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We predict protein structure using our recently developed
free energy function for describing protein stability,
which is focused on solvation thermodynamics. The func-
tion is combined with the current most reliable sampling
methods, i.e., fragment assembly (FA) and comparative
modeling (CM). The prediction is tested using 11 small
proteins for which high-resolution crystal structures are
available. For 8 of these proteins, sequence similarities
are found in the database, and the prediction is per-
formed with CM. Fairly accurate models with average
Cα root mean square deviation (RMSD) ~ 2.0 Å are suc-
cessfully obtained for all cases. For the rest of the target
proteins, we perform the prediction following FA proto-
cols. For 2 cases, we obtain predicted models with an
RMSD ~ 3.0 Å as the best-scored structures. For the
other case, the RMSD remains larger than 7 Å. For all
the 11 target proteins, our scoring function identifies the
experimentally determined native structure as the best
structure. Starting from the predicted structure, replica
exchange molecular dynamics is performed to further
refine the structures. However, we are unable to improve
its RMSD toward the experimental structure. The exhaus-
tive sampling by coarse-grained normal mode analysis
around the native structures reveals that our function
has a linear correlation with RMSDs < 3.0 Å. These re-
sults suggest that the function is quite reliable for the
protein structure prediction while the sampling method
remains one of the major limiting factors in it. The as-
pects through which the methodology could further be
improved are discussed.
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Proteins have a specific three-dimensional atomic structure
that is connected to their biological function. Determining
the structure is essential for understanding the molecular
mechanism of their function. At present, X-ray crystallogra-
phy and nuclear magnetic resonance (NMR) are the experi-
mental methods utilized to provide protein structures in
atomic detail. However, the processes through which both
methods determine the structure are time consuming and
cannot keep pace with the identification of new protein se-
quences. Currently, over eight million protein sequences are
deposited in the UniProtKB/TrEMBL database, but only ap-
proximately 50,000 of them are experimentally solved and
stored in the Protein Data Bank (PDB). Therefore, a high
demand has been placed on closing the gap between protein
sequences and structures. Thus, the prediction of protein
structure has become a major area of computational biology1–8.

Knowledge-based prediction of protein structures is one
of the most successful methods due to improvements of se-
quence alignment techniques and enrichment of annotated
structures in database9–11. If the target protein shares sequence
similarity with another protein in the database, homology
modeling or comparative modeling (CM)12–15 can construct
its model structure from the experimental three-dimensional
structure of the related homologous protein, which serves as
a template. However, CM is limited when no sequence sim-
ilarity is discerned in the database. When de novo protein
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structure is the prediction target, i.e., no templates are found
in the database, the fragment assembly (FA) method pro-
posed by Baker et al.2,16–19 can be applied because it requires
short templates of secondary structure fragments. However,
the prediction accuracy of FA is limited to proteins with res-
idue lengths shorter than approximately 100 due to its high
computational cost4. These two heuristic methods, which
dominate the Critical Assessment of Techniques for Protein
Structure Prediction (CASP), often lack the ability to reli-
ably identify near-native conformations if the target is be-
yond the limits of the application. Attempts have been made
to improve the accuracy of predicted models built with
such methods by combining physics-based approaches, in
which the models are subjected to molecular dynamics
(MD) simulation in an effort to improve their RMSD to the
experimental structure. The MD approaches often show high
performance in refining the structures generated by CM or
FA20,21 if the generated model is already in the near-native
region (~1–3Å in RMSD). Protein folding simulations using
MD also demonstrate agreement with experimental investi-
gations22,23. Although their applications still remain limited
to small proteins or peptides due to the associated computa-
tional cost, such simulations have established the validity of
physic-based approaches. However, as Zhang noted in his
review4, no atomic potential could distinguish the near-
native structures from the more distant non-native structure
because the energy of the best near-native structure was
almost always higher than some of the non-native ones.
This propensity of the physics-based energy functions is
fatal when applying such energy functions, especially for
modeling de novo protein structure. One reason for such a
fault could be that the current treatment for the physics-
based energy, which mainly considers interatomic interac-
tions from a microscopic perspective24–26, is inadequate for
describing protein stability, which should be evaluated by
thermodynamic quantities.

Recently, we developed a free energy function27–31 for an
all-atomic protein model to describe the protein folding
thermodynamics. In our studies, we rely on the thermo-
dynamics hypothesis32, which states that proteins in their
native configuration are in thermodynamic equilibrium with
their solvent environment. Based on this paradigm, the native
structure of a protein can be predicted as the global mini-
mum of the free energy surface of the system, including
protein and solvent33. Our previous study using statistical
mechanics on the liquid state revealed that the solvation
entropy is the key factor that stabilizes protein structure
rather than direct intramolecular interaction within a pro-
tein34. The protein folding process, which is accompanied
by significant conformational entropy loss, is originated from
the translational entropy gain of environment water mainly
due to the decrease in the excluded volume for water27,35.
Based on those theoretical considerations, we have con-
structed a simple scoring function for an all-atomic descrip-
tion with minimal complexity of energy terms that still

extracts the physical essence of the protein structure sta-
bility. In our previous studies, we found that this function
succeeded in selecting native structures correctly from
online-available decoy sets30,31,35.

In this study, we investigate the availability of our scoring
function in the typical prediction protocols (CM and FA) by
checking whether there is an improvement of the accuracy
in the protein structure prediction. Our scoring function is
defined with atomic coordinates. Therefore, it can easily
be applied to the structural refinement methods for an all-
atomic molecular model such as replica exchange molecular
dynamics (REMD)36. Furthermore, we also examine the
prediction performance of the function in the near-native
region (~1.0–3.0 Å in RMSD) by combining it with coarse-
grained normal mode analysis (CGNMA), which is suitable
for structural sampling around a fixed structure. By employ-
ing such a variety of methods, which cover a wide range of
the conformational space, we can examine the performance
of the function for both structural prediction and structural
refinement.

Methods and Concept

Target proteins
To evaluate our prediction results, the targets for this

study are selected among the proteins from previous CASPs
(http://predictioncenter.org/). We also added some targets
that have not appeared in previous CASPs, so the selected
proteins have different residue lengths and various folding
patterns of secondary structures. Furthermore, our previous
works using the decoy sets showed that there are some limi-
tations on selecting protein species due to physicochemical
and technical reasons30. Thus, we selected target proteins
according to following criteria. (1) The structures are ob-
tained by X-ray crystallography. We excluded NMR struc-
tures due to their conformational ambiguity. NMR structures
are usually deposited in the PDB as a collection of models
that satisfy geometrical restrains from experiment. Typi-
cally, the models are composed of a structurally conserved
core regions and variable region (loops and chain termi-
nals). The variable region may cause structural difference as
large as 5 Å in Cα RMSD among the models. The final
structures are computationally determined through the energy
optimization of the force fields. Therefore, the results may
largely depend on both the optimization procedure and the
force fields. Because our goal is to compare the native
energy with the energies of the decoy structures, it is crucial
to have one, well-defined native structure with the least bias
in favor of other force fields. (2) The structure does not con-
tain heme or metal ions that maintain the native fold. Such
selections are justified by the fact that we cannot include
crystallization partners in the calculation; most of the struc-
tures that co-crystallize with large partners are not suitable
for prediction using physics-based scoring functions. In our
theoretical treatment, the scoring function assumes that a



Du et al.: A scoring function based on protein hydration 129

protein is in water as a solvent at infinite dilution. (3) The
benchmark proteins have less than 200 residues. This crite-
rion is set simply for convenience in testing the prototype of
our prediction protocol and scoring function. The structural
properties of the proteins are listed in Table 1. Based on the
criteria and the purpose of study described above, the num-
ber of target proteins ends up limited to 11. However, the
prediction performance of our scoring function can be eval-
uated by exhaustive structural sampling with a wide variety
of methods, as described in the following section.

Prediction protocol
Our prediction protocol consists of two phases: model

generation and selection. For model generation, we use
either CM or FA to generate a number of candidates for
evaluation. If the sequence similarity is found after the
alignment procedure using PSI-BLAST13, we use CM. Other-
wise, FA is employed for generating model structures.
Those prediction methods do not give an all-atomic coordi-
nates of a protein. Thus, energy minimization using molecu-
lar mechanics (MM) is performed for every generated struc-
ture to remove unrealistic steric overlaps between atoms
before the evaluation with our scoring function. For further
structural refinement, conformational sampling is performed
using REMD starting from the model structure obtained
from the CM or FA.

During model selection, the energies for all the generated
models are calculated with our scoring function called
“Fsolv,” which is based on solvation thermodynamics, and
the model that gives the lowest value is picked up as a pre-
dicted structure from a given set of generated decoy struc-
tures. The details of the prediction protocol and the score
function are described in the following subsections.

Model Generation
Here, the procedure of model generation is briefly sum-

marized. The amino acid sequence of a target protein is first
queried against the NCBI-NR database by PSI-BLAST, and
the profile matrix is saved. The profile matrix is used to
find homologous sequences from the PDBAA database,

which only contains the sequences of known structures. Thus,
during the first step, the sequence profile is constructed
from the above database, and the templates are conse-
quently searched for using the profile obtained from the
sequence database of known structures. Both the NCBI-NR
and the PDBAA databases are available in the NCBI reposi-
tory (ftp://ftp.ncbi.nih.gov/blast/db/). When we perform CM,
multiple targets are simultaneously treated if identified by
PSI-BLAST. The multiple sequence alignment is constructed
with CLUSTALW37. Although MODELLER9 can handle
multiple templates to generate the model structures, we
limit the number of templates to three38. When good tem-
plates are found (alignment covers more than 80% of the
target sequence), we use MODELLER to carry out CM. In
this study, we try to compare the prediction performance
with the result of previous CASPs. As long as the current
database is used, however, it is inevitable that structure or
sequence information leakage occurs. Any templates whose
sequences have extremely small E-value (<1.0–5) are omit-
ted, so the refereed database is as similar to the correspond-
ing CASP as possible. To obtain structural diversity for gen-
erated models, we imposed relatively large perturbation on
the initial template by randomly moving the x-y-z coordi-
nates of protein atoms. The range of the movement is within
±3.0 Å. Then, simulated annealing MD is carried out start-
ing from those perturbed structures, so any steric overlaps
between atoms of a modeled protein can be removed. If no
suitable template is found, we use ROSETTA16 to generate
model structures according to the standard FA protocol,
where 3 and 9 residue fragments are prepared. For each
length and position of fragments, 200 fragments are selected
from the torsion library of the ROSETTA package based
on sequence information. Starting from the fully extended
structure as an initial structure, a model structure is built by
inserting fragments iteratively for 10,000 times. For each
target protein, the number of structures generated by CM
and FA are 3,000 and 30,000, respectively.

Conformational sampling by REMD
We also test whether REMD can be applied for a further

Table 1 Properties of the 11 proteins used to test the prediction protocol and the score

PDB Nres Description SCOP Resolution

1whz 70 Hypothetical protein α+β 1.52
1ttz 75 Unknown Function α/β 2.11
1ptf 87 Phosphotransferase α+β 1.60
2he4 90 Unknown Function not classified 1.45
1s12 94 Unknown Function α+β 2.00
2hd3 96 Ethanolamine Utilization Protein all β 2.40
2ivy 101 Hypothetical protein α+β 1.40
1tr0 106 Plant Protein α+β 1.80
3dcx 117 Unknown Function all β 2.00
2hng 127 Hypothetical protein α+β 1.63
1hka 158 Transferase α+β 1.50

The items listed include the PDB entry name, total number of residues (Nres), description of the biological and
source of the protein, SCOP secondary structure class, experimentally determined resolution in Å.
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structural refinement when combined with Fsolv. As a struc-
tural sampling method, REMD simulation is performed
starting from a model structure (with RMSD to native ap-
proximately 2.0 Å) generated from CM or FA. A detailed
description of the REMD procedure can be found else-
where3,36,39,40. Here, the procedure is briefly summarized as
follows. We use the AMBER10 package41, and the condi-
tions and parameters for REMD followed a previous study
by Zhu et al.40 except that we use the AMBER99SB force
field. The protein is first solvated with TIP3P water mole-
cules, and energy minimization is performed. Then, the sys-
tem is copied to 24 replicas, and their temperatures are set
between 280 and 320 K. Each replica is equilibrated by
100 ps MD simulations at each corresponding temperature.
The SHAKE algorithm42 is used to freeze all bonds involv-
ing hydrogen atoms. The temperature is controlled with the
Langevin temperature control algorithm43. The equilibrated
protein models are subjected to 5 ns REMD at constant (N,
V, T) with exchanges attempted every 1 ps. We retrieve
atomic coordinates from the trajectory at every exchange
trial. The conformations corresponding to the three lowest
temperatures (i.e., T = 280.0, 281.6, and 283.3 K) are sub-
jected to the evaluation with Fsolv. Thus, the total number of
evaluated structures is approximately 15,000.

Near-native models (NNMs)
To evaluate the propensity of our scoring function for a

slight structural change from the native fold, we also per-
formed CGNMA for the Cα coordinate determined by X-
ray crystallography. Hereafter, a structure with Cα RMSD
< 3.0 Å from the native is referred to as a NNM. To generate
NNMs, we first performed CGNMA44 for the native struc-
ture. It only needs a single cut-off parameter. If the distance
of paired Cα atoms is within that value, these two atoms are
connected by a spring. By diagonalizing the Hessian matrix
of this model, the vibrational frequencies ω

i
 and direction

vectors ν
i
 (i=1 to 3l-6) are obtained as the eigenvalues and

eigenvectors, respectively. Here, l corresponds to the resi-
due number of the protein, and ν

i
 is normalized to have a

unit norm. Direction vectors are further weighted with their
frequencies

ν
i
′ = ν

i
× .

This transformation ensures that the ratio of norms of
weighted directions is proportional to the ratio of their ther-
mal fluctuation amplitudes. Because ~90% of the vibra-
tional amplitude is dominated by the first tenth modes, we
can randomly perturb the Cα coordinates of the native
structure along the weighted vibrational directions as fol-
lows:

X=X0 + × ν
i
′ ,

where X and X0 are the Cα coordinates of the perturbed and

native structure, respectively. ε
i
 is a random number from

the uniform distribution, i.e., Unif (-d,d), where d is ad-
justed, so the final models to have Cα RMSD < 3.0 Å. In
this approach, we can sample the conformational space uni-
formly around the native fold because the eigenvectors cor-
respond to the vibrational directions around it.

Local structural correction
In the CGNMA or the FA-based prediction method, all

structures are only described with the position of Cαs. For
such coarse-grained models, we reconstruct all-atomic struc-
ture with the PULCHRA software package45. Before calcu-
lating each energy value, steric overlaps between atoms are
removed by energy minimizations with the AMBER99SB
force field. To reduce computational cost, the energy cal-
culations are made in vacuo. Because the main purpose of
energy minimization is to remove unrealistic steric overlaps
between the atoms in a protein, the calculation of the elec-
trostatic interaction is also omitted. The convergence crite-
rion for the structural optimization is set at 0.5 kcal/mol/Å
in the RMS gradient.

Scoring function and molecular models for proteins and 
water

In this subsection, the basic concept of our scoring func-
tion Fsolv is explained, and the molecular models for a pro-
tein and water molecules are summarized. For more detailed
information, our earlier publications should be referred27–31,35.
Because Fsolv must be evaluated for a large number of differ-
ent protein structures generated in accordance with the pro-
cedures described above, the Fsolv per structure should be
calculated with low computational cost. The essential roles
of water should be accounted for as well. We have devel-
oped a judicious method meeting both of these requirements
as explained in the following.

Here, we consider the energetics of the system in which a
protein with a fixed structure is immersed in water at infi-
nite dilution. The free energy of the system W can be
expressed as the sum of the protein intramolecular energy
Eintra and the solvation free energy μ: W=Eintra+μ. μ consists
of the hydration energy Ehyd and the hydration entropy S:
μ=Ehyd−TS. Then, W=Eintra+Ehyd−TS, where T is the abso-
lute temperature. μ is the same irrespective of the protein
insertion condition, isobaric or isochoric, and the isochoric
condition is much more convenient from a theoretical per-
spective. “Eintra+Ehyd” and S are calculated separately as
described below.

A recent study on hydration thermodynamics of proteins
has revealed that S changes by less than 5% even when the
protein–water electrostatic interactions, which are quite
strong, are completely eliminated46. This result is quite rea-
sonable because S is determined primarily by the excluded
volume effect. Based on the great advantage that S is not
significantly influenced by the protein-water interaction
potentials, we can model a protein as a set of fused hard
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spheres. An explicit molecular model for solvent (i.e., not
a dielectric continuum model) must be employed when cal-
culating S. Moreover, the details of the polyatomic struc-
ture, which have substantially large effects on S, should be
taken into account on the atomic level. By utilizing a hybrid
of the angle-dependent integral equation theory (an elabo-
rate statistical-mechanical theory for molecular liquids) and
the morphometric approach, we have made the evaluation
of S possible with minor computational effort, as described
later in this subsection. A multipolar model is employed for
the water molecule47, and the effect of the molecular polari-
zability is taken into account using the self-consistent mean
field theory. At the theoretical level, the many-body induced
interactions are reduced to pairwise additive potentials in-
volving an effective dipole moment.

“Eintra+Ehyd” is evaluated by choosing a fully extended
structure as the reference structure. The structure possesses
the maximum number of hydrogen bonds with water mole-
cules and no intramolecular hydrogen bonds. We refer to
“Eintra+Ehyd” as the total dehydration penalty that occurs
upon the transition to a more compact structure, in which
intramolecular hydrogen bonds are not formed completely.
Let ξ denote “Eintra+Ehyd”. Then, Fsolv is given by

Fsolv =−TS+ ξ .

The hydration entropy, which is strongly dependent on
details of the protein polyatomic structure, is calculated
using a hybrid of the angle-dependent integral equation
theory48–52, a statistical-mechanical theory for molecular liq-
uids, and the morphometric approach53.

In the angle-dependent integral equation theory, the roles
of water as a molecular ensemble are fully considered. The
water-water and solute-water orientational correlations are
taken into account in a complete manner. Then, the multi-
polar model47 is employed for mimicking a water molecule.
The solute-solvent (water) pair correlation function can be
denoted by gUV (r, θ, φ, χ) where r is the distance from the
center of the solute, (θ, φ) represents the orientation of the
dipole-moment of vector water (θ is the angle between the
vector and the solute-water axis), and χ describes the rota-
tion around the dipole-moment vector. The Morita-Hiroike
formula for calculating the hydration free energy μ is writ-
ten as

μ=

−

− sin θdrdθdφdχ ,

where hUV (= gUV − 1) and cUV are the total and direct corre-
lation functions, respectively. The integral range is [0, ∞]
for r, [0, π] for θ, and [0, 2π] for φ and χ. kB and ρS are the
Boltzmann constant and the number density of solvent

water, respectively. As mentioned earlier in this subsection,
S is considered under an isochoric condition and calculated
through the thermodynamic relation

S= .

The temperature derivatives are numerically evaluated from

= ,

where dT=5 K is adopted.
Although employing this theory is computationally ex-

pensive, the calculation of hydration entropy for a protein is
quite rapid combined and remains in quantitative agreement
when combined with the morphological thermodynamics53.
Using such a combined method, the computation time re-
quired per structure is ~0.1 sec on the standard workstation.
In the morphometric approach, a hydration quantity such as
S is expressed by the linear combination of only four geo-
metric measures of a solute molecule:

S= c1V+ c2A+ c3C+ c4X ,

where V, A, C and X corresponds to exclude volume, solvent
accessible surface area, integrated mean and Gaussian cur-
vature, respectively53. In our approach, the solute shape enters
S only via the four geometric measures. Therefore, the four co-
efficients (c1–c4) can be determined through simple geometry.
They are determined in advance from the values of S for hard-
sphere solutes with various diameters (dU: 0 ≤ dU ≤ 10dV,
where dV denotes the diameter of a water molecule) immersed
in our model water. The angle-dependent integral equation
theory is employed in the calculation. The four coefficients
are determined by the least square fitting applied to the fol-
lowing equation for hard-sphere solutes:

S = c1(4πR3/3)+ c2(4πR2)+ c3(4πR)+ c4(4π) and

R= (dU+ dV)/2.

As explained in the text, we can model a protein structure
as a set of fused hard spheres whose diameters are the corre-
sponding Lennard-Jones (LJ) parameters taken from the
AMBER99SB. Once determined, the four coefficients can
be used to calculate S for a protein with any structure. It is
obtained just by calculating the four geometric measures for
each protein structure using the Connolly algorithm54. The
x-y-z coordinates of the protein atoms, which characterize
each structure on the atomic level, are used as part of the
input data for calculating the four geometric measures.

In contrast, to calculate the total dehydration penalty ξ,
the protein-water interaction potentials play essential roles.
The ξ is evaluated by choosing a fully extended structure,
which possesses the maximum number of hydrogen bonds
with water molecules and no intramolecular hydrogen bonds,
as the reference structure. Compared to the fully extended
structure with ξ=0, in a more compact structure some pro-
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ton donors and acceptors (e.g., N and O, respectively) are
buried in the interior after breaking the hydrogen bonds
with water molecules (CO ... W, NH ... W, etc.). When a
donor and an acceptor are buried in the interior after the
hydrogen bonds with water molecules are broken, we im-
pose no penalty if they form an intramolecular hydrogen
bond. On the other hand, when a donor or an acceptor is
buried and no intramolecular hydrogen bond formed, we
impose the penalty of 7kBT0 (T0=298 K). This value is based
on the result obtained by a molecular dynamics simulation
performed for hydrogen-bond formation between two for-
mamide molecules in a nonpolar liquid55. We examine all
the donors and acceptors for backbone-backbone, backbone-
side chain, and side chain-side chain intramolecular hydro-
gen bonds and calculate ξ. It is necessary to determine if
each donor and acceptor is buried. The water-accessible
surface area is calculated for each of them by means of
Connolly’s algorithm54. If the surface area is smaller than a
threshold value A0, the donor or acceptor is considered buried.
A0 is set at 0.001 Å2. To determine if an intramolecular
hydrogen bond is formed, we use the criteria proposed by
McDonald and Thornton56. Per protein structure, the com-
putation of the ξ is also finished rapidly. It is now apparent
that no dehydration penalty is considered for the nonpolar
groups of a protein. The break of hydrogen bonds with water
molecules is more serious and forms a principal component
of the total dehydration penalty when they are not compen-
sated by intramolecular hydrogen bonding.

Results and Discussion

Predicted models by CM and FA
There are two generally accepted conditions that need to

be fulfilled for any given potential to be suitable for struc-
ture prediction or refinement. The potential must score the
native structure as the lowest in energy value, and the poten-
tial energy must be correlated with native-likeness (e.g.,
RMSD or TM score) to drive the conformational search in
the direction of the native structure. In Figure 1, the scat-
tered plot of the score is shown. The value of Fsolv normal-
ized with respect to the number of residues is plotted against
the Cα-RMSD for all the generated structures of a targeted
protein sequence. For all cases, the energy of the native
structure is lower than that of any other decoy structures.
As observed in Figure 1, the native-decoy energy gap, that
is the difference between native energy and lowest decoy
energy, seems to depend on the proteins and methodologies
used for the predictions. The energy gap created by the sam-
pling with FA; in the case of 1whz, 1ttz and 1s12, is wider
than that with CM. As summarized in Table 2, FA based on
our protocol could not sample the model structures below
2.44 Å in RMSD of Cα. On the contrary, CM based on our
protocol gave better predicting results than FA. In the case
of 1ptf, the best-modeled structure obtained by CM has an
RMSD of 0.93 Å and is closest to the native. Therefore, the
energy gap observed occurs because the FA sampling is
unable to better reach the structural region around the native
compared to the CM sampling.

Figure 1 The plot of Fsolv as a function of Cα-RMSD for the generated models. All targeted proteins are presented. The X-axis is the RMSD of
the decoy structures from the native. The Y-axis is the corresponding normalized Fsolv value.
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The RMSDs of the best structures evaluated by our scor-
ing function are listed in Table 2. The best results in the pre-
vious CASPs are also listed. Compared to the previous pre-
diction results, our function provides fairly accurate model
structures. In Figure 2, the structures predicted by our proto-
col and scoring function are overlaid with the corresponding
experimentally determined structures. Although we cannot
make a direct comparison with the previous CASP results
because the database we used in this study has been already
updated, the more accurate results are obtained by the stand-
ard prediction methods combined with Fsolv for the cases of
1hka, 2hng, 1tr0 and 2hd3. Some structures have lower en-
ergy than the closest structure in RMSD for every case.

However, the cases of 1ptf, 1hka, 1tr0 and 1ttz can be re-
garded as successful because Fsolv selects fairly good models
when the structural diversity of their decoys is taken into
consideration. In those cases, Fsolv exhibits a significant cor-
relation with RMSD. On the other hand, when native-like
conformations are hardly sampled, i.e., in the case of 1whz,
Fsolv does not select a relatively closer model from among
the whole decoy structures. In such cases, there is no ob-
served correlation of the score with RMSD. In both cases,
there seems to be a barrier against achieving a structure
similar to native structures with RMSD < 2.0 Å. One expla-
nation for this barrier could be the bias for generated struc-
tures due to the difference in prediction methodologies em-

Table 2 RMSD of model structures

PDB Method Closest decoy Fsolv selected AMBER99 selected Best in CASPs

1whz FA 3.70 7.56 11.67 1.58
1ttz FA 2.45 3.14 4.32 –
1ptf CM 0.93 1.10 1.07 –

2he4* CM 1.46 1.95 2.45 0.73
1s12* FA 2.44 3.09 8.00 2.08
2hd3* CM 1.30 2.20 2.53 3.78
2ivy CM 2.71 3.35 3.51 –
1tr0 CM 1.30 1.82 1.98 2.08
3dcx CM 3.09 3.49 3.51 –

2hng* CM 1.23 2.06 4.64 5.38
1hka* CM 2.03 2.11 2.11 6.03

The item listed include the PDB entry name, the method used to predict, minimum RMSD that can be found in the generated models,
RMSD of selected by Fsolv, best RMSD result in previous CASPs (if available). We put asterisk (*) if the model was generated with any
structural data either as fragments or templates which had not been published at the time of the corresponding CASP round. The publish
date of the protein structures are obtained from the RCSB PDB web page (http://www.rcsb.org/pdb/home/home.do).

Figure 2 The superposition of the native and the predicted structure for all proteins. The native and predicted structures are respectively
colored in green and purple.
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ployed here. The fact that all the structures for the evaluation
are generated with the help of MM to avoid steric overlap
between atoms in a protein may also explain this dis-
crepancy. Such structures are not always optimized in terms
of Fsolv.

Generally, CM can generate quite native-like structures
(RMSD < 3.0 Å). 1ptf is one of the most successful cases.
The generated model that is closest to the native has an
RMSD of 0.93 Å, and the model selected by Fsolv has an
RMSD of 1.11 Å. Obviously, the structural differences be-
tween the native structure and those two decoys are mainly
in the loop domain. The α-helix and β-sheet elements are
arranged properly in the tertiary structure of the predicted
decoy. Therefore, Fsolv correctly select the native-fold pattern
from the other decoys. The structural diversity of decoys
generated by FA is significantly larger than that of decoys
generated by CM. FA covers the structures that have
RMSDs of 3 to 18 Å. In the case of 1s12, two basins appear
in the Fsolv-RMSD profile. One basin is around an RMSD
of 3.0 Å, and the other is around an RMSD of 7.0 Å. The
energy gap between the two seems to be very small; thus, it
is hard to distinguish them. However, for 1s12, the lowest
energy in the former basin is lower than that of the latter,
and we are able to retrieve a structure with an RMSD of
3.1 Å as a predicted structure. For 1whz, conformations
with RMSDs < 3.7 Å are not sampled, and Fsolv fails to
select the best decoy and instead selects the structure with
7.56 Å in RMSD. Judging from the fact that Fsolv still identi-

fies the native as the lowest energy structure and that the
sampling is not covering the near-native region (RMSD <
3.0 Å), we expect that Fsolv can select more accurate struc-
tures if more aggressive sampling is possible in the near-
native region like other successful cases.

It is worthwhile to compare our scoring function with
the representative all-atomic potential. As described in the
methods section, all the structures are generated through
optimization with the AMBER99SB force field. Thus, it is
fair to compare the performance of our scoring function
with that of the AMBER99SB force field and the general-
ized Born surface area (BGSA) solvent model because no
additional modification to the generated structures is neces-
sary. In Figure 3, the score values of the AMBER99SB/
GBSA are plotted against Cα-RMSD for all the target pro-
teins. Except for 2he4, the experimentally determined native
structures are obtained as the lowest energy. The RMSD of
the best-scored structure is listed in Table 2. Among the
structures generated with CM, the AMBER99SB/GBSA
identified the structure that is relatively close to the native
as the best-scored one, showing good performance along with
our scoring function. However, in the structures generated
with FA, which covers a wide range of conformational
space, a more distant non-native structure is detected as the
lowest energy. For 1whiz, the RMSD of the best-scored struc-
ture is 11.67 Å. The profile shows that the AMBER99SB/
GBSA also cannot capture the funnel-like shape toward the
native structure. This failure is due to insufficient structural

Figure 3 The plot of AMBER99SB/GBSA energy for generated models as a function of the RMSD. The X-axis is the Cα-RMSD of the decoy
structures from the native. The Y-axis is the corresponding normalized score value. The values are normalized against the score of the native structure.
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sampling. On the contrary, the funnel-like shape toward the
native structure appears for 1ttz and 1s12, and the generated
decoy structure approaches the native. Even for these two
cases, the RMSDs of the best-scored structures are 4.32 and
8.00 Å, respectively. As described in the introduction, the
drawback in the physics-based all-atomic potentials that
Zhang noted4 is observed for the decoy structures generated
with our FA procedure. This observation is also consistent
with our previous result that the all-atomic potential energy
of the native structure is higher than that of a hypothetically
folded single α-helix structure with the identical sequence31.
This tendency of the scoring function is fatal in the ab initio
prediction for the new-fold pattern of proteins.

Structural refinement with REMD
REMD is a well-established method for global structural

sampling. In particular, the REMD-based protocol is effec-
tive for the refinement of high-quality models of small pro-
teins40. Here, using REMD, we test the ability of our func-
tion to refine the structure generated from CM or FA. We
chose 1ttz as a benchmark protein for this purpose. The
initial structure, which is evaluated as the best scored in the
CM, has a main chain structure with 3.14 Å for the RMSD.
In Figure 4(a), the scatter plot of Fsolv as a function of
RMSD is shown for the structures in the REMD trajectory
over a temperature range of 280–283 K. Approximately
15,000 structures are available for the evaluation. The decoy
structure that is closest to the native is 2.84 Å away from the
native structure; thus, the REMD procedure as reported in
the previous study40 successfully samples the structural space
that is slightly closer to the native structure. However, Fsolv

did not have a linear correlation with the Cα-RMSD, and
the best-selected structure has an RMSD of 3.04 Å and
belongs to the middle region of the whole space sampled
with REMD.

In Figure 4(b), the values of Fsolv for the same structures

generated by REMD are plotted against the native contact
(NC). Unlike the plot of Fsolv against the RMSD, Fsolv has a
linear correlation to NC. Here, the Spearman coefficient is
employed as the estimator of these correlations. This co-
efficient measures the monotonicity of two variables, while
the Pearson coefficient is generally used to measure their
linearity. Because we want to know whether Fsolv decreases
along RMSD or NC, the Spearman coefficient is more ap-
propriate. The Spearman coefficient for the plot of Fsolv vs

NC is 0.47, while that for the plot of Fsolv vs RMSD is 0.11.
This high correlation observed in the plot of Fsolv vs NC in-
dicates that Fsolv can still find the native structure through
more exhaustive structural sampling. In the near-native re-
gion, Cα-RMSD is not always the best estimator of the
native-likeness. This result is also consistent with our previ-
ous study57, which showed that the side-chain packing toward
the native structure also constrains the whole secondary
structure of the native protein.

Although the experimentally determined native structures
have the lowest Fsolv score among any other decoy structures
generated here, Fsolv combined with REMD with MM is not
suitable for the structural refinement. As described in the

Figure 4 (a) The plot of Fsolv as a function of the Cα-RMSD for models generated by REMD starting from the best predicted models (PDB ID:
1ttz). The initial structure is colored in red. (b) The plot of Fsolv as a function of the value of native contact for the models generated by REMD. To
compare profiles, normalization is done with the equation (Fsolv (decoy) − Fsolv (native))/(residue length).

Table 3 Spearman coefficient between RMSD and Fsolv value 
for NNMs

PDB Spearman coefficient of NNMs

1whz 0.72
1ttz 0.44
1ptf 0.74
2he4 0.17
1s12 0.55
2hd3 0.70
2ivy 0.16
1tr0 0.38
3dcx 0.47
2hng 0.23
1hka 0.43
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methods section, structural sampling in the REMD is based
on atomic forces defined with the MM energy function.
Therefore, the structures generated by REMD in the near-
native region could not be the best choice for the evaluation
by Fsolv. Applying Fsolv for molecular dynamics through the
formulation of a gradient for atomic positions should be a
task for future study.

Near-native models
In the case of 1ttz, our scoring function did not work well

with REMD sampling based on MM for the purpose of
refining the predicted structural model. However, Fsolv iden-
tified the native structure as the lowest energy structure for
all the target proteins. Thus, it is worthwhile to confirm
whether this result is caused by conformational sampling or
by scoring function itself, and we sampled the near-native
region (RMSD < 3.0Å) using CGNMA. The generated decoys
by CM or FA are generally limited to the structural region
with an RMSD > 2.0 Å. On the other hand, CGNMA is
expected to generate models that maintain the initial back-
bone conformation. Here, the experimentally determined
native structures are the initial conformation.

The scatter plots of Fsolv against RMSD for 1ttz, which is
used for the REMD study, are shown in Figure 5. Unlike the
result from REMD (Fig. 4(a)), a significant correlation
between RMSD and Fsolv is observed. NNMs are the confor-
mations that are sampled uniformly along the dominant
vibrational directions around the native. Thus, if sampling
can be performed sufficiently around the near-native region,
Fsolv can find the native-like structure from among the decoy
structures.

We also test Fsolv in NNMs of the other proteins used in
this study. The Spearman coefficient is employed again as
the estimator of correlation. For the proteins examined here,
we find that Fsolv has a significant correlation with RMSD
(Spearman coefficient > ~0.4) except for 2he4. The ob-
served coefficients also indicate that we can reach the native
structure if structural sampling is sufficient around the na-
tive structure. Those results clearly show that Fsolv has a
funnel-like potential surface shape for scoring near-native
conformations.

For 2he4, however, almost no significant correlation be-
tween energy and RMSD is observed (Spearman coefficient
= 0.17). The NNMs for 2he4 generated by CGNMA accu-
mulated in the same energy level as observed in Figure 5.
As observed from the energy plot obtained by using decoy
structures with CM (Fig. 1: 2he4), the energy gap between
the decoy structure with the lowest energy and the native is
extremely narrow, even though the lowest energy structure
is the native structure. If the native structure itself was in-
cluded in the group of decoy structures in NNMs, that is, if
the native had some conformational ambiguity, we could
say that Fsolv was able to score the native correctly. As we
noted in the methods section, our scoring function assumes
that the protein is isolated in water at an infinite dilution.
Therefore, this result suggests that another major factor also
stabilized 2he4 when experimentally determining the struc-
ture, e.g., a co-solvent (ethanediol) or other protein domains
as described in the PDB file.

Figure 5  The plot of Fsolv as a function of Cα-RMSD for NNMs. The values of axes are the same as in Figure 1.
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Conclusion

We perform protein structure prediction using the free
energy function based on solvation thermodynamics. If PSI-
BLAST found sequence similarity, CM is employed for
structural modeling. Then, we have successfully selected
fairly accurate predicted models with an average RMSD
~2.0 Å for the small proteins we selected. In several cases,
the results we obtain are better than those reported in the
previous CASPs. If the target proteins have no sequence
similarity in the database, FA, which is currently the most
effective structural sampling method for de novo structures,
is performed. Although the generated structure that is clos-
est to the native in terms of RMSD does not always have
the minimum in energy values within the models generated
using FA, the native structures still receive the lowest scores.
Therefore, from the viewpoint of selectivity, Fsolv exhibits
strong performance. However, there are still structural dif-
ferences between the native and predicted models, and more
aggressive sampling is expected to generate more accurate
models. If the sampling succeeded as in the case of 1ptf,
which covered the structural region below 1 Å in RMSD,
Fsolv could correctly identify the native structure.

As is shown in the NNM study, Fsolv obtains a linear
correlation with RMSD in the near-native region (RMSD <
~3 Å). By improving the sampling method to efficiently
cover the region like the one created by the NNMs, Fsolv is
expected to successfully refine the more accurate native-like
structures. Another point for improvement is how we can
incorporate the effectiveness of Fsolv into the sampling pro-
cesses with coarse-grained molecular models, which are
generally used for FA or CM. Thus, we are now investigat-
ing such models and protocols.
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