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Abstract: Depression is the most frequent affective disorder and is the leading cause of disability
worldwide. In order to screen antidepressants and explore molecular mechanisms, a variety of
animal models were used in experiments, but there is no reliable high-throughput screening method.
Zebrafish is a common model organism for mental illness such as depression. In our research, we
established chronic unpredictable mild stress (CUMS) models in C57BL/6 mice and zebrafish; the
similarities in behavior and pathology suggest that zebrafish can replace rodents as high-throughput
screening organisms. Stress mice (ip., 1 mg/kg/d, 3 days) and zebrafish (10 mg/L, 20 min) were
treated with reserpine. As a result, reserpine caused depression-like behavior in mice, which was
consistent with the results of the CUMS mice model. Additionally, reserpine reduced the locomotor
ability and exploratory behavior of zebrafish, which was consistent with the results of the CUMS
zebrafish model. Further analysis of the metabolic differences showed that the reserpine-induced
zebrafish depression model was similar to the reserpine mice model and the CUMS mice model in
the tyrosine metabolism pathway. The above results showed that the reserpine-induced depression
zebrafish model was similar to the CUMS model from phenotype to internal metabolic changes
and can replace the CUMS model for antidepressants screening. Moreover, the results from this
model were obtained in a short time, which can shorten the cycle of drug screening and achieve
high-throughput screening. Therefore, we believe it is a reliable high-throughput screening model.

Keywords: depression; reserpine-induced model; metabolomics

1. Introduction

Depression is accompanied by long-lasting cognitive impairment and behavior changes,
which can lead to serious socioeconomic and health burdens. The pathogenesis of depres-
sion is complex and animal models are essential tools in depression research. Depressed
animals exhibit behavioral changes such as depression and cognitive dysfunction, which
can mimic the symptoms of depression in humans [1–4]. Using animal models can not only
circumvent the ethical problems of human depression research, but also obtain sufficient
sample size for research.

Rodents are the main experimental animals for depression research due to their
advantages of stable modeling, easy access and low price [5–7]. Commonly used rodent
depression models include stress models and drug models. The neurological, endocrine and
behavioral changes in the olfactory bulb resection model can mimic human depression by
surgical removal or destruction of the olfactory bulb, and the mechanism may be related to
the decrease in 5-HT and epinephrine, but it is not suitable for the detection of rapid-acting
antidepressants [8]. The social defeat stress model simulates the depressive symptoms
of human anhedonia, but only 50% of the mice show depressive symptoms, so a large
sample is needed [9]. The learned helplessness model reduced the spontaneous activity of
mice, and metabolomics analysis found that it is related to amino acid metabolism, lipid
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metabolism and sugar metabolism. However, this model can only detect the antidepressant
effect of the compound, but cannot predict the antidepressant onset time, and only 10–50%
of the animals experience induced effects, which limits the reliability and practicality of the
model [10]. CUMS is currently the most commonly used animal model of depression. It
can mimic the onset environment of depression in real life, and studies have found that
CUMS is related to lipid metabolism and glutamate metabolism, but this model requires
a long study time and heavy workload, and so it is not suitable for screening a large
number of antidepressant drugs [11,12]. Drug models, such as reserpine models, can be
used as simple and economical animal models for antidepressants. Importantly, a previous
study found that chronic treatment with reserpine reduced 5-HT levels in the brains of
rodents, supporting the use of reserpine as an animal model of progressive depression
in rodents [13]. However, the structure of the cerebral cortex of rodents is quite different
from that of humans, and high-throughput screening cannot be achieved. Therefore, it is
necessary to explore model organisms and models suitable for high-throughput screening
of drugs.

The zebrafish (Danio rerio), which has emerged in recent years, has become a model
species for translational research in neuroscience fields, including depression [14–16]. Due
to their physiology (neuroanatomy, neuroendocrine, neurochemistry) and the genetic ho-
mology of mammals, robust phenotypes, low cost, fast reproduction cycle, high-throughput
genetic value, zebrafish has become the experimental model for studying depression [17].
In addition, zebrafish are highly sensitive to commonly used psychotropic drugs. Zebrafish
provide an important perspective for drug screening for depression. Recent studies have
successfully applied CUMS to zebrafish to explore depression-like states and changes to
the brain proteome profile and neurogenesis, the results showed memory deficits and
elevated cortisol levels caused by CUMS, which are similar to depression-like states in
humans and rodents [18–20]. It has been reported that after the stress with reserpine, the
locomotor ability and exploratory behavior of zebrafish were reduced, the levels of cortisol
were increased, and 5-HT and norepinephrine were decreased [21], which also simulated
the state of human depression.

Compared with traditional research methods, metabolomics detects small molecular
metabolites in samples, reflects the overall level of these small molecular metabolites,
and identifies specific biomarkers, thus revealing related metabolic pathways [22,23].
Emotion and cognitive function are the manifestation of brain function, and the level of its
metabolites can reflect the body’s central nervous function to a certain extent. Metabolomics
has been widely used in the study of brain diseases, which can directly reflect the trend of
pathological changes in the brain and the effect of drug intervention through the dynamic
change rule of metabolite content in the brain tissue and biological fluid.

In this article, we established the CUMS model and reserpine model in mice and
zebrafish, respectively. The effects of CUMS and reserpine were preliminarily analyzed
through behavioral tests and brain pathology sections, and then compared metabolic
differences through metabolomics. The results showed that the reserpine-induced zebrafish
depression model is a reliable model for high-throughput screening of antidepressants.

2. Results
2.1. Effect of CUMS on Behavior and Brain Morphology of Mice and Zebrafish

The effect of CUMS on mice and zebrafish are shown in Figure 1. The CUMS mice
showed depression-like behavior (Figure 1B), which was manifested as the reduction in
the number of the crossing, rearing and grooming in the open field test (OFT), the increase
in the immobility time of tail suspension test (TST) and forced swimming test (FST), and
the decrease in sugar preference. Additionally, CUMS significantly reduced the cells in
the hippocampus of mice, with irregular cell morphology, enlarged gaps, disordered ar-
rangement, and almost disappeared cell nuclei (Figure 1C). After three weeks of fluoxetine
treatment, the depression-like behavior of the mice improved and the morphology of brain
cells returned to normal.
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obtained are similar to the results of the CUMS model. After intraperitoneal injection of 
reserpine, mice showed depression-like behavior such as decreased locomotion ability, 
significantly increased immobile time of FST and TST (Figure 2B) and abnormal hippo-
campal morphology (Figure 2C). After one week of fluoxetine treatment, the locomotor 

Figure 1. Experimental design and effect of CUMS on mice and zebrafish. (A) Experimental design for CUMS. (B) The
results of behavioral tests for OPT, SPT, FST and TST of CUMS mice. The round symbols indicate data distribution.
(C) Histopathological observation on mice hippocampus, 100×. (D,E) The results of behavioral tests for OFT and NTT of
CUMS zebrafish. (F) Histopathological observations on adult zebrafish brain, 200×. Data are represented as mean ± SEM.
* p < 0.05, ** p < 0.01, *** p < 0.001, compared with control; # p < 0.05, ## p < 0.01, ### p < 0.001, compared with CUMS.

Then, we established a CUMS model on the zebrafish. The results showed that CUMS
significantly reduced the locomotor ability, including significantly reduced the total dis-
tance and increasing the immobility time (Figure 1D). In the novel tank test (NTT), CUMS
significantly reduced the exploratory behavior of zebrafish, including decreased time spent
in the top, increased latency and freezing duration (Figure 1E). Similarly, the periglomerular
gray zone (PGz) of CUMS zebrafish also showed cells reduced with irregular cell mor-
phology, enlarged gaps and disordered arrangement (Figure 1F). After three weeks of
fluoxetine treatment, the locomotor ability and exploratory behavior were improved, and
the PGz cells were arranged tightly and regularly. These results indicate that under CUMS
conditions, zebrafish can replace mice in screening for antidepressants, highlighting that
zebrafish is a suitable model organism.

2.2. Effect of Reserpine on Behavior and Brain Morphology of Mice and Zebrafish

The schedule for the experimental procedure is provided in Figure 2A. The results
obtained are similar to the results of the CUMS model. After intraperitoneal injection of
reserpine, mice showed depression-like behavior such as decreased locomotion ability, sig-
nificantly increased immobile time of FST and TST (Figure 2B) and abnormal hippocampal
morphology (Figure 2C). After one week of fluoxetine treatment, the locomotor ability of
the mice was restored to a certain extent, and the cells in the CA1, CA3 and DG regions of
the hippocampus were stained darker and arranged regularly and densely.
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Figure 2. Experimental design and effect of reserpine on mice and zebrafish. (A) Experimental design for reserpine. (B) The
results of behavioral tests for OPT, SPT, FST and TST of reserpine in mice. The round symbols indicate data distribution.
(C) Histopathological observation of mice hippocampus, 200×. (D,E) The results of behavioral tests for OFT and NTT
of reserpine in zebrafish. (F) Histopathological observations on adult zebrafish brain, 200×. Data are represented as
mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, compared with control; # p < 0.05, ## p < 0.01, ### p < 0.001, compared with
CUMS reserpine group.

According to previous reports, we selected the concentration of reserpine as 10 mg/L
to stimulate zebrafish. On this basis, we explored the administration time of the positive
drug fluoxetine. We first tracked the behavior of zebrafish for seven consecutive days (Sup-
plementary Figure S1A,B), and observed the brain morphology (Supplementary Figure S1C),
we found that 24 h after reserpine was given, a depressive phenotype appeared, and on the
seventh day, the zebrafish was completely depressed (Supplementary Figure S2). We also
found that reserpine can quickly induce depression-like behavior in zebrafish, including
significantly reduced the locomotor ability and the locomotor ability (Figure 2D,E) and
cause morphological changes in the brain (Figure 2F). When fluoxetine was given after com-
plete depression, it was found that fluoxetine did not improve depression-like behavior in
zebrafish, and that when fluoxetine was given in the appearance of depressive phenotype,
it can improve the depressed phenotype. These results showed that reserpine-induced
zebrafish depression model is consistent with the CUMS zebrafish model in behavioral
and pathological aspects.

2.3. Metabolic Analysis

Metabolic profiling was conducted according to the chromatographic and mass spec-
trum conditions described above. A total of 3409 (2498 in positive mode and 911 in negative
mode), 1891 (614 in positive mode and 1277 in negative mode), 2210 (1259 in positive mode
and 951 in negative mode), 2543 (1621 in positive mode and 922 in negative mode) fea-
tures were obtained in the brain in CUMS-induced mice model, CUMS-induced zebrafish
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model, reserpine-induced mice model and reserpine-induced zebrafish model, respectively.
According to the PCA score plots displayed in Figure 3, a clear separation between two
groups was observed in each model. To further analyze the differences in metabolic profiles
between groups, an OPLS-DA score plot was produced for individual depression models,
both R2Y and Q2 were greater than 0.5, suggesting that the models were predictive.
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Clustering of metabolic disturbances in each depression model are shown in Figure 4A–D.
Based on the criteria of VIP > 1 and FDR < 0.05, a total of 28,44,90 and 39 different metabo-
lites were identified in these models (Tables S1–S4). Additionally, the metabolic overlap
between the two conditions was explored, as shown in Figure 4E; in the CUMS models,
there is only one different metabolite overlap between mice and zebrafish, Melibiitol,
which can be used as a nutrient component and membrane stabilizer to participate in
lipid metabolism and galactose metabolism pathways in vivo. Additionally, as shown
in Figure 4F, in the reserpine models, there are 11 overlapping metabolites, including
Ginkgolide A, indoleacetic acid, 4-hydroxybenzaldehyde, 5-methoxytryptamine, adenine,
tyramine, 2-methoxybenzoic acid, methomyl, 4’-methoxychalcone, leucoharmine and nore-
pinephrine. In addition, the structure types and pathways of unique metabolites are shown
in Figure 5, the depression models induced by CUMS have fewer metabolic types than the
reserpine-induced depression models. Additionally, as shown in Figure 4B, the metabolic
pathways of reserpine-induced mice depression model mainly focused on amino acid
metabolism, purine metabolism, pyrimidine metabolism, and tricarboxylic acid cycle; the
metabolic pathways of the reserpine-induced zebrafish depression model and CUMS mice
model mainly focused on tyrosine metabolism; the CUMS zebrafish model metabolic
pathways focused on glycerophospholipid metabolism.
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Figure 4. The heatmap and Venn diagram of each model. (A) The heatmap of CUMS in mice. (B) The heatmap of CUMS in
zebrafish. (C) The heatmap of reserpine in mice. (D) The heatmap of reserpine in zebrafish. (E) Venn diagram of differential
metabolites that were in common with or unique to the CUMS models in mice and zebrafish. (F) Venn diagram of differential
metabolites that were in common with or unique to the reserpine models in mice and zebrafish. In (A–D), Blue represents
Control group, red represents model group.
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3. Discussion

Depression is a mood disorder characterized by feelings of unpleasantness, helpless-
ness, sadness, and despair. Mild cases manifest as poor mood, lack of interest, self-blame,
decreased self-evaluation, and fatigue, often accompanied by symptoms such as decreased
appetite and libido, early awakening and weight loss, and severe cases often have suicidal
tendencies [3]. As serotonin reuptake inhibitors (SSRIs) have a different structure and
pharmacological mechanism than previously used tricyclic antidepressants, with clear
curative effects, fewer adverse reactions, and safe application, they have rapidly become
the first-line clinical antidepressants in recent years. It is currently the most important
class of antidepressants. Fluoxetine is the first discovered selective serotonin reuptake
inhibitor (SSRI) and the most widely used antidepressant in the world. Fluoxetine plays an
antidepressant role mainly by blocking the reuptake of 5-HT and enhancing the release and
transmission of 5-HT, with little effect on norepinephrine and dopamine [24]. Studies have
found that fluoxetine can increase serotonin levels in brain regions such as the prefrontal
cortex, hippocampus and synaptic spaces in the striatum, and improve patients’ moods.
Therefore, fluoxetine was selected as the positive drug in this paper.

According to reports, in rodents, reserpine can cause hypofunction, motor stereotypes,
dyskinesias, lethargy, and anhedonia [25–29]. After intraperitoneal injection of reserpine
for three consecutive days, the mice showed symptoms of reduced mobility, desperation
and anhedonia, which is consistent with the results reported in the literature, indicating
that the model was successfully constructed. In addition, H&E staining of hippocampal
tissue revealed that reserpine reduced the number of hippocampal CA1, CA3, and DG cells
and arranged them loosely. After fluoxetine treatment, the number of hippocampal CA1,
CA3, and DG cells increased and arranged regularly. These results were consistent with
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CUMS model results, suggesting that reserpine-induced depression-like phenotypes are
similar to those induced by CUMS. In order to improve screening efficiency and conduct
high-throughput screening, we established reserpine-induced models on zebrafish. It has
been reported in the literature that 20 and 40 mg/L reserpine did not cause significant acute
behavioral effects, and locomotor ability was significantly reduced after 7 days, similar
to the locomotor retardation observed in depression [30–33]. Based on this research, we
found that when the concentration of reserpine was 10 mg/L, it could cause zebrafish to
show reduced locomotor ability and exploratory behavior. Analysis of the pathological
characterization of zebrafish brain revealed that reserpine caused a certain degree of
damage to PGz, which was similar to the pathological results of the CUMS model zebrafish.
The above results suggest that the zebrafish depression model induced by reserpine has
similar behavioral and pathological features to the CUMS zebrafish model. Subsequently,
we conducted metabolomics analysis on the brain tissues of mouse and zebrafish under
the two stress modes and found that there was a significant separation between the control
group and the model group. Additionally, a number of differential metabolites were
identified. In the CUMS models, only one metabolite, Melibiitol, was shared by mouse and
zebrafish, while in the reserpine models, there were 11 metabolites shared by mouse and
zebrafish, indicating the similarity between zebrafish and mouse in the reserpine model. In
addition, from a time perspective, CUMS took a long time, requiring four to seven weeks,
the reserpine mouse model required 10 days, and the reserpine zebrafish model only took 7
days. The above results preliminarily suggest that reserpine-induced zebrafish depression
model is feasible.

From the above results, it can be seen that zebrafish can show similar behaviors to
rodents and take a short time, indicating that zebrafish is a reliable model organism for
studying depression. The reserpine-induced zebrafish depression model can not only
achieve rapid and high-throughput screening of drugs, but is also closer to the mice model,
indicating that the reserpine-induced zebrafish depression model is reliable and effective.
However, from the perspective of the pathological mechanism, the depression model
induced by reserpine is established on the basis of the monoamine hypothesis, and the
mechanism of depression is complicated and cannot be fully explained by the monoamine
hypothesis alone. With the development of the study for the pathogenesis of depression,
new targets and new mechanisms will be identified, and the reserpine-induced zebrafish
depression model is not suited for screening the new-target drugs.

4. Materials and Methods
4.1. Animals

C57BL/6 mice, male, weighing 18–22 g, were commercially purchased from Qing-
longshan Animal Farm, and kept at a laboratory animal barrier system with required envi-
ronment (temperature of 24 ± 1 ◦C, relative humidity of 45 ± 15%, and a 12 h light/dark
cycle). Food and water were readily available throughout the experiment, except where
specified. The experiments began after 1 week of habituation to the housing conditions.

Zebrafish (AB strain) were maintained in a fish-farming system at the China Phar-
maceutical University-Shandong Ruiying Group Joint Laboratory. The zebrafish feeding
method was carried out according to The Zebrafish Book [34]. The room temperature
was maintained at 28.5 ◦C on a constant light cycle (14 h light/10 h dark), and the water
(KCl 0.05 g/L, NaHCO3 0.025 g/L, NaCl 3.5 g/L, and CaCl2 0.1 g/L, purchased from
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) was circulated continuously. The
zebrafish were fed freshly hatched brine shrimp twice daily. Less than 5 adult zebrafish
were in the breeding tank. All experiments were approved by ethics Committee of China
Pharmaceutical University.

4.2. CUMS Model

The CUMS paradigm on mice was adapted from past research. In total, 11 different
stressors were presented randomly twice a day for a total of 49 consecutive days [35–37].



Int. J. Mol. Sci. 2021, 22, 9505 9 of 12

Stressors including cold water swimming (5 min), room temperature swimming (5 min),
and tail suspension (15 min), food deprivation (24 h), lack of water (24 h), cage tilt
(30 degrees, 24 h), wet litter (250 mL of water on the litter bed, 24 h), cage shaking (15 min),
inversion during the day and night (24 h), being restrained (2 h), clipped tail (2 cm from
the tip of the tail, 2 min).

The CUMS paradigm on zebrafish was followed previous studies. Stressors were
presented randomly twice a day for a total of 28 days to avoid habituation [38–40]. The
stressors included low water to expose the dorsal body wall to the air (2 min), crowding
in a 250 mL beaker containing only 150 mL of water (30 min), chasing with a net (8 min),
cooling the water to 23 ◦C, heating the water to 33 ◦C (30 min), tank change, restraint stress
and predator stress. All stressors were applied between 08:30 a.m. and 17:00 p.m. The
schedule for the experimental procedure is provided in Figure 1A.

4.3. Reserpine Model

After behavioral screening, 36 mice were randomly divided into 3 groups, namely
the control group, reserpine group and fluoxetine group. The model group and fluoxetine
group were injected intraperitoneally with reserpine (Sigma-Aldrich (Shanghai) Trading
Co., Ltd., Shanghai, China) at a dose of 1 mg/kg for 3 days. Reserpine was dissolved in
glacial acetic acid (Xilong Science Co., Ltd., Shenzhen, China) and diluted with distilled
water to a final concentration of 0.5% acetic acid. The volume is 0.2 mL. The fluoxetine
(Shanghai Huyuan Pharmaceutical Co., Ltd., Shanghai, China) group was administered at
a dose of 20 mg/kg/day.

Reserpine-induced zebrafish depression model was to expose zebrafish to 10 mg/L
reserpine solution for 20 min. According to our previous results, fluoxetine was given 24 h
later, and the concentration was 0.1 mg/L. The schedule for the experimental procedure is
provided in Figure 2A.

4.4. Behavior Test

The open field test (OFT), sucrose preference test (SPT), forced swimming test (FST),
and tail suspension test (TST) were conducted as previously described [41–43]. Spatial
exploration behavior in mice was tested by the OFT, and the crossing, rearing and grooming
were measured during the 5 min session. The SPT means the ratio of consumed 1% sucrose
solution relative to that of total solution in the test and was used as a measure of anhedonia
in mice. The duration of the FST and TST was 6 min, and the immobility time was recorded
during the last 4 min. The OFT and novel tank test (NTT) were used to assess depression
response in experimental zebrafish [44,45]. Noldus software and SONY SSC-DC578P
camera were used for the automatic tracking of zebrafish behavior.

4.5. Hematoxylin-Eosin Staining (HE)

The embedded tissue wax blocks were sliced with a thickness of 4 µm, adhered to the
slides, and dried at 45 ◦C. Tissue sections were dewaxed with xylene. After soaking and
staining with hematoxylin for 5 min, rinse with distilled water. Then, 75% hydrochloric
acid ethanol differentiated for 30 s; rinse with distilled water for 10 min; eosin staining for
2 min; dehydration; neutral resin sealing; microscope observation and photography [46];
reagents were purchased from Shenggong Biological Engineering (Shanghai) Co., Ltd.,
Shanghai, China.

4.6. Sample Collection and Preparation

After the behavioral test, the animals were sacrificed and the brains were dissected on
ice, weighed, and frozen. Prior to analysis, all samples were thawed at room temperature.
In total, 100 mg of brain tissue was transferred to a 2 mL centrifuge tube and mixed
with pre-cooled acetonitrile, methanol ( Merck Chemical Technology (Shanghai) Co., Ltd.,
Shanghai, China) and water (V:V:V = 9:4:2). The mixture was homogenized until the tissue
was broken and allowed to stand for an hour, then centrifuged at 13,300 rpm for 20 min at
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4 ◦C. The supernatant was evaporated until dry, and the residue was reconstituted with
100 µL of ACN/H2O (V:V = 50:50) and then centrifuged at 13,300 rpm for 20 min at 4 ◦C,
and the supernatant was taken in a sample vial for further analysis. In total, 80 µL of the
supernatant was collected, and the remainder was mixed as QC samples.

4.7. LC-MS Analysis

Chromatographic separation was performed on a high-performance liquid chromatography-
quadrupole time-of-flight mass spectrometer (Agilent1260, Agilent, Santa Clara, CA, USA)
equipped with a Waters XSelect HSS T3 column (2.1 × 100 mm, 2.5 µm), and the column
temperature was maintained at 40 ◦C. The mobile phase consists of 0.1% formic acid (A)
(Fisher, Waltham, MA, USA) and acetonitrile (B) and the gradient operated at a flow rate of
0.4 mL/min by eluting in 98% A for two minutes, then increasing solvent B to 100% within
18 min, and eluting in 100% solvent B for five minutes. The autosampler temperature was
set at 4 ◦C and the injection volume per sample was 2 µL. MS data were obtained by a mass
spectrometer equipped with an electrospray source (ESI) in both positive and negative
modes, and the sweep range was: 50–1000 m/z. For positive and negative modes, the
operating parameters were set as follows: gas temperature of 325 ◦C, gas flow of 8 L/min,
nebulizer pressure of 40, sheath gas temp of 350 ◦C, sheath gas flow of 12 L/min, nozzle
voltage of 0 V when positive and 500 V when negative, Fragmentor of 130 V, Skimmer of
65 and Octopole RF Peak of 750.

4.8. Data Analysis

All data from behavioral test are expressed in the form of mean ± standard deviation.
The statistical analysis was carried out by using Graphpad Prism7.0. The results were
analyzed by one-way analysis of variance (ANOVA). The significance level was set at
p < 0.05.

LC-MS data files including MS1 and MS2 spectra data were converted to mzXML
format files using the MS Convert program in the Proteowizard software (Version: 3.0.19291-
5e92459cc) for further analysis. Using xcms R package (Version: 3.10.2) for retention time
correction and ion peak matrix extraction. The MetaboAnalystR R package (Version: 3.0.3)
was used for quality control. After pretreatment, a table consisting of sample name, peak
area, m/z, retention time, etc. was obtained. Then, the data were imported to RStudio for
analysis. The variables with VIP values larger than 1.0 and q-values less than 0.05 were
deemed to be statistically significant.
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