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Immune checkpoint inhibitor (ICI) therapy may benefit patients with advanced esophageal squamous cell carcinoma (ESCC);
however, novel biomarkers are needed to help predict the response of patients to treatment. Differentially expressed immune-
related genes within The Cancer Genome Atlas ESCC dataset were selected using the weighted gene coexpression network and
lasso Cox regression analyses. Based on these data, an immune-related gene prognostic index (IRGPI) was constructed. The
molecular characteristics of the different IRGPI subgroups were assessed using mutation information and gene set enrichment
analysis. Differences in immune cell infiltration and the response to ICI therapy and other drugs were also analyzed.
Additionally, tumor and adjacent control tissues were collected from six patients with ESCC and the expression of these genes
was verified using real-time quantitative polymerase chain reaction. IRGPI was designed based on CLDN1, HCAR3, FNBP1L,
and BRCA2, the expression of which was confirmed in ESCC samples. The prognosis of patients in the high-IRGPI group was
poor, as verified using publicly available expression data. KMT2D mutations were more common in the high-IRGPI group.
Enrichment analysis revealed an active immune response, and immune infiltration assessment showed that the high-IRGPI
group had an increased infiltration degree of CD8 T cells, which contributed to the improved response to ICI treatment.
Collectively, these data demonstrate that IRGPI is a robust biomarker for predicting the prognosis and response to therapy of
patients with ESCC.

1. Introduction

Esophageal carcinoma is one of the leading causes of cancer-
related death worldwide [1]. The main types of esophageal
carcinoma are squamous cell carcinoma (ESCC) and adeno-
carcinoma, which exhibit different pathomorphological, epi-
demiological, and molecular characteristics [2]. Moreover,
ESCC accounts for approximately 90% of the morbidity
and mortality of all esophageal cancers [3]. The promotion
of large-scale population screening has effectively improved
the survival rate of patients with ESCC; nonetheless, a con-
siderable number of patients with ESCC are in an advanced
stage at diagnoses [4]. Only 27% of patients with ESCC ben-

efit from traditional chemotherapy and radiotherapy [5, 6].
Therefore, novel methods to predict the prognosis of
patients with ESCC and their corresponding treatment are
urgently needed.

An increasing number of researchers have recently
focused on immune checkpoint inhibitor (ICI) therapy,
which prevents tumor cell immune escape and induces an
immune response by inhibiting immune checkpoints, such
as programmed death-1 (PD-1), programmed death-ligand
1 (PD-L1), and CTL-associated protein-4 (CTLA-4) path-
ways [7–9]. Phase III ICI clinical trials, including those on
nivolumab and pembrolizumab for ESCC, showed that ICIs
can significantly improve the patient survival rate and
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reduce the incidence of treatment-related adverse events
compared with traditional chemotherapy drugs [7–9]. Most
patients achieve cancer control upon ICI therapy, although
some develop recurrence or drug resistance [10]. Moreover,
approximately 10% patients treated with ICIs may have
unconventional response patterns (pseudoprogression),
which challenges the evaluation of treatment efficacy [11].
Thus, methods for evaluating whether patients are suitable
for ICI therapy and assessing ICI therapy efficacy are
urgently needed.

The response of patients to ICI therapy is mainly affected
by tumor cell-intrinsic factors (such as tumor mutational
burden and microsatellite instability) and the tumor micro-
environment [12, 13]. Hence, evaluation of the immune sta-
tus of the tumor microenvironment by immune gene
signatures may effectively help predict the benefits of ICIs
[14]. The expression level of immune-related genes can pre-
dict the response of patients to ipilimumab treatment [15].
Additionally, recent studies showed that immune- or tumor
microenvironment-related gene expression scores can pre-
dict the survival and response to immunotherapy in hepato-
cellular carcinoma and lung cancer [16, 17]. Therefore, it is
helpful to evaluate the immune microenvironment, progno-
sis, and response to immunotherapy by examining gene
expression in patients before treatment.

In this study, we used immune gene signatures to
develop prognostic and ICI therapy indicators for patients
with ESCC. We also performed weighted gene coexpression
network analysis (WGCNA) and lasso regression analysis to
construct an immune-related gene prognostic index
(IRGPI). The molecular and immune characteristics of the
IRGPI subgroups were evaluated, and the potential of IRGPI
for assessing immunotherapy efficacy in patients with ESCC
was determined. The study design is shown in Figure 1.

2. Materials and Methods

2.1. Collection of Patient Information and Databases. ESCC
transcriptome data, clinical information, and gene mutation
data were downloaded from The Cancer Genome Atlas
(TCGA) database, which included 81 tumor and 11 adjacent
noncancerous samples. Transcriptome data and clinical
information of the validation cohort GSE53625 with 179
ESCC tumor samples and 179 adjacent normal tissues were
downloaded from the NCBI Gene Expression Omnibus
database [18]. Immune-related gene lists were downloaded
from InnateDB (https://www.innatedb.com), ImmPort, and
IRIS [19–21].

2.2. Identification of Immune Genes Correlated with
Prognosis. Differentially expressed ESCC genes were identi-
fied using the R package limma (version 3.44) based on
TCGA transcriptome data, with a false discovery rate <
0:05 and fold change > 1:5 [22]. The differentially expressed
immune ESCC genes were determined after the intersection
of immune-related gene sets (InnateDB) with differentially
expressed genes in ESCC. Gene Ontology (GO) analysis of
these genes was performed using the R package clusterProfi-
ler (version 3.17.5) [23].

The WGCNA (version 1.46) method was used to identify
hub genes that were significantly associated with ESCC [24].
We used the scale-free topology criterion to determine the
soft threshold of β = 7. Under this selection, the scale-free
topology fitting index R2 > 0:85. Based on the gene expres-
sion matrix, the similarity of gene expression was calculated
to obtain the adjacency matrix, which was then transformed
into a topological overlap matrix. Genes were grouped by
hierarchical clustering and then divided into different
expression modules according to the coexpression pattern.
We then calculated the correlation between these gene mod-
ules and ESCC occurrence. Modules with an absolute value
of the correlation coefficient > 0:7 were selected for further
analysis.

Univariate prognostic analysis was performed for genes
in the selected modules with the R package survival (ver-
sion 3.2). The R package glmnet (version 4.0) was used
for lasso analysis of survival-related genes in univariate
analysis [25]. The immune-related genes selected using
lasso analysis were used to construct the prognosis index
model.

2.3. IRGPI Construction and Reliability Evaluation. For
immune-related genes included in the IRGPI, the R package
survminer (version 0.4.8) was used to determine the optimal
cutoff expression value for prognosis and the logrank test
and Kaplan–Meier survival curve were used to determine
its relationship with overall survival [26, 27]. Based on the
immune-related genes selected, multivariate regression anal-
ysis using the R package rms (version 6.1) was performed to
construct the IRGPI model. The IRGPI score of each sample
was assessed by calculating the sum of each immune-related
gene expression value multiplied by its corresponding
regression coefficient based on the Cox proportional hazard
model. The risk score plot of IRGPI was obtained using the
R package ggrisk (version 1.2). The survivalROC (version
1.0.3) package was used to test the diagnostic significance
of IRGPI in patients with ESCC in different years. TCGA
patient data were divided into two groups according to the
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Figure 1: Experimental strategy for IRGPI development in ESCC.
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IRGPI median value. The Kaplan–Meier survival curve and
logrank test were used to evaluate the prognosis value of
IRGPI in TCGA ESCC cohort, which was further confirmed
in the GSE53625 dataset.

2.4. Identification of Mutation and Enrichment
Characteristics in Different IRGPI Subgroups. Based on the
median value of IRGPI (0.13), TCGA ESCC patients were
divided into high- and low-IRGPI groups. The R package
limma (version 3.44) was used to analyze the differentially
expressed genes between groups. The R package maftools
(version 2.6.05) was used to summarize and visualize muta-
tion information between subgroups [28]. The R package Pi
(version 2.2.1) was used for gene set enrichment analysis
(GSEA) between IRGPI subgroups based on the MSigDB
hallmark gene set [29].

2.5. Evaluation of Immune Cell Infiltration. The ssGSEA
function of the R package GSVA (version 1.36) was used
to calculate the enrichment score of 28 types of immune cells
for each sample [30]. The R packages ggpubr (version 0.4)
and ggplot2 (version 3.3.0) were used to compare and visu-
alize the immune cell enrichment score between groups.
The R package ComplexHeatmap (version 2.7.9) was used
to display the landscape map of the relationship between
the infiltration of immune cells and clinical information of
the samples [31].

2.6. Comparison of Immunotherapy Effectiveness and
Chemotherapeutic Response. The SubMap module in Gene-
Pattern (https://cloud.genepattern.org/gp) was applied to
predict the response effectiveness of the IRGPI subgroups
to immunotherapy [32]. Expression data from patients with
melanoma who responded to CTLA-4 and PD-1 therapy
were compared with those of TCGA ESCC samples upon
Bonferroni correction [33].

According to the Genomics of Drug Sensitivity in Can-
cer (GDSC) database (https://www.cancerrxgene.org/), we
predicted the different reactions of the two IRGPI subgroups
to chemotherapy. Based on the gene expression of samples
and GDSC training set, the half-maximal inhibitory concen-
tration (IC50) of each chemotherapy was evaluated by ridge
regression using the R package pRRophetic (version 0.5)
[34]. Tenfold crossvalidation was used to ensure prediction
accuracy.

2.7. ESCC Tissue Collection. After obtaining ethics approval
(no. 2019ZDSYLL023-Y01) from Zhongda Hospital, ESCC
and adjacent-control tissues were collected from six patients
with ESCC. The adjacent tissues were collected from the
esophageal tissues that were more than 2 cm and less than
5 cm away from the ESCC tissues. Fresh ESCC and adjacent
normal tissues were collected during surgery. After rapid
freezing in liquid nitrogen, all tissue samples were stored at
−80°C. The obtained tumor tissues were pathologically
verified.

2.8. RNA Extraction and Quantitative Polymerase Chain
Reaction (qPCR). The FastPure Cell/Tissue Total RNA Isola-
tion Kit (Vazyme, Nanjing, China) was used according to

the manufacturer’s instructions to extract total RNA from
patient tissue samples. cDNA was synthesized using
HiScript III RT SuperMix for qPCR (Vazyme). Using
ChamQ SYBR qPCR Master Mix (Vazyme), qPCR was
performed. The gDNA filter columns in the RNA extrac-
tion kit and subsequent gDNA wiper mix before reverse
transcription ensured that there was little or no gDNA
residue in the qPCR system. Relative gene expression
was calculated using the 2−ΔΔCt method, with GAPDH as
an internal reference. All samples were evaluated three
times. The corresponding primers used are listed in
Supplementary Table S1.

2.9. Statistical Analyses. All statistical analyses were imple-
mented using R (3.6.1 version). The Wilcoxon rank test
was used to verify the statistical significance between contin-
uous variables, and the chi-squared test was used to compare
classified variables. A P value < 0.05 was considered to indi-
cate statistically significant results.

3. Results

3.1. Immune-Related Genes in Esophageal Carcinoma. In
total, 81 tumor and 11 healthy tissue samples from TCGA
ESCC were used for differential expression analysis and
4838 differentially expressed genes were screened (false dis-
covery rate < 0:05, ∣log2 fold change ∣ >0:585 as a standard).
Cross-analysis with immune-related gene databases (Imm-
port, IRIS, and InnateDB) revelated 1271 differentially
expressed immune-related genes in the TCGA ESCC data-
set. Overall, 713 and 558 genes were up- and downregulated,
respectively. GO enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses further showed that
these differentially expressed immune-related genes were
significantly correlated with 479 GO terms and 56 KEGG
pathways (Supplementary Figure S1 and Table S2).

Further assessment of the differentially expressed
immune-related ESCC genes by WGCNA according to the
coexpression patterns revealed eight modules. Based on the
correlation coefficient between each gene module and ESCC,
genes in the brown and turquoise modules (correlation coef-
ficient with ESCC > 0:7) were selected for further analysis
(Supplementary Figure S2).

The 547 genes in the brown and turquoise modules were
analyzed by univariate Cox regression, which revealed that
25 genes were associated with the prognosis of ESCC. By
lasso Cox regression, four genes (CLDN1, HCAR3, FNBP1L,
and BRCA2) were selected as the best model (Supplementary
Figure S3). Using the maximally selected test statistics from
R package survminer, we determined the best cutoff points
for survival analysis of the above four genes. The cutoff
points of CLDN1, HCAR3, FNBP1L, and BRCA2 for
survival analysis were 9.39, 2.18, 5.17, and 4.98,
respectively. The results showed that high expression of
CLDN1 and HCAR3 was associated with poor prognosis,
whereas high expression of FNBP1L and BRCA2 was
associated with good prognosis in the TCGA ESCC cohort
(Figure 2).
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Figure 2: Continued.
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3.2. Prognostic Value of IRGPI in TCGA and the Validation
ESCC Cohort. We used the aforementioned four genes to
construct an immune-related gene prognosis model of ESCC
by multivariate Cox regression. The formula for IRGPI was
as follows:

0:40384367 × ExpCLDN1 + 0:41720423 × ExpHCAR3

− 0:38953082 × ExpFNBP1L − 0:37979347
× ExpBRCA2,

ð1Þ

in which the correlation coefficient from the Cox propor-
tional hazard model of each gene was multiplied by the
expression of the corresponding gene. The TCGA ESCC
cohort was divided into high- and low-IRGPI groups
according to the risk score, with the median IRGPI defined
as the cutoff point (Figure 3(a)). Using the median IRGPI
of 0.13 as the cutoff value, the high- and low-IRGPI groups
showed different prognosis outcomes, immune infiltration,
mutation characteristics, and responses to chemotherapy
and immunotherapy. The expression of CLDN1 in the
high-IRGPI group was higher than that in the low-IRGPI
group (Student’s t-test, P < 0:0001), and the median expres-
sion levels were 8.56 and 7.4, respectively. The expression of
HCAR3 in the high-IRGPI group was higher than that in the
low-IRGPI group (Student’s t-test, P < 0:0001), and the
median expression levels were 1.89 and 0.51, respectively.
The expression of FNBP1L in the high-IRGPI group was
lower than that in the low-IRGPI group (Student’s t-test, P
< 0:0001), and the median expression levels were 4.90 and
5.48, respectively. The expression of BRCA2 in the high-
IRGPI group was lower than that in the low-IRGPI group

(Student’s t-test, P < 0:01), and the median expression levels
were 4.13 and 4.65, respectively.

The prognostic value of IRGPI in the TCGA ESCC
cohort was evaluated using a time-dependent receiver oper-
ating characteristic (ROC) curve. The area under the curve
(AUC) values of IRGPI at 1, 3, and 5 years were 0.791,
0.807, and 0.845, respectively (Figure 3(b)). Moreover,
Kaplan–Meier analysis showed that the prognosis of the
high-IRGPI group in the TCGA ESCC cohort was signifi-
cantly worse than that of the low-IRGPI group (logrank test,
P < 0:0001) (Figure 3(c)). The prognostic value of IRGPI was
confirmed in the ESCC cohort (GSE53625), for which the
AUC values of 1, 3, and 5 years in the ROC curve were
0.837, 0.841, and 0.893, respectively, and the prognosis of
the high-IRGPI group was worse than that of the low-
IRGPI group (logrank test, P < 0:05) (Figures 3(d) and 3(e)).

3.3. Different Molecular Characteristics of the IRGPI
Subgroups. First, we analyzed the differences in the muta-
tional status of the different IRGPI subgroups. In ESCC,
the most common mutation type was a missense mutation,
followed by nonsense mutation, and C > T was the most
common single-nucleotide variant mutation. In both IRGPI
groups, TP53, TTN, CSMD3, DNAH5,MUC16, NFE2L2, and
PIK3CA were the most commonly mutated genes, showing
mutation rates of over 10% in ESCC samples. KMT2D,
MUC17, and TGFBR2 mutations were more common in
the high-IRGPI group, whereas FLG, ZNF750, and NOTCH1
mutations were more common in the low-IRGPI group
(Figure 4).

Next, GSEAwas performed on different IRGPI subgroups.
The top five gene sets enriched in the high-IRGPI group were
an interferon-α response, KRAS signaling DN, interferon-
gamma response, P53 pathway, and TNFα signaling via NF-
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κB (Figure 5(a) and Supplementary Table S3). The top five
gene sets enriched in the low-IRGPI group were epithelial-
mesenchymal transition, hedgehog signaling, angiogenesis,
E2F targets, and G2M checkpoint (Figure 5(b)).

3.4. Different Immune Characteristics of IRGPI Subgroups.
We used the immune cell gene set to analyze immune cell
infiltration within the tumor in the TCGA ESCC cohort
using the ssGSEA method. The Wilcox rank test was used
to distinguish differences in immune cell infiltration between
the IRGPI groups (Figure 6(a)).

In the high-IRGPI group, activated CD8 T cells, mono-
cytes, neutrophils, and type 17 T helper cells were highly
infiltrated. In the low-IRGPI group, memory B cell infiltra-
tion was higher than that in the high-IRGPI group. Addi-
tionally, we used the cellular landscape to assess the
infiltration of immune cells according to the different clini-
cal features and groups of the samples (Figure 6(b)), includ-
ing the tumor stage and grade, age, gender, and other tumor
classification models.

According to the information on the microenvironment
and mutation data in TCGA database, tumors were divided
into six immune subtypes: C1 (wound healing), C2 (inter-
feron-γ-dominant), C3 (inflammatory), C4 (lymphocyte-
depleted), C5 (immunologically quiet), and C6 (TGF-β-
dominant) [35]. Compared with the IRGPI subgroups of
the TCGA ESCC cohort, there were more C2 types in the
high-IRGPI group and more C1 types in the low-IRGPI
group (P = 0:04457, chi-squared test) (Figure 7(a)). Accord-

ing to the characteristics of the immune cell microenviron-
ment of TCGA squamous cell carcinoma, these cancers
could be divided into six immune subtypes, identified as IS
1–6 [36]. IS4 and IS6 subtypes were more prevalent in the
high-IRGPI group than in the low-IRGPI group, and there
were more IS1 in the low-IRGPI group (P = 0:01081, chi-
squared test) (Figure 7(b)). According to the molecular char-
acteristics of ESCC, these samples were divided into three
subtypes: ESCC1, ESCC2, and ESCC3 [2]. Overall, the
high-IRGPI group contained more ESCC2 samples
(P = 0:06487, chi-squared test) (Figure 7(c)).

3.5. Treatment Strategies Vary between IRGPI Subgroups.
We used SubMap analysis in GenePattern to predict the pos-
sible IRGPI subgroup response to immunotherapy by com-
paring with immunotherapy data of melanoma samples.
Overall, the results suggested that anti-PD-1 therapy was
more likely to be effective in patients in the high-IRGPI
group (P = 0:0169830, Bonferroni corrected P = 0:1358641)
(Figure 8(a)).

Based on the expression profile of GDSC and TCGA
ESCC cohorts, we constructed a ridge regression model to
predict the IC50 of drugs from IRGPI subgroups. Drugs such
as gefitinib showed a significant difference in IC50 between
the IRGPI groups (P < 0:001) (Figure 8(b)).

3.6. Verification of the Expression of Immune-Related Genes
in ESCC. We verified the expression of genes in the IRGPI
in the collected ESCC and adjacent paracancerous tissues.
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The trend in the qPCR results was the same as that in TCGA
ESCC cohorts, confirming the role of these genes in ESCC
(Figure 9). The median relative expression of CLDN1 was
1.11 in paracancerous tissues and 1.91 in ESCC tissues,
which was significantly increased in tumor tissues (Wilcox
test, P = 0:042). The median relative expression of HCAR3

was 1.87 in paracancerous tissues and 3.04 in ESCC tissues,
which was increased in tumor tissues (Wilcox test, P = 0:18).
The median relative expression of FNBP1L was 1.31 in para-
cancerous tissues and 0.57 in ESCC tissues, which was sig-
nificantly decreased in tumor tissues (Wilcox test,
P = 0:026). The median relative expression of BRCA2 was
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Figure 5: Different gene sets enriched in the IRGPI subgroups. Top five most enriched gene sets in the (a) high- and (b) low-IRGPI groups.
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1.04 in paracancerous tissues and 0.46 in ESCC tissues,
which was significantly decreased in tumor tissues (Wilcox
test, P = 0:041).

4. Discussion

The therapeutic effect of ICI therapy results from the inter-
actions of the tumor cells, tumor microenvironment, and
immune system. Previous clinical trials showed that ICI
therapy can effectively prolong the survival time and reduce
treatment-related adverse reactions in patients with
advanced ESCC compared with traditional chemotherapy

and radiotherapy [5, 6, 37]; however, there are uncertainties,
such as drug resistance and pseudoprogression, in some
populations [11]. Therefore, it is vital to establish a new
and robust method for evaluating and predicting the clinical
efficacy of ICI therapy in patients with ESCC.

Expression of immune-related genes in tumor samples
impacts the tumor immune microenvironment. Thus, an
immune gene signature can effectively help predict the clin-
ical benefit of patients receiving immunotherapy [14]. In this
study, differentially expressed immune ESCC genes were
identified from an immune gene set. The gene modules
closely related to the occurrence of ESCC were screened by
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Figure 6: Immune cell infiltration of ESCC samples in the IRGPI subgroups. (a) Wilcoxon rank test was used to inspect the statistical
differences of normalized enrichment score (NES) in 28 immune cells between IRGPI subgroups (ns: P > 0:05, ∗P ≤ 0:05, ∗∗P ≤ 0:01, ∗∗∗
P ≤ 0:001, and ∗∗∗∗P ≤ 0:0001). The plot shows median (thick lines), quartiles (bottom and top of the boxes), and kernel density
estimation (outlines) for each NES distribution. (b) Landscape of the tumor microenvironment in TCGA ESCC subgroups. Clinical
features and group information are used as column annotations.
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WGCNA, and genes related to the prognosis of patients with
ESCC were further screened with univariate Cox regression
and lasso regression. Taken together, we constructed a prog-
nostic index of immune-related genes in ESCC. The IRGPI
was demonstrated to be a stable and robust prognostic indi-
cator using publicly available ESCC data, with a high-IRGPI
score associated with a poor prognosis. The predictive
potential of the IRGPI was confirmed in a second, validation
publicly available ESCC dataset.

The IRGPI is based on the expression of four genes:
CLDN1, HCAR3, FNBP1L, and BRCA2. CLDN1 is a

membrane protein involved in the formation of tight
junctions between cells and regulates the proliferation
and metastasis of various tumors [38], including ESCC
by inducing autophagy through the AMPK/STAT1/ULK1
signaling pathway [39], and is closely related to lympho-
cyte reactions in colorectal cancer [40]. HCAR3 is a
member of the G protein-coupled receptor superfamily.
Previous studies showed that HCAR3 is a potential target
for regulating cellular immunity and metabolism [41],
with its activation by uracil acid exerting an immunosup-
pressive effect [42, 43]. Moreover, HCAR3 is essential for
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Figure 7: Molecular and immune subtype distribution of IRGPI subgroups. (a) Distribution of immune subtypes (C1-6) between IRGPI
subgroups. (b) Distribution of pan-SCC immune subtypes (IS1-6) between IRGPI subgroups. (c) Distribution of ESCC subgroups
(ESCC1, ESCC2, and ESCC3) between IRGPI subgroups.
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the metabolism and proliferation of breast cancer cells
[44]. FNBP1L is involved in connecting the cell surface
signal to the actin cytoskeleton by interacting with
CDC42 and N-WASP. FNBP1L promotes epidermal
growth factor-induced cell migration and invasion in epi-
dermal and breast cancer [45, 46]. BRCA2 is a common
tumor suppressor gene, and its mutation increases the
risk of ESCC [47–49]. In lung and breast cancer cells,
long-term induced inactivation of BRCA2 leads to upreg-

ulation of interferon-stimulated genes and activation of
the cGAS/STING/STAT pathway, confirming that inacti-
vation of BRCA2 triggers cellular innate immune
responses [50]. In the calculation of IRGPI, the coeffi-
cients of CLDN1 and HCAR3 were positive, whereas
those of FNBP1L and BRCA2 were negative. Therefore,
IRGPI is positively correlated with the expression of
CLDN1 and HCAR3 and negatively correlated with that
of FNBP1L and BRCA2.
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Figure 8: Different responses of IRGPI subgroups to immunotherapy and chemotherapy. (a) Compared with published transcriptome data
of melanoma immunotherapy using SubMap, the response of IRGPI subgroups to immunotherapy was predicted. The TCGA ESCC high-
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To explore the differences in the molecular characteris-
tics between IRGPI subgroups, we analyzed their muta-
tional status. C > T transitions are the most common
single-nucleotide variant type of ESCC. A high frequency
of C > T substitution may be associated with CpG methyl-
ation, and the change of germ line methylation can lead to
substitution rate variation at the CpG region [51]. The
most common mutation type in the two subgroups was
missense mutations, followed by nonsense mutations.
KMT2D mutation was more common in the high-IRGPI
group. It has been reported that KMT2D mutation is the
main modulator of ICI in several tumors [52], as KMT2D
mutation enhances the immune infiltration and immuno-
genicity of tumors, thereby making tumors more sensitive
to ICI therapy. In turn, ZNF750 mutation was more com-
mon in the low-IRGPI group. Studies have shown that

ZNF750 is a commonly mutated gene in ESCC, mainly
with nonsense mutations. ZNF750 can inhibit epithelial-
mesenchymal transition by directly depressing the SNAI1
promoter [53]. In addition, a decrease in ZNF750 levels
promotes angiogenesis in ESCC by activating the
DANCR/miR-4707-3p/FOXC2 axis [54]. Therefore, analy-
sis of the mutation information of the IRGPI subgroups
suggested that patients with high-IRGPI scores are more
sensitive to ICI treatment and that those with low-IRGPI
values are more prone to the epithelial-mesenchymal tran-
sition and angiogenesis phenotype.

GSEA revealed that the enriched gene sets differed
between the IRGPI subgroups. The interferon-α response
gene set was found to be enriched in the high-IRGPI
group. Interferon-α can effectively activate the immune
response and reverse the immunosuppressive effect of
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Figure 9: CLDN1, HCAR3, FNBP1L, and BRCA2 are differently expressed in ESCC. Primary tissue tumor and paracancerous biopsies of six
patients with ESCC were evaluated by real-time qPCR. Wilcox test was used to analyze differences between groups.
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mesenchymal stem cells [55, 56]. Additionally, the inter-
feron-γ response gene set was enriched in the high-
IRGPI group. Interferon-γ maintains immune homeostasis
in the tumor microenvironment, limits adaptive and
innate immune killing, and, thus, limits the response of
patients to ICI treatment [57, 58]. The high-IRGPI group
was enriched in the KRAS signaling pathway gene set,
which can affect the immune escape of tumor cells [59].
Furthermore, the P53 and NF-κB pathways, which play a
role in the tumor immune microenvironment and ICI
therapy, were enriched in the high-IRGPI group [60, 61].
The epithelial-mesenchymal transition, angiogenesis, and
E2F gene sets were enriched in the low-IRGPI group, fur-
ther suggesting that this group is prone to tumor invasion,
metastasis, and cell cycle. Therefore, the gene enrichment
results suggest that high-IRGPI values are associated with
tumor immunity, in contrast to the low-IRGPI group.

Next, we analyzed the difference in immune cell infil-
tration between the IRGPI subgroups. In the high-IRGPI
group, activated CD8 T cells, monocytes, neutrophils,
and type 17 T helper cells showed higher infiltration,
whereas in the low-IRGPI group, memory B cell infiltra-
tion was more common. Studies have shown that CD8 T
cells are closely related to the expression of PD-L1, sug-
gesting their value for predicting the prognosis of patients
and response to ICI treatment [62–64]. The increase in the
neutrophil count in tumors is often closely related to poor
prognosis, explaining the poor prognosis of patients in the
high-IRGPI group [65]. Interleukin-17, produced by type
17 T helper cells, stimulates tumor and stroma cells to
produce tumor-promoting factors, whereas interleukin-8,
produced by type 17 T helper cells, recruits neutrophils
[66]. Memory B cell infiltration was higher in the low-
IRGPI group. A previous study showed that the new sub-
group of memory B cells can promote angiogenesis [67].
Therefore, analysis of immune cell infiltration in the
IRGPI subgroups showed that under the effect of
immune-infiltrating cells, high-IRGPI values were indica-
tive of adverse prognosis and predicted the ICI response,
whereas low-IRGPI indicated angiogenesis.

Combined with other immune subtypes, we can deter-
mine the immune status of IRGPI subgroups. Compared
with pan-cancer immune subtypes, there were more C2-
type patients in the high-IRGPI group and more C1-type
patients in the low-IRGPI group [35]. The C2 type is
characterized by an IFN-γ response and high CD8 T cell
markers and lymphocyte infiltration rate, indicating a bet-
ter immune response but poor prognosis. The C1 type
indicates more angiogenic gene expression. In squamous
cell carcinoma immune subtypes, IS4 and IS6 were more
prevalent in the high-IRGPI group than in the low-
IRGPI group [36]. IS4 showed the highest T cell expres-
sion and IFN-γ response, with a good immune activation
phenotype, whereas IS1 showed an immunosuppressive
phenotype. The high-IRGPI group tended to undergo
ESCC2 classification, which involves higher leukocyte infil-
tration [2]. Overall, the immunophenotype of the high-
IRGPI group was more active than that of the low-
IRGPI group.

5. Conclusions

Traditional chemotherapy and radiotherapy are effective in
few patients with ESCC. Hence, for these patients, ICI ther-
apy may be beneficial for prolonging their survival time and
reducing the incidence of treatment-related adverse reac-
tions. Taken together, this study may fill the gap in the need
for new biomarkers and the proposed IRGPI may be used as
a biomarker to evaluate ESCC prognosis and the response to
ICI therapy.
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