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Abstract: Large-size, superparamagnetic, and highly magnetic Fe3O4@PDA core–shell submicrosphere-
supported nano-palladium catalysts were prepared in this study. Dopamine was encapsulated on
the surface of Fe3O4 particles via self-polymerization and then protonated to positively charge the
microspheres. PdCl42− was dispersed on the surface of the microspheres by positive and negative
charge attraction and then reduced to nano-palladium. With air as oxidant, the catalyst can successfully
catalyze the dehydrogenation of benzyl alcohols to produce the corresponding aldehydes at 120 ◦C.
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1. Introduction

Fe3O4 nanoparticles have been used extensively in many fields due to their superior magnetic
properties [1–5] and microwave absorption function [6–9]. Compared with other metal nanoparticles,
the preparation of Fe3O4 nanoparticles is simple, and the materials used are inexpensive and easily
available. Thus, these materials are suitable for industrial production. However, single Fe3O4

nanospheres will usually experience an agglomeration phenomenon, which hinders the catalytic
reaction. Hence, substances such as SiO2 [10,11], dopamine [12–15], and surfactant [16–18] are
usually used to wrap Fe3O4 so that it becomes uniformly dispersed, achieving favorable hydrophilic
interactions. This type of Fe3O4 with a core–shell structure has enormous application potential in
various fields, including bioseparation [19,20], diagnostic analysis [21,22], molecular imprinting [23],
and battery energy storage [24]. Moreover, other metal nanoparticles can be introduced on the shell
surface, which not only maintains the original high efficiency of other metal catalysts but also has the
magnetism of Fe3O4. These properties facilitate the separation of catalysts from the reaction mixture.

Benzaldehyde derivative, an important organic chemical raw material, has been widely applied
in pesticides [25], medicines [26], spices [27], dyestuff [28], and cosmetics [29]. The preparation
of benzaldehyde derivative through catalytic oxidative dehydrogenation is a green synthetic
method [30,31]. Magnetic catalysts play a very important role, such as Pd/Fe3O4 catalysts, which
have been successfully studied. In their catalytic reactions, there is a medium yield of benzaldehyde
derivatization under oxygen or air [32], which can be greatly improved by adding equivalent molar
alkali as co-catalyst [33–35]. Moreover, a high yield was achieved when peroxide was used as
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oxidant [36–38]. Therefore, we focused on the development of a new and efficient Fe3O4@PDA@Pd
microparticles catalyst for oxidative dehydrogenation of benzyl alcohols without base under air.

To form the Fe3O4@PDA core–shell structure, a polydopamine (PDA) layer was wrapped
on the surface of large Fe3O4 particles through dopamine autoagglutination. The amino
group of the microspheres was combined with protons through protonation with positive
electricity. PdCl42− was dispersed on the surface through positive and negative charge attraction.
The large-size, superparamagnetic, and highly magnetic Fe3O4@PDA core–shell-submicrosphere-loaded
nano-palladium catalyst was prepared through further reduction (Scheme 1). This catalyst was applied in
the preparation of aldehyde through oxidative dehydrogenation of benzyl alcohol compounds under air.
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and the palladium content was measured as 2.3% through inductively coupled plasma atomic 
emission spectroscopy (ICP-AES). Through EDS analysis, the palladium content was 4.24%, as this 
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2. Results and Discussion

We characterized and analyzed Fe3O4@PDA@Pd. As shown in the x-ray diffraction patterns
(see Supplementary File), the peaks of Fe3O4 and Fe3O4@PDA@Pd microparticles were basically
identical, that is, they were both characteristic peaks of Fe3O4. Fe3O4@PDA@Pd had no characteristic
palladium peak, because the palladium particles were very fine under uniform dispersion.

According to the scanning electron microscope (SEM) graph (Figure 1), the particle size of
Fe3O4@PDA@Pd submicrospheres was within 600–800 nm. Thus, their particle size was large, and
nano-palladium particles could be seen in the 100,000× SEM graph. During energy-dispersive x-ray
spectroscopy (EDS) analysis (Figure 2 and Table 1), the content of palladium weight was 4.24%.
In the mapping graph, palladium was uniformly distributed on the surface. According to the mixed
weight in the reaction, the theoretical palladium content in Fe3O4@PDA@Pd was approximately 2.5%,
and the palladium content was measured as 2.3% through inductively coupled plasma atomic emission
spectroscopy (ICP-AES). Through EDS analysis, the palladium content was 4.24%, as this analysis is
mainly aimed at element composition on the material surface, and palladium particles were distributed
on the surface of submicrospheres. Moreover, the measured palladium content was partially high.
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Table 1. EDS spectra of Fe3O4@PDA@Pd.
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The transmission electron microscopy (TEM) graph (Figure 3) shows that the prepared
Fe3O4@PDA@Pd catalyst presented a core–shell structure that centered on Fe3O4 submicrospheres.
The dopamine layer was wrapped on the surface of Fe3O4 submicrospheres, and the thickness of the
shell-layer dopamine was uniformly distributed within the interval of 80–90 nm. Nano-palladium
particles were dispersed on dopamine. The palladium (0) particle size was within 7–12 nm, and the
average particle size was 9.2 nm.
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Figure 3. High-resolution transmission electron microscopy (TEM) images of Fe3O4@PDA@Pd and Pd
particle size.

Figure 4 shows the magnetization curves of Fe3O4 and Fe3O4@PDA@Pd submicrospheres under
room temperature (300 K). As shown in the figure, the maximum saturated magnetic intensity of
the two submicrospheres was 75 and 45 emu/g, respectively, and the coercive force for both was 0.
The existence of the PDA layer decreased the maximum saturated magnetic intensity of Fe3O4@PDA@Pd
submicrospheres, but they had superparamagnetic and highly magnetic features. Thus, they could
easily disperse and separate from the reaction system.
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Figure 4. Magnetization curves of Fe3O4 and Fe3O4@PDA@Pd.

We used Fe3O4@PDA@Pd for aldehyde preparation through oxidative dehydrogenation of benzyl
alcohols. The reaction temperature, reaction time, and oxidizing agent for aldehyde preparation
through the Fe3O4@PDA@Pd-catalyzed oxidative dehydrogenation of benzyl alcohols were optimized
using benzyl alcohol as the substrate (Table 2). The results show that the dehydrogenation reaction did
not occur when the reaction temperature was low. The increase in reaction temperature promoted
a dehydrogenation reaction. However, when the temperature reached 140 ◦C, benzyl alcohol products
were totally converted, and their selectivity rapidly declined. The product was mainly benzoic acid;
hence, the appropriate reaction temperature was 120 ◦C. Similarly, when the reaction time was too
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long, some products were converted into benzoic acids; thus, the appropriate reaction time was 24 h.
When oxygen was used as an oxidizing agent, the conversion rate of benzyl alcohols slightly increased,
but selectivity declined, indicating that benzaldehyde was easily oxidized under oxygen conditions.
Partial benzyl alcohol was converted into benzaldehyde when no oxidizing agent was used, indicating
that this catalyst could catalyze benzyl alcohol dehydrogenation even under oxygen-free conditions so
as to prepare benzaldehyde. However, the conversion rate was low.

Table 2. Optimization of reaction conditions.
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With optimal reaction conditions (Table 2, Entry 4), we checked the reaction scope, and the
results are shown in Table 3. There was a medium yield of synthetic aldehyde prepared through
Fe3O4@PDA@Pd-catalyzed substituent benzyl alcohol dehydrogenation. The dehydrogenation of
substituent benzyl alcohols was easier under high-electron cloud density (Entries 2, 3, 4, 8) than under
low-electron cloud density (Entries 5, 6, 7). When a substituent group (Entries 1, 9) was present at
the adjacent position, it could exert an inhibitory effect on the dehydrogenation reaction of benzyl
alcohols, possibly because the existence of adjacent groups affected C–OH bond adsorption by the
catalyst. In addition, heterocyclic ring aromatic methanol (Entries 11, 12, 13, 14) could also experience
oxidative dehydrogenation to generate the corresponding aldehyde, and a large quantity of acids was
generated after 24 h reaction of 2-furancarbinol (Entry 11) and 2-thienylmethanol. All products were
characterized by 1H NMR and 13C NMR (see Supplementary File).
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substituent benzyl alcohols was easier under high-electron cloud density (Entries 2, 3, 4, 8) than 
under low-electron cloud density (Entries 5, 6, 7). When a substituent group (Entries 1, 9) was 
present at the adjacent position, it could exert an inhibitory effect on the dehydrogenation reaction 
of benzyl alcohols, possibly because the existence of adjacent groups affected C–OH bond 
adsorption by the catalyst. In addition, heterocyclic ring aromatic methanol (Entries 11, 12, 13, 14) 
could also experience oxidative dehydrogenation to generate the corresponding aldehyde, and a 
large quantity of acids was generated after 24 h reaction of 2-furancarbinol (Entry 11) and 
2-thienylmethanol. All products were characterized by 1H NMR and 13C NMR (see Supplementary 
File). 

Table 3. Catalytic dehydrogenation of substituted benzylic alcohols to aldehydes. 

CH2OH

R

Fe3O4@PDA@Pd
CHO

Rair, 120℃, 24 h
 

 

Entry 
Substituted 

Benzylic Alcohol 
Aldehyde Yield a (%) 

1 
  

57 57

2
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Fe3O4@PDA@Pd permits easy recovery of the catalyst from the reaction mixture by a magnet.
The reusability of the recovered catalyst was evaluated for the oxidative dehydrogenation of benzyl
alcohol as a model reaction, and nearly 95% of its original activity was retained even after five cycles
(Figure 5). After six cycles, its activity decreased but its catalytic selectivity remained almost invariant.
Compared with the fresh catalysts by SEM and EDS (see Supplementary File), we found that the
catalysts were partially fractured and the palladium content was reduced by nearly half.
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3. Materials and Methods  

Commercially available reagents were used without further purification. The x-ray diffraction 
(XRD) analysis used a Bruker AXS D8 Advance diffractometer. Scanning electron microscope (SEM) 
and energy-dispersive spectrometry (EDS) images were recorded on a Hitachi S-4800 field emission 
scanning electron microscope equipped with an energy-dispersive spectrometer. Transmission 
electron microscopy (TEM) images were obtained on a JEOL JEM-2100F field transmission electron 
microscope. Magnetic information was obtained on a Quantum Design DynaCool-9 vibrating 
sample magnetometer. The 1H NMR and 13C NMR spectra were recorded on a Bruker Avance 400 
MHz spectrometer using tetramethylsilane (TMS) as internal standard. 

Fe3O4 particles were prepared according to the method specified in Reference [39].  
The general procedure was for the preparation of Fe3O4@PDA. Approximately 0.15 g of strong 

ammonia water was dissolved in 50 mL of deionized water. Then, 0.1 g of Fe3O4 and 0.16 g of 
dopamine hydrochloride were added, and the mixture was placed under uniform ultrasonic 
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3. Materials and Methods

Commercially available reagents were used without further purification. The x-ray diffraction
(XRD) analysis used a Bruker AXS D8 Advance diffractometer. Scanning electron microscope (SEM)
and energy-dispersive spectrometry (EDS) images were recorded on a Hitachi S-4800 field emission
scanning electron microscope equipped with an energy-dispersive spectrometer. Transmission electron
microscopy (TEM) images were obtained on a JEOL JEM-2100F field transmission electron microscope.
Magnetic information was obtained on a Quantum Design DynaCool-9 vibrating sample magnetometer.
The 1H NMR and 13C NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer using
tetramethylsilane (TMS) as internal standard.

Fe3O4 particles were prepared according to the method specified in Reference [39].
The general procedure was for the preparation of Fe3O4@PDA. Approximately 0.15 g of strong

ammonia water was dissolved in 50 mL of deionized water. Then, 0.1 g of Fe3O4 and 0.16 g of dopamine
hydrochloride were added, and the mixture was placed under uniform ultrasonic dispersion and
mechanical agitatation under 40 ◦C for 24 h. After the reaction ended, solid and liquor were separated
using a magnet. The product was placed under ultrasonic washing using 25 mL × 3 deionized water
and 25 mL × 3 ethanol, and the solid was directly used in the next step.

The general procedure for the preparation of Fe3O4@PDA@Pd was as follows. To prepare
palladium sodium chloride solution, 0.115 g (approximately 0.65 mmol) of palladium chloride
and 0.076 g (approximately 1.3 mmol) of sodium chloride were taken, and deionized water was
added dropwise until the weight reached 8 g. The mixture was heated to 50 ◦C, and a palladium
sodium chloride solution was prepared and placed in a brown bottle for later use. To prepare
Fe3O4@PDA-loaded nano-palladium, Fe3O4@PDA solid was placed under ultrasonic washing using
25 mL of deionized water, 0.1 N of 25 mL hydrochloric acid, 25 mL of deionized water, and 25 mL of
ethanol. Approximately 40 mL of ethanol and 4 mL of deionized water were added, and the mixture
was mechanically agitated under 10 ◦C. Subsequently, 0.29 g of palladium sodium chloride solution
was slowly added dropwise, and then the mixture was continuously agitated for 3 h. A solution
comprising 60 mg of ascorbic acid and 6 mL of deionized water was added slowly using a needle
cylinder for 20 min. Afterward, the reaction lasted for 2 h. The solid and liquor were separated using a
magnet; the reaction product was placed under ultrasonic washing using 25 mL of ethanol, 25 mL × 3
deionized water, and 25 mL × 3 ethanol. The solid was preserved in 25 mL of ethanol and sealed using
nitrogen (solid was approximately 0.1 g after drying).

The general procedure for the oxidative dehydrogenation of benzyl alcohol was as follows.
Approximately 0.1 g of Fe3O4@PDA@Pd catalyst (2 mol% of Pd) was used. The aforementioned solid
and liquor were separated using a magnet and placed under ultrasonic washing using 10 mL × 3
O-xylene. Then, 1 mmol of benzyl alcohol derivative and 5 mL of O-xylene were successively added
and blended under ultrasonic conditions. The mixture was then magnetically stirred for 24 h under
120 ◦C. After the reaction ended, the solid and liquor were separated using a magnet. The liquor was
concentrated, and the dehydrogenation product could be obtained after purification through column
chromatography (petroleum ether/ethyl acetate).
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4. Conclusions

We developed a method for preparing large-size, superparamagnetic, and highly magnetic
Fe3O4@PDA core–shell submicrosphere-supported nano-palladium catalysts. The catalysts could
catalyze the dehydrogenation of benzyl alcohols to produce the corresponding aldehydes with medium
to high yields under air as oxidant without base. Additionally, they could be easily removed from
the reaction media by an external magnet and reused five times without a considerable reduction
in reactivity.
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