment of colorectal cancer; the complete

set of 56 stage-agnostic genes identified in this analysis is provided in S9 Table in S1 Text. Mix-

ture models of genes, indicative of the number of methylation states, were constructed using

MethylMix, and illustrated for a few stage-IV driver genes in Fig 6. The estimated correlation

between the methylation levels and actual gene expression for the same genes shows the

inverse relationship between methylation and gene expression, thereby highlighting the effect

of epigenetic events (Fig 6).

BioMethyl analysis

The significant stage-specific DEGs identified by BioMethyl are shown in UpSet plot [46] (Fig

7), and provided in S10 File in S1 Text. Top 100 genes of each stage from this analysis were

taken forward for consensus analysis.

Fig 5. DMP and DMR plots using ChAMP. (A) DMP plot of FCN2 for stage-I vs control illustrating significant

hypomethylation (B) DMR plot of transcriptional activator EYA4 for stage-I vs control illustrating significant

hypermethylation. Solid lines represent mean values while dashed lines represent the loess.

https://doi.org/10.1371/journal.pone.0249151.g005
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Stage-salient consensus biomarkers

The top 100 significantly differentially-expressed genes of each stage from all the methods dis-

cussed above (collated in S11 File in S1 Text) were used for the consensus determination. The

consensus analysis yielded seven stage-salient DMGs: one stage-I gene (FBN1), one stage-II

gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1, ZNF135,

FAM123A, LAMA1). Each of these stage-salient genes presented an |lfc M-value| > 0.4 with

respect to the other stages, validating their salience. Fig 8 represents violin plots of the consen-

sus biomarkers, and Table 5 presents a summary of the consensus analysis. Gene ontology

(GO) analysis [47] of the consensus biomarkers yielded processes related to structural integrity

of cell division processes, immunity dysfunction, and cell migration (Table 6). Detailed GO

results are presented in the S12 File in S1 Text.

Survival analysis

We constructed independent prognostic models of the stage-salient genes and identified the

prognostically significant biomarkers as FBN1, FOXG1, HCN1, and LAMA1. The correspond-

ing univariate Kaplan-Meier plots are shown in Fig 9. Rational combinations of stage-salient

genes, termed ColoRectal cancer Signatures (CRS), were modelled using multivariate Kaplan-

Meier regression, to yield a risk score. Risk scores were then used to estimate survival-effect

significance, as described in Methods. The results of this exercise are summarised in Table 7.

We found that CRS12 signature (consisting of FBN1 and FOXG1) yielded significant risk

Fig 6. Mixture models and Correlation plots for (A) FAM123A, (B) LAMA1 and (C) NELL1. The x-axis indicates the level of methylation (in terms of β
values); y-axis, the frequency. Mixture component curves represent density fits of the histogram. A negative correlation between methylation and expression is

evident, indicating that methylation acts to repress gene transcription, though the strength of the inverse correlation varies from gene to gene. olour indicates

the mixture model fit.

https://doi.org/10.1371/journal.pone.0249151.g006
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scores in the multivariate Kaplan-Meier analysis, and both CRS12 and CRS34 (consisting of

HCN1, NELL1, ZNF135, FAM123A, LAMA1) were significant in estimating overall survival

(prognosis p-value� 0.02) (Fig 10). S13 File in S1 Text provides survival plots of all possible

signatures. At the end of our analysis pipeline, CRS12 passed all the filters and emerged as a

significant early-stage panel for CRC prognosis.

Discussion

CRC development is due to the accumulation of genetic and epigenetic changes of which

DNA methylation is of paramount importance. DNA methylation profiles of colorectal cancer

have been investigated in several previous studies using various approaches [48, 49]. It is well-

known that changes in methylation status correspond with CRC progression [50]. Here we

have designed a comprehensive approach to systematically analyze stage-differentiated DNA

methylation patterns in colorectal cancer and their relationship to patient survival. Our study

Fig 7. UpSet plot of BioMethyl-based stagewise gene expression modelling. The intersection of all stages yielded 3268 genes, which represent

consistently differentially regulated genes.

https://doi.org/10.1371/journal.pone.0249151.g007
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has yielded consensus stage-salient significantly differentially methylated genes, and evaluated

their prognostic value. Corollary insights obtained in the course of our investigations, such as

stage-agnostic genes, have been documented, and would also be of interest to researchers in

the field. It is significant that none of the stage-salient genes figure as a cancer gene or a hall-

mark gene in the Cancer Gene Census [51]; HCN1 is notably marked as a candidate cancer

gene based on mouse insertional mutagenesis experiments [52]. The dominant differentially

methylated CpG site in all the stage-salient genes is located within the core / proximal pro-

moter regions (Table 8). Mixture models of methylation levels of stage-salient genes, along

with their inverse correlation to corresponding expression levels are shown in Fig 11, and

unambiguously establish the epigenetic impact of the changes in methylation. Our findings are

Fig 8. Violin plots of stage-salient genes. (A) Stage-I Gene FBN1, (B) Stage-II Gene–FOXG1, (C) Stage-III Gene–HCN1 and Stage-IV genes (D) LAMA1, (E)

NELL1, (F) FAM123A, (G) ZNF135.

https://doi.org/10.1371/journal.pone.0249151.g008
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further discussed in the context of the existing literature, and lead us to detect a strange CpG

island methylator phenotype (CIMP) signature in colorectal cancer.

Stage-salient DMGs

Promoter hypermethylation of FBN1, a glycoprotein component of calcium-binding extracel-

lular matrix microfibrils [53], is a recognized biomarker of CRC [54, 55]. Our analysis supports

this literature, while pinpointing the stage I-salience in its action. FOXG1 is well-known as an

etiological factor in certain neurological disorders and plays a role in the epithelial-mesenchy-

mal transition of CRC cells (a key hallmark of cancer progression), and is known to be overex-

pressed in CRC cases [56]. It is a nodal gene, with connections to oncogenic pathways like

WNT pathway in hepatocellular carcinoma [57] and TGF-β pathway in ovarian cancer [58]

Interestingly, FOXG1 was found to be a hypermethylated stage-II salient gene. HCN1, coding

for hyperpolarization-activated cyclic nucleotide-gated channel subunits, is associated with

low survival rates in breast, brain, and colorectal cancer [59]. We have identified HCN1 as a

stage-III hypermethylated gene, suggesting a loss-of-function mechanism for its tumorigenic

potential.

Our study has provided clear evidence that hypermethylation of LAMA1 (which codes for

α-laminin of the extracellular matrix) is a stage IV-specific signature. Experimental evidence

Table 5. Stage-salient biomarkers.

HGNC ID Gene Name Methods in agreement Salience Meth. status Statistical significance

M value Avereps Cox analysis Kaplan Meier

3603 FBN1 Avereps, ChAMP I Hyper 0.310 0.040 0.036 0.025

3811 FOXG1 Mvalue, Avereps, ChAMP, Methylmix II Hyper 1E-16 0.003 0.019 0.037

4845 HCN1 Mvalue, Avereps, ChAMP III Hyper 1E-17 0.022 0.031 0.059

7756 NELL1 Mvalue, Avereps, ChAMP IV Hyper 1E-68 0.061 0.283 0.27

12919 ZNF135 Mvalue, ChAMP, Methylmix IV Hyper 1E-76 0.062 0.096 0.084

26360 FAM123A Mvalue, ChAMP, Methylmix IV Hyper 1E-115 0.097 0.30 0.28

6481 LAMA1 Mvalue, ChAMP, Methylmix IV Hyper 1E-86 0.297 0.052 0.051

The results of the consensus analysis and univariate survival analysis are summarized. All the biomarkers showed hypermethylation, reflecting downregulation of gene

expression.

https://doi.org/10.1371/journal.pone.0249151.t005

Table 6. GO analysis of stage-salient genes in the order of decreasing significance (i.e, increasing p–value).

GO ID Term Ontology p-value

GO:1990047 Spindle matrix CC 0.0001

GO:0030109 HLA-B specific inhibitory MHC class I receptor activity MF 0.0003

GO:0032396 Inhibitory MHC class I receptor activity MF 0.006

GO:0042609 CD4 receptor binding MF 0.0012

GO:0032393 MHC class I receptor activity MF 0.0013

GO:0050930 Induction of positive chemotaxis BP 0.0016

GO:0050927 Positive regulation of positive chemotaxis BP 0.0033

GO:0050926 Regulation of positive chemotaxis BP 0.0034

GO:0008608 Attachment of spindle microtubules to kinetochore BP 0.0043

GO:0007094 Mitotic spindle assembly checkpoint BP 0.0044

Ontology could be Cellular Compartment (CC), Molecular Function (MF), or Biological Process (BP).

https://doi.org/10.1371/journal.pone.0249151.t006
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for the hypermethylation of the promoter region of LAMA1 in CRC cases is available [60].

NELL1 is a known tumor suppressor gene [61], whose hypermethylation is associated with

poor survival outcomes [62]. Here it is found to be a stage IV-specific hypermethylated gene,

resonating with the above findings. ZNF135 is a zinc-finger protein involved in regulation of

cell morphology and cytoskeletal organizations. Its expression and epigenetic regulation have

been reported to be key in cancers of the cervix and esophagus, respectively [63, 64]. Here we

have found that epigenetic silencing of ZNF135 is a key feature of stage-IV CRC. It is interest-

ing that another member of the zinc-finger protein family, ZNF726, has been recently identi-

fied as the only methylated gene significantly associated with OS in patients with CRC,

Fig 9. K-M plots for the prognostically significant stage-salient genes. (A) FBN1, (B) FOXG1, (C) HCN1, and (D)

LAMA1.

https://doi.org/10.1371/journal.pone.0249151.g009

Table 7. Summary of selected multivariate prognostic models.

Signature Stages Biomarker Weight P-value

Multivariate model Prognosis

CRS12 I+II FBN1 -0.62 0.015 0.005

FOXG1 -1.05

CRS34 III+IV NELL1 0.1 0.172 0.02

ZNF135 -0.21

FAM123A -0.23

LAMA1 -0.39

HCN1 -1.1

CRS234 II+III+IV FOXG1 -0.99 0.0877 0.032

HCN1 -1.07

NELL1 -0.10

ZNF135 -0.22

FAM123A -0.37

LAMA1 -0.27

Weight denotes the coefficient in the multivariate model. The ultimate significant signature is highlighted.

https://doi.org/10.1371/journal.pone.0249151.t007
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without regard for pathologic stage [65]. FAM123A, also known as AMER2, is associated with

microtubule proteins [66], and is a paralog of the well-documented FAM123B, a tumor-sup-

pressor whose loss-of-function by mutation, methylation and copy-number aberrations is

known to play a pivotal role in colorectal cancer, especially in older patients [67–69]. It is sig-

nificant that our study has uncovered FAM123A as a hypermethylated stage IV-specific DMG,

signalling the need for experimental investigations. There is very little literature on the cancer

significance of any of the above stage-salient genes, marking our findings as novel and impor-

tant in the context of gaps in our knowledge.

Putative CIMP signature

Aberrant methylation of CpG promoter regions causes stable repression of transcription lead-

ing to gene-silencing [70, 71]. In the context of tumorigenic processes, this is likely to lead to

loss-of-function of tumor-suppressor genes. Multiple CpG islands might be methylated simul-

taneously in some cancers, paving the way for CpG island methylator phenotype (CIMP), first

discovered in colorectal cancer [72]. CIMP is characterised by hypermethylation of CpG

islands surrounding the promoter regions of genes involved in cancer onset and progression

[73]. The phenotype is heterogenous with the type of tumor [74] and dependent on definition

[75]. Table 8 suggests that the stage-salient hypermethylated biomarkers identified in our

study are components constituting an aggregate novel CIMP, and there is preliminary experi-

mental evidence in this direction. Earlier studies have identified LAMA1 as a CIMP panel con-

stituent [50, 60]. FBN1 has been used as an epigenetic biomarker in diagnostic panels

associated with CIMP-positive tumors [54, 76]. While this paper was under review, FAM123A

has been used in a five marker panel to detect stage-IV CRC using blood samples [77]. The

original CIMP had been associated with advanced T staging (T3/T4) [78], which accords with

Fig 10. Survival analysis of combination biomarker panels shows significance. (A) Early-stage panel, CRS12; and

(B) Late-stage panel, CRS34.

https://doi.org/10.1371/journal.pone.0249151.g010

Table 8. Location of the major DM CpG site in stage-salient genes.

Stage-salient gene DM CpG site Distance to TSS Location in the promoter region

FBN1 cg18671950 146 Proximal

FOXG1 cg10300684 36 Core

HCN1 cg06498267 298 Proximal

NELL1 cg17371081 179 Proximal

ZNF135 cg16638540 144 Proximal

FAM123A cg22029275 73 Core

LAMA1 cg07846220 133 Proximal

All the hypermethylated CpG sites of stage-salient DMGs were found in the core/proximal promoter regions.

https://doi.org/10.1371/journal.pone.0249151.t008
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our finding of four hypermethylated stage IV-salient DMGs. The biomarkers from our study

contributing to the putative CIMP were tested with a standard survival analysis workflow

yielding significant prognostication power for five of the seven stage-salient genes (Table 5). A

Cox multivariate analysis of biomarker panels uncovered two signatures, an early-stage

CRS12, and a late-stage CRS34 that might be prognostically valuable. In particular, CRS12

(composed of FBN1 and FOXG1) suggests a significant early-stage biomarker panel (p-

value < 0.01) for the effective prognosis and stage-sensitive detection of colorectal cancer.

Diagnostic biomarkers that are also superior in prognostication power imply methylation

events that are vital to tumor-specific pathophysiology. This suggests future directions for ther-

apeutic intervention. Epigenetic intervention for CIMP-positive cancers has been advanced as

a possible treatment strategy [79]. The alternative CIMP-like biomarkers could serve to stratify

the cancer subtype, thereby facilitating precision medicine. The current standard of CRC

screening is colonoscopy, an invasive method with a significant rate of complications. A non-

invasive method based on molecular diagnostics would improve patient satisfaction and effi-

ciency. Several studies have been conducted to identify and/or validate biomarkers for CRC

diagnosis. It is recognized that DNA methylation patterns could serve as valid biomarker can-

didates [80, 81]. Freitas et al., have validated the performance of a 3-gene biomarker panel for

the detection of colorectal cancer irrespective of the molecular subtype [82]. However optimal

stage-salient epigenetic biomarkers have not yet been reported. Using hypermethylated DNA

patterns as cancer markers offers the advantage of providing small targets with high concentra-

tions of CpG for assays, useful for the design of analytical amplicons [83]. Hypermethylation

in the gene body and upstream control regions like enhancers and insulators might affect tran-

scription differently than hypermethylation of promoter regions [84, 85]. Further DNA meth-

ylation patterns in noncoding RNA genes seem to be important in tumorigenesis and

progression [86]. Non-coding RNAs themselves play a significant role in epigenetic modifica-

tion through the phenomenon of RNA-directed DNA methylation [48]. The nuanced relation-

ship between methylation and gene transcription signals the need for clinical validation of our

Fig 11. Mixture models and correlation plots of stage-salient genes. Shown are FBN1, FOXG1, HCN1, and ZNF135. Two mixture components are seen for

FBN1, HCN1, and ZNF135, and three for FOXG1. A strong inverse correlation exists for all genes, except HCN1. Other stage-salient genes are shown in Fig 6.

https://doi.org/10.1371/journal.pone.0249151.g011
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results, however ensemble approaches such as the one used here suffer less uncertainties with

respect to translation of the identified biomarkers. Since methylation mediates a direct epige-

netic regulatory mechanism used by all life [87], it is hoped that the workflow herein designed

would advance our understanding of the complex effects of methylation events, patterns, and

landscapes in different settings, including in the developmental stages of life.

Conclusion

We have developed a comprehensive computational framework for the consensus identifica-

tion of stage-differentiated significant differentially methylated genes, and evaluation of their

prognostic significance. Our analysis has yielded seven stage-salient genes, all hypermethylated

in the promoter regions and relatively unreported in the literature: one stage-I gene (FBN1),
one stage-II gene (FOXG1), one stage-III gene (HCN1) and four stage-IV genes (NELL1,

ZNF135, FAM123A, LAMA1). Stage-salient genes could serve as diagnostic biomarkers, and

their concordant hypermethylation would signal a distinct CIMP-like character possibly pro-

moting epigenetic destabilisation, which in turn would drive the progression of colorectal can-

cer. These findings lend further evidence to CIMP drivers of colorectal cancer and point more

generally to a pervasive role for these aberrations in tumor biology that remains to be discov-

ered. Independent prognostic evaluation of the stage-salient markers yielded significance for

FBN1 and FOXG1. Survival analysis of biomarker signatures composed of the stage-salient

genes yielded a significant early-stage panel consisting of FBN1 and FOXG1. Our studies have

also spawned secondary results such as stage-agnostic genes that could serve as targets for drug

discovery in CRC therapy. Consensus approaches, like the one used here, are more reliable,

and the epigenetic biomarkers identified in our study could potentially advance the accurate

early detection of colorectal cancers, their treatment and prognostic evaluation. The methods

are extendable to the investigation of epigenomics in other cancers, normal/disease conditions,

and developmental biology.
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