
plants

Article

Leaf Removal Applied to a Sprawling Canopy to Regulate Fruit
Ripening in Cabernet Sauvignon

Patrick O’Brien 1, Cassandra Collins 1,2 and Roberta De Bei 1,*

����������
�������

Citation: O’Brien, P.; Collins, C.; De

Bei, R. Leaf Removal Applied to a

Sprawling Canopy to Regulate Fruit

Ripening in Cabernet Sauvignon.

Plants 2021, 10, 1017. https://

doi.org/10.3390/plants10051017

Academic Editor: Fermin Morales

Received: 5 May 2021

Accepted: 17 May 2021

Published: 19 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, PMB 1,
Glen Osmond, SA 5064, Australia; patrick.obrien@adelaide.edu.au (P.O.);
cassandra.collins@adelaide.edu.au (C.C.)

2 ARC Industrial Transformation Training Centre for Innovative Wine Production, Waite Research Institute,
PMB 1, Glen Osmond, SA 5064, Australia

* Correspondence: roberta.debei@adelaide.edu.au

Abstract: Under the effects of climate change, it is becoming increasingly common to observe
excessively fast grape sugar accumulation while phenolic and flavour development are lagging
behind. The aim of this research was to quantify the impacts of three different leaf removal techniques
on the canopy architecture and ripening of Cabernet Sauvignon trained in a sprawl trellis system.
Treatments were performed at veraison (~14 ◦Brix) and included (i) control; (ii) leaf plucking in the
bunch zone; (iii) leaf plucking the top two-thirds of shoots, apical to the bunches; and (iv) shoot
trimming. On the date of harvest, no significant difference in total soluble solids was observed
between treatments. Other results including the effect of the treatments on fruit acidity, anthocyanins,
phenolics, and tannins were somewhat inconclusive. While various other studies have shown
the potential of leaf removal to achieve slower grape sugar accumulation without affecting the
concentration of anthocyanins, phenolics, and tannins, the results of this study do not indicate a
decrease in the rate of grape sugar accumulation as a result of the investigated defoliation techniques.
Given the cost of implementing these treatments, the results of this study do not support the use of
these methods for the purpose of delaying fruit ripening in a hot Australian climate.

Keywords: grapevine; delayed ripening; shoot trimming; canopy management; leaf area

1. Introduction

The decision of when to harvest is an important consideration in the winemaking
process and is based on a multitude of factors including sugar and acidity levels, pheno-
lic maturity, and aromatic and flavour ripeness [1]. Today, viticulturists in many wine-
producing regions are facing new environmental challenges in this regard as a consequence
of increasing global temperature, CO2 concentration, and solar radiation [2–4]. Harvest
dates are advancing and becoming more compressed, meaning grapes are often picked at
higher temperatures when compared to historic dates for their cultivars, with undesirable
chemical profiles due to increased sugar concentration and potential wine alcohol level,
low acidity, and undeveloped or unbalanced flavour components [5]. This trend towards
overly fast ripening is associated with a decoupling between sugar accumulation and
phenolic maturity, and it is becoming increasingly common to observe excessively fast
sugar accumulation while anthocyanin and tannin development are lagging behind [6,7].

Because of the problems facing winemakers in this scenario, new vineyard manage-
ment strategies are being explored to mitigate these negative impacts, with the aim of
delaying sugar ripening, allowing for the accumulation of greater levels of tannins, an-
thocyanins, and other flavour components before picking [8–11]. Leaf removal is a useful
management strategy to this end, as along with being a technique to balance the ratio
between fruit load and vegetation, it enables the manipulation of canopy microclimate,
allowing for some important grape quality improvements [12,13]. The rate of grape sugar
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accumulation is dependent on the ratio of leaf area to yield (LA/Y), and sugar accumula-
tion can be delayed by reducing leaf area, effectively manipulating the source/sink ratio of
the vine [14,15]. This strategy is also simple and suitable to mechanisation, particularly if
the foliage being removed is spatially separated from the bunches [16].

The traditional method of defoliation involves removing leaves from the basal portion
of the shoots, around the fruit zone, reducing leaf photosynthetic area, and increasing
sunlight exposure and air circulation, with the aim of improving canopy microclimate and
grape and wine composition [17]. The impact of this method on ripening has had varying
reports, seeming to differ with the timing and severity of application, as well as cultivar,
initial fruit microclimate, and choice of leaves removed [16,17]. With this method, it is
important to be conscious of the amount of foliage being removed, especially if there is a
risk of major heat events, as over-exposed fruit may be subject to sunburn damage [18],
and extreme temperatures may inhibit anthocyanin accumulation [19]. There is also the risk
of crop damage if using machinery for the removal process, as the leaves being removed
are in close proximity to the fruit.

Defoliation of shoots apical to the bunches is a relatively new method of leaf removal
that has shown promising results in some regions for delaying grape sugar accumulation
while maintaining the same rate of production of phenolic compounds including antho-
cyanins and tannins [7]. This technique is typically performed post-veraison (12–15 ◦Brix)
and involves the creation of a leafless window of approximately 50 cm by removing 30–35%
of the leaves from the upper two-thirds of each shoot [1,20]. Several leaves are retained at
the apex of each shoot, as well as a few leaves immediately above the fruit zone, reducing
photosynthetic activity without having a significant impact on bunch sunlight exposure.
Results from several studies have suggested that this could be an effective management
strategy for slowing sugar accumulation while having a minimal effect on other grape
components, and without affecting vine carbohydrate reserve storage [1,16]. Addition-
ally, the location of the leaves being removed makes this strategy particularly suitable for
mechanisation.

Shoot trimming is a common industry practice used to balance vine vigour and
maintain canopy architecture, as well as having the added benefit of improving canopy
microclimate and spray penetration. The effect of trimming on ripening depends not
only on the intensity of the trimming, but also on its timing, as trimming can initiate a
competitive growth of lateral shoots if performed early enough in the growing season.
This method shows promise for reducing grape sugar accumulation rate, driven both by a
significant reduction in LA/Y as well as carbon competition between developing laterals
and the accumulation of grape sugar [16]. Issues can arise, however, if the trimming is
performed too late in the season, where there is insufficient time for the loss of leaf area to
be compensated with new lateral growth [21].

This study assessed the impacts of the three aforementioned leaf removal techniques
on the canopy architecture and ripening of Cabernet Sauvignon in a hot Australian cli-
mate. A recent study has yielded results indicating that apical leaf removal may not be
consistently effective in delaying sugar ripening in other cultivars in the same climate [22].
Since little is known about the impact of these leaf removal methods on berry sensory
characteristics, berry sensory assessment was included as part of the trial. Understanding
the impact of different leaf removal techniques on grape ripening could provide vineyard
managers with a canopy management strategy suitable for regulating sugar accumulation,
phenolic maturity and flavour ripeness, thereby helping to mitigate the negative effects of
climate change and maintain grape quality for the production of premium wines.

2. Results
2.1. Climatic Conditions

Mean average temperature and rainfall for the growing season (October to April) were
calculated for the long-term average (LTA; 2000–2018) and for the growing season of interest
(2017–2018). The Growing Degree Days (GDD) were calculated after Gladstones [23] with
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base 10 and 19 ◦C cut offs. The 2017–2018 season was warmer than the LTA, with 1872 GDD
compared to the average of 1818. The total rainfall during the 2017–2018 season was
calculated as 100 mm which is considerably lower than the LTA of 165 mm. December was,
however, a notably wet month, with 36 mm of rain and an average monthly temperature
of 20.5 ◦C. A summary of the meteorological conditions is reported in Figure 1.

Figure 1. Average monthly temperature and rainfall calculated for the 2017–2018 growing season
October to April and the long-term average (2000–2018). Climate data were sourced from the nearest
Australian Bureau of Meteorology (http://www.bom.gov.au/, accessed on 10 June 2018) weather
station located in Noarlunga (station number 23885).

2.2. Canopy Architecture

By imaging the vines with the VitiCanopy App [24] before and after the treatments
were applied it was possible to make a pre and post-treatment comparison of the immediate
effect of the treatments on vine canopy architecture. A significantly lower plant area index
(PAI), and a higher porosity (Φ) were observed after the application of all three defoliation
techniques. It was found that shoot trimming the eastern side of the canopy to five or six
nodes (TR) reduced the PAI on average by approximately 20%, while traditional basal leaf
removal applied around the fruit zone on the eastern side of the canopy (BA) and leaf
removal applied to the top two-thirds of the shoots apical to the bunches (AP) reduced
the PAI on average by approximately 25% and 30%, respectively (Figure 2). In regard to
canopy porosity, Φ increased on average by approximately 21% after treatment in TR vines,
32% in BA vines, and 39% in AP vines. The PAI and Φ of all treatments were different from
control vines immediately after treatment application.

Vines were re-imaged on the date of harvest. No difference was observed between the
PAI or Φ values measured at veraison (post-treatment) and at harvest for each treatment
(Figure 2). The PAIs of apically defoliated and basally defoliated vines were lower than
control and shoot trimmed vines at harvest (p < 0.0001).

http://www.bom.gov.au/
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Figure 2. Effect of leaf removal treatments on the plant area index, PAI (a) and canopy porosity, Φ (b) measured before and
after treatment and at harvest using the VitiCanopy App. AP = apical leaf removal, BA = basal leaf removal, TR = trimming,
and C = control. Means were separated by ANOVA (p ≤ 0.05), and different letters indicate significant differences within
each treatment group. ns = not significant.

2.3. Vine Performance

Yield and yield components did not vary between treatments (Table 1). Total leaf area
per plant at harvest was lower for the apical and basal leaf removal treatments than shoot
trimmed and control vines. The LA/Y ratio was lower in apically defoliated vines than
shoot trimmed and control vines.

Table 1. Effect of leaf removal treatments on yield and yield components (mean ± std).

Treatment Yield (kg/m) Bunch No.
(no./m)

Bunch Weight
(g)

Berry Weight
(g)

Total Leaf Area
(m2/m)

LA/Y
(m2/kg)

Control 2.4 ± 0.7 32 ± 6.9 72.8 ± 10.1 0.78 ± 0.05 5.8 ± 1.1 2.6 ± 0.8
Apical leaf removal 3.3 ± 1.2 40 ± 5.5 80.5 ± 25.2 0.89 ± 0.06 4.6 ± 1.0 1.5 ± 0.4
Basal leaf removal 2.5 ± 1.2 32 ± 12.1 75.2 ± 10.9 0.88 ± 0.12 4.4 ± 1.1 2.1 ± 1.0

Shoot trimming 2.6 ± 0.6 32 ± 7.5 81.1 ± 12.3 0.83 ± 0.03 5.3 ± 0.8 2.2 ± 0.7
Significance ns ns ns ns <0.0001 0.018

Means were separated by ANOVA (p ≤ 0.05). ns = not significant. LA/Y, leaf area/yield.

2.4. Grape Chemistry and Sensory Attributes

On the date of harvest, no difference in total soluble solids (TSS) was observed across
treatments, with values ranging from 24.4 to 25.3 ◦Brix (Figure 3). No difference in titratable
acidity (TA) was observed across treatments at harvest or on any other sampling date.
Although no difference was observed in pH at harvest, a higher pH was observed in
apically defoliated and shoot trimmed vines compared to control vines on day of year
(DOY) 43 and DOY 50.
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Figure 3. Effect of leaf removal treatments on grape pH (a), titratable acidity, and total soluble solids (b). AP = apical leaf
removal, BA = basal leaf removal, TR = trimming, and C = control. *, ** indicate significant differences at p ≤ 0.05 and 0.01,
respectively. Means were assessed using ANOVA. ns = not significant. DOY, day of year.

The concentration of grape anthocyanins was lower in apically defoliated vines com-
pared to control vines and other treatments at harvest (Figure 4). No difference was
observed in anthocyanin levels across other sampling dates. At harvest, the concentration
of grape phenolics was lower in apically defoliated vines compared to basally defoliated
vines, although no difference was observed between the control and other treatments at
harvest or on any other sampling date. The concentration of grape tannins did not vary
among treatments at harvest or on any other sampling date.

Figure 4. Cont.
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Figure 4. Effect of leaf removal treatments on grape total anthocyanins (a), total phenolics (b), and total tannins (c) (expressed
as epicatechin equivalents). AP = apical leaf removal, BA = basal leaf removal, TR = trimming, C = control. * indicates
significant differences at p ≤ 0.05. Means were assessed using ANOVA. ns = not significant. DOY, day of year.

Berry sensory assessment (BSA) was performed by a trained panel of 11 assessors.
The first two principal components (PCs) in the PCA in Figure 5 explain 92.76% of the
variation in the dataset. PC 1 separates shoot trimmed and control vines from basally
and apically defoliated vines. The basal and apical leaf removals are associated with
green grassy flavours in the skin while shoot trimmed was the most liked. Both control
and shoot trimmed vines were described as having higher dark fruit flavour in the skin.
The separation of the treatments along PC 2 is mostly due to the acidity of the pulp which
was perceived as being higher in the control.

Figure 5. Principal component analysis of the attributes found significantly different at p ≤ 0.1 by
panel assessment in the berries from different leaf removal treatments. AP = apical leaf removal,
BA = basal leaf removal, TR = trimming, C = control. P-Acidity = acidity of the pulp, SK-Dark Fruit
Flavour = dark fruit flavour of the skins, and SK-Green/Grassy Flavour = green/grassy flavour of
the skins.
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3. Discussion

The impact of the different defoliation methods on canopy architecture was quantified
using the plant area index (PAI) and canopy porosity (Φ), where the PAI describes the
total one-sided area of leaf tissue per unit ground surface area [25] and Φ refers to the
light penetration through the canopy [24]. A significantly lower PAI and higher porosity
(Φ) were observed after the application of all three treatments, with the greatest reduction
in the PAI (30%) taking place on apically defoliated vines. This is contrary to the results
of Zhang et al. [15], who in their study on Shiraz observed a significant reduction in the
PAI and increase in Φ on vines which were basally defoliated but not those which were
apically defoliated. This is likely explained, however, by the fact that their study was
conducted on a vertically shoot positioned (VSP) system in contrast to this study which
was conducted on a sprawl system and as such the shoots being defoliated in this trial were
not constrained vertically to the top portion of the canopy and therefore the removal of
apical leaves had a much greater effect on canopy architecture and shading. No significant
difference was observed between PAI or Φ values measured post-treatment at veraison
and at harvest for all treatments. This indicates that there was no compensation in leaf area
between when the treatments were performed and harvest. Interestingly, total leaf area
per plant at harvest was lower than the control only for the apically and basally defoliated
vines and not shoot trimmed vines. While this could be taken to suggest that there was
some compensatory growth of lateral shoots stimulated by the trimming, the fact that the
same vines imaged both immediately post-treatment application and at harvest showed no
change in the PAI indicates that there was minimal to no leaf surface area recovered during
this time period. This agrees with the results of another study which found lateral growth
to be poor after late season trimming of Aglianico vines at ~12 ◦Brix [26], and is likely due
in part to the fact that at this stage of development grape sugar accumulation is rapidly
increasing and the berries are a stronger sink for carbon than shoots [27].

While it has been reported that trimming may cause a reduction in yield when applied
around berry set [28,29], at veraison [30], or post-veraison [31], in this study yield and
yield components did not vary significantly between treatments. The LA/Y ratio was,
however, found to be lower in apically defoliated vines (1.5 m2/kg), than shoot trimmed
(2.2 m2/kg) and control (2.6 m2/kg) vines at harvest. It has been suggested that grape
sugar accumulation rate depends on this ratio and that values ranging between 0.8 and
1.2 m2/kg are ideal for producing good fruit and wine quality on a single-canopy training
system [14]. This “optimal” value of the ratio may, however, not be universal, with
climate, variety, and location being important factors of consideration as the results of
some studies have indicated [1,22,26]. Despite the reduction in LA/Y observed in apically
defoliated vines in this trial, on the date of harvest no significant difference in grape TSS
was observed between treatments. Although it is well known that the accumulation of
sugar is dependent on the active leaf area available during the period between veraison
and harvest, it appears that the source limitation induced by the three defoliation methods
in this trial did not significantly affect the accumulation of grape TSS. This is contrary
to the results of numerous other studies who reported a reduction in the rate of sugar
accumulation after apical leaf removal [1,15,20,29,32] and shoot trimming [28–31,33–38].
This may be related to the fact that with the 3 m inter-row spacing of the vineyard of study,
light was not a limiting factor. It may also be related to the fact that the vines of this trial
had a higher starting leaf area due to the 2 m intra-row spacing of the vineyard, and thus
the reduction observed in the PAI after the treatments did not have as great of an impact
on carbohydrate source limitation.

No difference in TA was observed between treatments on any sampling date. Al-
though no difference was observed in pH at harvest, a higher pH was observed in apically
defoliated and shoot trimmed vines compared to control vines on DOY 43 and DOY 50.
This somewhat agrees with the results of Zhang et al. [15] who reported that apical defolia-
tion near veraison resulted in an increase in pH and decrease in TA on Shiraz. In contrast
however, several studies have reported a severe shoot trimming between fruit set and
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veraison [28,30,33] and post-veraison [31] to cause a reduction in pH, while others have
shown pH to remain unaffected in apically defoliated [29] and shoot trimmed [29,34] vines
when treatments were applied between fruit set and veraison.

The concentration of grape anthocyanins was lower in apically defoliated vines com-
pared to control vines at harvest, with no difference observed in anthocyanin levels between
treatments across other sampling dates. This somewhat correlates with the concentration
of grape phenolics which was found to be lower in apically defoliated vines compared
to basally defoliated vines at harvest, although no difference was observed between the
phenolics of control vines and other treatments at harvest or on any other sampling date.
Similar results were obtained by Zhang et al. [15], who reported in their two-vintage study
that apical defoliation resulted in a reduction in grape anthocyanins and wine colour
profile compared to control vines in one growing season, but not the other. The reductions
observed in the anthocyanin and phenolic levels may be related to the fact that the AP
vines showed the greatest decrease in the PAI (30%) and increase in Φ (39%) after treatment.
It is well known that the synergistic effects of both light and temperature are crucial for
anthocyanin synthesis and that elevated temperatures and severe UV exposure resulting
from canopy opening can result in the inhibition of the biosynthesis of anthocyanins and
other important phenolic compounds [18]. One would expect however, given the proximity
of the leaves being removed to the fruit zone, that the basally defoliated vines would show
a greater change in bunch microclimate compared to those that were apically defoliated,
despite the changes to the PAI and Φ being slightly more minimal (a decrease of 25% and
increase of 32%, respectively). Total grape tannins were measured spectrophotometrically
using the methyl cellulose precipitable (MCP) assay proposed by Mercurio et al. [39],
which has been utilised successfully in previous experiments to determine differences in
tannin levels between various canopy management treatments [22]. The concentration
of grape tannins did not vary significantly among treatments at harvest or on any other
sampling date. This agrees with the results of Filippetti et al. [34] who reported a severe
trimming at 12 ◦Brix reduced TSS at harvest by one ◦Brix without affecting pH, TA or the
concentration of anthocyanins and tannins in Sangiovese.

The results of the BSA are somewhat inconclusive, although it is clear that green/grassy
flavours are more pronounced in the apically defoliated and basally defoliated treatments
and are separated from the dark fruit flavour which is more pronounced in the control
and shoot trimmed vines. This is surprising, as one might expect the less developed
green/grassy flavours to be less pronounced in the leaf removal methods which saw a
greater reduction in the PAI and provided greater bunch exposure. It is also particularly
interesting when one considers that the apically defoliated vines displayed less antho-
cyanin development than the other treatments, another characteristic normally typical
of less mature fruit. It is possible that these treatments could reduce the development of
riper fruit flavours as their sampled fruit also displayed less dark fruit flavour in the skins.
These differences observed between treatments may be related to the similarity of the basal
and apical leaf removal treatments wherein only leaves were removed and not actively
growing shoot tips as was the case with the shoot trimmed vines. The pulp of the grapes
from control vines was perceived as being more acidic than that of the three defoliation
treatments, which does not correlate with the values measured for pH and TA at harvest
where no difference was found between treatments. These results highlight the importance
of assessing not only berry chemistry, but also sensory attributes, currently uncommon in
studies of this nature. Grapes from shoot trimmed vines were found to have the greatest
overall likeability. This may be more related to the removal of the shoot tips (a major
sink for nutrients and energy) than to a reduction in active leaf area, as the change in the
PAI observed after treatment (20%) was lower than that of the other two leaf removal
treatments. The PAI did not change between trimming and harvest, indicating that there
was not a substantial compensatory growth of lateral shoots induced by the treatment.
Further research should be focused on a shoot trimming applied earlier in the growing
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season, allowing enough time for adequate growth of lateral shoots to provide additional
competition to the developing berries as a sink for carbon.

While various other studies have shown the potential to achieve slower grape sugar
accumulation without affecting the concentration of anthocyanins, phenolics, and tannins,
the results of this study do not indicate a decrease in the rate of grape sugar accumulation
as a result of the investigated defoliation techniques. This is despite the fact that the
treatments had a significant impact on the PAI and Φ, and may have more to do with the site
details (non-light-limiting environment) than with differences in treatments. Other results
including the effect of the treatments on acidity, anthocyanins, phenolics, and tannins are
somewhat inconclusive. In regard to the economy of the use of these treatments by growers,
the results of this study do not support the use of these methods for the purpose of delaying
fruit ripening in a hot Australian climate, particularly as another recent study yielded
similar results with different cultivars [22]. In order to obtain more conclusive results,
further research conducted during consecutive growing seasons is needed. Applying the
shoot trimming treatment at the same intensity earlier in the growing season would allow
more time for adequate growth of lateral shoots.

4. Materials and Methods
4.1. Experimental Site

The trial was carried out in the 2017–2018 growing season in an irrigated commer-
cial vineyard located in McLaren Vale, South Australia (35◦11′39.7” S; 138◦31′10.4” E).
The vineyard was a 12-year-old planting of Cabernet Sauvignon (clone CW44), grafted
onto 110 Richter rootstock, and planted at 3 m × 2 m inter-row and intra-row with a
north–south row orientation. Vines were trained to a spur-pruned cordon trellis in a sprawl
system with a bud load of 40 nodes per vine. The total amount of irrigation discharged
was ~0.8 ML/ha during the growing season, the same rate applied the previous 3 years.
The climatic conditions for the site were sourced from the nearest Australian Bureau of
Meteorology (http://www.bom.gov.au/, accessed on 10 June 2018) weather station located
in Noarlunga (station number 23885).

4.2. Experimental Design

The trial was set up in three rows in a randomised block design, with each row as
a block. Treatments were randomly allocated along each row in two replicates of six
vines per treatment. A total of 36 vines per treatment were used. Each of these rows was
spaced with a buffer row between them. Treatments included (i) control (C), where no
canopy intervention was performed; (ii) leaf plucking in the bunch zone (BA), where five
to seven leaves were removed from the basal portion of each shoot on the eastern side
of the canopy, as is standard industry practice; (iii) leaf plucking on the top two-thirds
(AP), where leaves were removed on each shoot apical to the bunches, leaving 3–4 leaves
immediately above the bunches and 3–4 leaves at the apex of the shoot; and (iv) shoot
trimming (TR), where each shoot on the eastern side of the canopy was cut down to
approximately 5–6 leaves, considered a severe trimming. Treatments were performed at
veraison (~14 ◦Brix), on DOY 17.

4.3. Canopy Architecture, Yield Components and Grape Composition

Before treatments were carried out images were taken with a smartphone for the
purpose of measuring canopy architecture using the VitiCanopy App [24]. One image
was taken on each side of the middle vine of each panel from approximately 80 cm below
the vine cordon. These same vines were also re-imaged just after the treatments were
applied to allow for a pre and post-treatment comparison. On the date of harvest (DOY 60),
the vines were imaged a final time.

Random samples of 120 berries per treatment and per block were collected on a total of
six dates between DOY 17 and DOY 60 and returned to the lab, where a random subsample
of 50 berries was collected to measure berry weight and then stored at−20 ◦C for 8 weeks to

http://www.bom.gov.au/
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be used in the analysis of phenolic and tannin content. Total grape tannins were measured
spectrophotometrically using the methyl cellulose precipitable (MCP) assay proposed by
Mercurio et al. [39]. Total anthocyanins and phenolics were determined according to Iland
et al. [40]. The remaining berries were crushed by hand in plastic bags with the juice then
being collected in 50 mL tubes and centrifuged at 5000 rpm for 5 min (Hettich Universal,
Tuttlingen, Germany) before total soluble solids (TSS), pH and titratable acidity (TA) were
measured according to Iland et al. [40], using an automatic titrator (G20S Compact Titrator,
Mettler Toledo, Thebarton, Australia) and a digital refractometer (BRX-242 Erma Inc. Tokyo,
Japan). On DOY 60, all of the treatments were hand harvested and the number of bunches
and yield per vine were recorded. Cordon length was also measured so that yield and its
components could be determined on a per metre basis. From yield and bunch number, the
average bunch weight was calculated.

4.4. Berry Sensory Analysis

At harvest, 120 berries of similar size were cut from a sample of 10 bunches per
treatment and per block with scissors, leaving the pedicel on the berries in order to limit
oxidation and deterioration. These berries were then stored at −20 ◦C for 12 weeks for the
purpose of berry sensory assessment (BSA) following the procedure described in Lohitnavy
et al. [41] and Olarte Mantilla et al. [42]. BSA was carried out at the sensory facility of the
Plant Research Centre at the University of Adelaide Waite Campus with the approval of
the University of Adelaide ethics committee (H-2018-2008). A group of 11 assessors with
previous BSA experience were trained over a one-hour session where the attributes to score
during the formal assessment were decided. During the training sessions, the assessors
were asked to evaluate berry samples with the aim of reaching an agreement on the number
and type of attributes to score during the formal sessions. The list of attributes was then
created on a 0–15 line scale with two anchors to be used in the assessment. The descriptors
were divided into pulp, skin and seeds characteristics (Table 2).

Table 2. List of descriptors/attributes assessed by the panelists during the BSA with their scale left
and right anchor. The attributes were divided in four categories: pulp characteristics, skin character-
istics, seed characteristics and overall likeability.

Attribute Left Anchor Right Anchor

Pulp Characteristics
Sweetness Low High

Acidity Low High
Dark Fruit Flavour Low High
Dried Fruit Flavour Low High

Flavour Intensity Low High
Skin Characteristics

Disintegration Low High
Acidity Low High

Dark Fruit Flavour Low High
Green/Grassy Flavour Low High

Astringency Low High
Seed Characteristics

Colour Green Dark Brown
Flavour Herbaceous Toasted

Bitterness Low High
Astringency Low High

Overall Likeability Low High

During the formal assessment sessions, each of the panelists were presented with
24 three-berry samples in a randomised presentation order for each assessor in two sessions
of 12 samples each. Each sample was evaluated twice by each assessor. A custom-designed
app was used for sample assessment purposes. Attributes were presented in the order
shown in Table 2 and each attribute was associated to a line scale with a cursor that the
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assessor could slide by tapping on the screen of a tablet or smartphone. The application
collated the data for each session in an excel file with the sample name in the rows and
the assessor name and all of the attributes in the columns. After the completion of the
assessment an excel file containing all of the information collected was sent to a nominated
email account and downloaded for analysis.

4.5. Statistical Analysis

ANOVA and principal component analysis (PCA) were performed using XLSTAT
Version 2018.3 (Addinsoft SARL, Paris, France). Sensory data were analysed as a two-way
mixed-models ANOVA with random assessors.
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