
Review

Epithelial-to-Mesenchymal Transition and Cancer
Invasiveness: What Can We Learn
from Cholangiocarcinoma?

Simone Brivio 1, Massimiliano Cadamuro 1,2, Luca Fabris 2,3 and Mario Strazzabosco 1,3,*

Received: 19 November 2015; Accepted: 14 December 2015; Published: 19 December 2015
Academic Editors: David A. Brenner, Tatiana Kisseleva and Jonas Fuxe

1 School of Medicine and Surgery, University of Milan-Bicocca, Via Cadore 48, 20900 Monza, Italy;
s.brivio3@campus.unimib.it (S.B.); massimiliano.cadamuro@gmail.com (M.C.)

2 Department of Molecular Medicine, University of Padua School of Medicine, Viale Colombo 3, 35131 Padua,
Italy; luca.fabris@unipd.it

3 Liver Center, Section of Digestive Diseases, Yale University, TAC Building, 333 Cedar Street, New Haven,
CT 06520, USA

* Correspondence: mario.strazzabosco@yale.edu or mario.strazzabosco@unimib.it; Tel.: +39-02-6448-8052

Abstract: In addition to its well-established role in embryo development, epithelial-to-mesenchymal
transition (EMT) has been proposed as a general mechanism favoring tumor metastatization in several
epithelial malignancies. Herein, we review the topic of EMT in cholangiocarcinoma (CCA), a primary
liver cancer arising from the epithelial cells lining the bile ducts (cholangiocytes) and characterized by
an abundant stromal reaction. CCA carries a dismal prognosis, owing to a pronounced invasiveness
and scarce therapeutic opportunities. In CCA, several reports indicate that cancer cells acquire
a number of EMT biomarkers and functions. These phenotypic changes are likely induced by
both autocrine and paracrine signals released in the tumor microenvironment (cytokines, growth
factors, morphogens) and intracellular stimuli (microRNAs, oncogenes, tumor suppressor genes)
variably associated with specific disease mechanisms, including chronic inflammation and hypoxia.
Nevertheless, evidence supporting a complete EMT of neoplastic cholangiocytes into stromal cells is
lacking, and the gain of EMT-like changes by CCA cells rather reflects a shift towards an enhanced
pro-invasive phenotype, likely induced by the tumor stroma. This concept may help to identify new
biomarkers of early metastatic behavior along with potential therapeutic targets.
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1. Introduction

Cholangiocarcinoma (CCA) is a primary liver cancer arising from the epithelial cells lining the
intra and extrahepatic portions of the biliary tree (cholangiocytes). Although classically viewed as a
relatively rare type of cancer, CCA is responsible for 10%–20% of the deaths related to primary liver
malignancies, and its incidence has progressively increased starting from the early 1990s, at least for
the intrahepatic variant. Unlike hepatocellular carcinoma, CCA does not usually develop within a
background of chronic liver disease, which makes its diagnosis and treatment even more difficult [1].
In fact, CCA is most often diagnosed at an advanced stage, when intrahepatic or lymph node metastatic
dissemination has already occurred, owing to the strong and early invasiveness of the tumor. Therefore,
less than one-third of patients are eligible for radical surgery, which is, so far, the only treatment with
curative intent, whereas most of them are merely located to palliative procedures. Unfortunately, the
success of surgical resection is heavily threatened by the high rates of recurrence, resulting in a five-year
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survival of no more than 20%–30%. On the other hand, in the last few years liver transplantation has
been proposed, but only for a highly selected subset of patients and by few specialized centers [2–4].

Overall, these gaps in knowledge support the need to better understand the molecular
mechanisms underlying the invasive properties of CCA, with the ultimate goal to identify biomarkers
of early metastatic behavior, useful for the decision-making process of patient allocation to the best
treatment, and to develop targeted molecular therapies aimed at halting the metastatic spread of
the tumor. In the last few years, growing attention has been drawn on epithelial-to-mesenchymal
transition (EMT) as a mechanism promoting dissemination in several cancer cell types.

2. EMT Involvement in Cancer Cell Dissemination

Metastasis is a complex and continuously evolving process, which follows a specific sequence of
events. In solid epithelial cancers, the cell metastatization follows four steps:

(1) Detachment from the highly-organized epithelial layer; this requires reducing cell-cell contacts
and rearranging the cytoskeletal architecture, in favor of a motile phenotype;

(2) Impairment of the integrity of the basement membrane through active proteolysis, and then
invasion of the surrounding stroma as strands or cords. Once in the tumor stroma, cells can
efficiently cross-talk with multiple mesenchymal and inflammatory cell types, which in turn
support their invasiveness;

(3) Dissemination at distance through the lymphatic and/or hematogenous circulation, taking
advantage of the leaky neovasculature arising in the tumor microenvironment; and

(4) Engraftment at the distant sites by moving from the vessel lumen into the ectopic tissue
parenchyma, wherein cells restart their deregulated proliferative program [5,6].

As a general concept, the metastatic cascade relies, at least partially, on the activation by the cancer
cell of molecular programs typical of the mesenchymal lineage, as shown by profound changes in the
expression of cytoskeletal and cell surface proteins, as well as by de novo expression of extracellular
matrix (ECM)-degrading enzymes [7]. This observation led many researchers to speculate that
carcinoma cells undergoing metastatization may somehow recapitulate the embryonic program of
phenotypic conversion known as EMT [8]. During morphogenetic EMT, differentiated epithelial
cells gradually acquire a full mesenchymal phenotype, characterized by the disassembly of cell
junctions and the loss of cytokeratin filaments, with a concomitant gain of migratory functions, by
which cells may leave their original localization within the epithelial sheets [9,10]. Through EMT, a
number of key developmental events, such as embryo implantation, gastrulation and neural crest
formation, can properly occur [11]. The EMT process is driven by a set of embryonic transcription
factors, including Snail (Snail1), Slug (Snail2), Twist1/2 and ZEB1/2, which repress the expression
of cytokeratins (K) and critical junction proteins, in particular E-cadherin, the molecular hallmark
of the epithelial phenotype. On the same time, these transcription factors variably induce the
expression of a range of mesenchymal markers, such as α-smooth muscle actin (α-SMA), vimentin,
and S100A4. Moreover, increased production of ECM components, such as fibrillar collagen, and of
matrix metalloproteinases (MMPs) is concurrently shown by cells undergoing EMT [12–14]. Activation
of pro-EMT transcription factors is triggered by a broad spectrum of factors, encompassing cytokines
and growth factors (such as transforming growth factor (TGF)-β1 and growth factors with affinity for
receptor tyrosine kinases) [14,15], morphogenetic signals (namely Wnt, Notch and Hedgehog (Hh)
signaling) [16], and post-transcriptional gene regulator microRNAs (miRNA) (e.g., miR-200 family
members) [17]. These triggering factors can be released as effect of several disease mechanisms, in
particular chronic inflammation, hypoxia and autophagy, most of which may be involved in malignant
transformation [18–20].
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3. Evidence for EMT in Human Carcinomas

The ability of tumor cells to express at different levels some mesenchymal properties is largely
recognized. These include the loss of cell-to-cell adhesion (usually modulated by the E-cadherin
to N-cadherin switch), alterations in cell polarity (from apical-basal to front-rear) and cell shape
(from cobblestone-like to spindle-like), expression of mesenchymal biomarkers, such as vimentin
and S100A4, and proteolytic activities [21,22]. Notably, cells expressing EMT biomarkers are more
frequently localized at the invasive front rather than in the bulk of the tumor [9,23]. Nonetheless, EMT
signatures (that we would rather call “transitional” properties) have been widely reported in circulating
tumor cells [24,25], thus highlighting the concept that these ”transitional” properties identify a subset
of tumor cells more prone to be engaged in invasive processes. Furthermore, many clinical studies
correlated the expression of EMT features with an increased metastatic potential and a poor clinical
outcome in several carcinomas, including breast [26,27], pancreatic [28], gastric [29], colorectal [30],
and lung cancer [31]. This clinical evidence is consistent with experimental data, showing the ability
of TGF-β1, Snail and Twist, to induce the expression of mesenchymal features in human cultured
cancer cell lines, in vitro [32–35], and to enhance their metastatic potential in xenograft models [36–38].
Notwithstanding, the actual relevance of EMT in human tumor progression still remains uncertain.
In this regard, CCA is an epithelial cancer type with several peculiarities particularly suitable to
address this issue.

4. Expression of EMT Features in CCA and Underlying Mechanisms Involved

Phenotypic features of EMT, including up-regulation of vimentin, S100A4, Snail and Twist, in
conjunction with down-regulation of E-cadherin and of membranous β-catenin, have been observed in
neoplastic bile ducts [39]. Most of them frequently correlated with tumor progression and more severe
prognosis [40–43]. For example, low expression of E-cadherin in CCA tissues, significantly associated
with the presence of metastasis, and tended to correlate with a shorter survival time [44]. In this
context, our group recently showed that S100A4, when expressed in the nucleus of neoplastic bile
ducts, is a strong predictor of increased invasiveness and metastatization in CCA patients. Moreover,
we demonstrated that relevance of nuclear S100A4 went well beyond that of a mere surrogate marker
of invasiveness, as it was functionally able to promote the acquisition of a metastatic phenotype.
Indeed, human CCA cells harboring nuclear expression of S100A4 displayed increased metastatic
abilities when xenotransplanted into SCID mice, compared with CCA cells not expressing S100A4
in the nucleus. Mechanistic relevance of S100A4 was further supported by in vitro studies showing
that down-modulation of nuclear S100A4 in CCA cells by lentiviral silencing or by pharmacological
treatment with paclitaxel significantly reduced their motility and invasive functions. These effects
were associated with a reduction in the activities of Rho-A and Cdc42, small Rho GTPases known
to affect the directionality of cell migration, and of MMP-9, a pivotal proteolytic enzyme in cancer
invasiveness [7,45]. Factors modulating the ability of CCA cells to express different “transitional”
features are gradually emerging and, potentially, may provide a target of therapeutic intervention to
halt CCA invasiveness. Under their effect, the up-regulation of EMT markers goes hand in hand with
increased cell invasiveness, in vitro.

4.1. Cytokines, Growth Factors and Morphogens Promoting EMT

Multiple soluble factors are able to induce a “transitional” phenotype in cultured CCA cells. They
are summarized in Table 1. These factors are variably released into the tumor microenvironment by
different cell sources, supporting involvement of both autocrine and paracrine mechanisms. In fact,
besides tumoral cells, cells recruited within the tumor reactive stroma (TRS), closely aligning with
the neoplastic ducts, may be also strong producers of EMT inducers. The TRS is a highly-specialized
mesenchymal compartment hosting several cell types, such as cancer-associated fibroblasts (CAFs)
and tumor-associated macrophages (TAMs), which provide cancer cells with a broad range of cues
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directly stimulating their malignant behavior [46]. In fact, CAFs secrete high levels of TGF-β, IL-6,
SDF-1, EGF, and FGF, whereas TAMs variously produce TGF-β, TNF-α, IL-6, and EGF. Moreover,
either cell types may release several MMPs, able to trigger EMT changes by cleaving essential cell
adhesion molecules on the surface of cancer cells [46,47]. Human CCA cells cultured with conditioned
media harvested from activated macrophages actually showed a strong down-regulation of E-cadherin
and K-19, in conjunction with an up-regulation of S100A4 and MMP-9 [48], and with increased
migratory properties, in vitro [49]. Similarly, SDF-1 produced by CAFs, was reported to promote
the invasiveness of cultured CCA cells, marked by de novo expression of vimentin, and decreased
expression of E-cadherin and membranous β-catenin [50]. Similar evidence was reported in other
cancers featuring an abundant desmoplasia, such as breast [51] and colorectal [52] cancer. Of note,
the hypoxic microenvironment typically featuring CCA has been proposed as an important stressor
exacerbating the release of EMT inducers [53]. For example, hypoxia may induce the secretion of the
multifunctional peptide adrenomedullin (ADM) by CCA cells. ADM overexpression was observed
in neoplastic bile ducts, and, in vitro, it associated with the induction of tumor cell migration and
invasion via EMT [54].

Table 1. Soluble factors inducing a “transitional” phenotype in cultured CCA cells.

EMT Inducer References

Inflammatory cyto/chemokines
TGF-β1 [55–58]
TNF-α [59]

IL-6 [60]
HMGB1 [61]
SDF-1 [50]

Growth factors
EGF [62,63]

FGF-19 [64]
Morphogens

Notch1/Sox9 [65–67]
Sonic Hh [68]

Transforming growth factor β1, TGF-β1; tumor necrosis factor α, TNF-α; interleukin 6, IL-6; high-mobility
group box 1, HMGB1; stromal cell-derived factor 1, SDF-1; epidermal growth factor, EGF; fibroblast growth
factor 19, FGF-19; Hedgehog, Hh.

Several epigenetic mechanisms, including DNA methylation and histone post-translational
modifications, have been hypothesized to regulate the expression of EMT-related signatures, in line
with the concept of pronounced plasticity of tumoral cells that may dynamically adapt to various
microenvironmental stimuli [69]. For example, Snail-induced E-cadherin repression is mediated, at
least in part, by the direct recruitment of both histone deacetylases and DNA methyltransferases at the
E-cadherin promoter [70,71]. The ability to induce epigenetic changes in co-cultured cancer cells has
been reported in CAFs from gastric, ovarian and breast cancer [72–74]. In particular, CAFs from gastric
cancer induced in tumoral cells a down-modulation of E-cadherin coupled with increased migratory
functions through a DNA methylation-dependent inactivation of miR-200b (see below), which led to
ZEB1/2 activation [72]. It is tempting to speculate that similar epigenetic events may also occur in
CCA, possibly driven by interactions with the TRS components [12,46], an issue worthy of particular
attention by future studies.

4.2. miRNAs Promoting EMT

miRNAs are endogenous non-coding RNAs of 20–25 nucleotides, which regulate mostly
negatively gene expression by directly interacting with target mRNAs, thus inhibiting their translation
and/or promoting their cleavage. Besides their involvement in physiological processes, increasing
evidence suggests that several miRNAs play a pathogenic role in human cancers, as highlighted by
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the differential expression profiles between tumor and normal tissues. Indeed, most of miRNA genes
are located within cancer-associated genomic regions [75]. Several miRNAs have been found to be
deregulated in human CCA cell lines and/or tissues, wherein they affect a wide range of processes
related to tumor biology, such as proliferation (e.g., miR-21, miR-26a, miR-31, miR-421, miR-494),
apoptosis (e.g., miR-21, miR-25, miR-29b, miR-31, miR-204, miR-320), migration (e.g., miR-21, miR-138,
miR-200b, miR-220c, miR-376c, miR-421), differentiation (e.g., miR-200b, miR-373), angiogenesis
(e.g., miR-101) and chemoresistance (e.g., miR-21, miR-29b, miR-200b, miR-205, miR-221) [76,77].
In this regard, recent studies have shown that inactivation of specific miRNAs may also induce an EMT
phenotype. Those found inactivated in CCA cells and their EMT-related target genes are illustrated in
Table 2. Among them, neural cell adhesion molecule (NCAM) is a surface glycoprotein expressed by
immature cholangiocytes and functionally linked to EMT, and Smad4 is a common downstream
effector of the TGF-β pathway. Conversely, miR-21 promotes EMT changes when aberrantly
activated [78]. Noteworthy, the expression of miR-214, miR-204 and miR-34a was significantly reduced
in CCA specimens, compared with normal tissues, and their down-regulation closely correlated with
CCA metastasis.

Table 2. miRNAs whose inactivation leads to EMT induction.

miRNA Target Gene References

miR-214 Twist [79]
miR-204 Slug [80]
miR-200c ZEB1/2; NCAM [81]
miR-34a Smad4 [82]

Neural cell adhesion molecule, NCAM.

4.3. Oncogenes and Tumor Suppressor Genes Regulating EMT

An altered expression of both oncogenes and tumor suppressor genes may also entail EMT
changes promoting CCA metastatization. Among oncogenes, the zinc finger transcription factor
spalt-like transcription factor 4 (SALL4) [83], and the transcriptional co-activator yes-associated protein
(YAP) [84], are found to play a relevant role in CCA. SALL4 ability to induce mesenchymal properties
relates to its well-documented interactions with TGF-β and Wnt signaling pathways [85], whereas
YAP triggers EMT by increasing the expression of the oncoprotein gankyrin in an AKT-dependent
manner [84]. With respect to tumor suppressor genes, two recent studies have shed light on the role of
the ubiquitin ligase F-box and WD repeat domain-containing 7 (FBXW7), and of the protein kinase
mitogen-activated protein 3 kinase 4, as negative regulators of mTOR/ZEB1 and p38/NF-κB/Snail
pathways, respectively [86,87]. Importantly, the role of YAP and FBXW7 in CCA invasiveness was
confirmed also in vivo by xenograft models, where YAP overexpression or FBXW7 knockdown led
to an increased cancer dissemination. In gallbladder cancer (GBC), the most common malignancy of
the biliary tract, pathologically distinct from CCA, but characterized by a similar invasive phenotype,
occurrence of EMT-like changes has been recently linked to the newly identified tumor suppressor
gene N-myc downstream-regulated gene (NDRG)-2. GBC cells with loss of NDRG2 expression
showed EMT-like features associated with enhanced migration and invasiveness in vitro, and tumor
growth and metastasis in vivo. The study elegantly unraveled the molecular mechanism activated
by the loss of NDRG2 expression, leading to the up-regulation of MMP-19, which, in turn, directly
promoted the expression of Slug at the transcriptional level, ultimately responsible for EMT-like
changes. Furthermore, MMP-19-induced Slug increased the expression of a receptor tyrosine kinase,
Axl, which maintained Slug expression through a positive feedback loop, and stabilized EMT of GBC
cells. Altogether, these findings unveil a novel role for MMPs, acting as EMT inducing transcriptional
regulators [88].

2032



J. Clinical Medicine 2015, 4, 2028–2041

4.4. Disease Mechanisms Inducting the “Transitional” Phenotype

Multiple disease mechanisms underlying CCA carcinogenesis and progression have been
associated with EMT. Ability of chronic inflammation to induce EMT changes relies on the effects
of cytokines, chemokines, and growth factors widely released in the portal tract by inflammatory
cells (neutrophils, lymphocytes, macrophages, myofibroblasts) in many cholangiopathies (i.e., primary
biliary cirrhosis, primary sclerosing cholangitis, congenital hepatic fibrosis), as previously outlined.
Furthermore, some etiologic agents may induce EMT because of their intrinsic liver damaging activity.
For example, the chronic hepatitis C virus (HCV) infection is an established risk factor for CCA [1].
In human CCA specimens, the positive expression of the HCV core protein (HCVc) associated not only
with lymph node metastasis, but also with EMT features (increased expression of vimentin, fibronectin
and N-cadherin, and decreased expression of E-cadherin). Consistently, HCVc promoted “transitional”
changes in cultured CCA cells, including enhanced motility and invasion, by increasing the expression
and/or activity of lysyl oxidase-like 2, which prevented Snail degradation [89,90].

Autophagy is emerging as a key regulator of cell invasion in a number of human cancers,
triggered by various stimuli, such as nutrient deprivation and hypoxia [91,92]. A recent study
showed that starvation-induced autophagy enhanced the invasive properties of CCA cells, and, in
parallel, autophagy inhibition by chloroquine significantly abrogated the TGF-β1-induced cell invasion,
thus arguing for a possible autophagy-dependent EMT regulation in CCA. Indeed, in human CCA
specimens, the expression of the autophagy-related protein activating molecule in Beclin1-regulated
autophagy positively correlated with the expression of Snail as well as with lymph node metastasis [93].

5. EMT and CAFs Generation: Insights from CCA

In addition to supporting the pro-invasive functions of tumoral epithelial cells, EMT has
been claimed as a potential ancillary mechanism generating CAFs, which would represent a full
mesenchymal switch [8,94]. To address this specific issue, we developed an in vivo xenograft model
of CCA enabling us to trace the fate of cancer cells by a dual tracking system. An enhanced green
fluorescent protein (EGFP)-expressing human male CCA cell line (EGI-1) displaying an EMT phenotype
was xenografted by intraportal injection into a severe combined immune deficiency (SCID) male mouse,
and dual immunofluorescence for EGFP (CCA cell marker) and α-SMA (CAF marker) was performed
on liver tumors. In this model, cancer cells undergoing a complete EMT would be expected to
co-express both markers. However, although engrafted tumors faithfully reproduced the native
CCA characteristics, as shown by the abundant TRS surrounding the EGFP-positive, EGI-1-derived
bulk, coincident labeling between EGFP and α-SMA was never observed. Moreover, a FISH analysis
revealed that the human Y chromosome specific probe was not expressed by α-SMA-positive cells
(which on the contrary, expressed the murine Y chromosome), but only by EGFP-positive CCA cells.
In accordance with these data, human CCA sections did not display co-expression of the cholangiocyte
lineage marker K7 and α-SMA. Taken together, these data strongly argue that in CCA, CAFs are not
generated through an EMT of cancer cells, in vivo [39].

6. CCA as Model to Redefine the Concept of EMT in Cancer Invasiveness

Many studies suggested that EMT plays a crucial role in promoting epithelial cancer invasiveness,
based on the concept that several EMT features are coherent with an invasive phenotype, and indeed,
they can be reproduced by in vitro experiments. However, in CCA, a complete transition of epithelial
cancer cells toward a mesenchymal phenotype is not found in vivo [39]. All the well-recognized
mesenchymal features commonly displayed by neoplastic cholangiocytes, although strongly involved
in CCA dissemination, are more consistent with the concept of “transitional” changes leading to an
invasive phenotype, but developing in the context of a preserved native epithelial identity [46]. The
general assumption that the gain or loss of expression of one or more molecules typically serving as
lineage biomarkers necessarily reflects a large-scale gene expression reprogramming is appealing, but
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questionable. In CCA, the presence of a “transitional” phenotype may instead represent the synergic
effect between an ongoing tumoral dedifferentiation process, regulated by stochastic mutational
events, and the influence of paracrine signals originating from the TRS [9,95,96]. When the resulting
changes in gene expression are such that cancer cells gain a more malignant phenotype endowed
with pro-invasive features, those cells would then likely become overrepresented through a process
of Darwinian selection [5]. However, these phenotypic dynamics are markedly different from the
finely-regulated lineage conversion program typically occurring in embryonic cells undergoing EMT
during organogenesis.

It is worth underlining that a highly malignant behavior associated with EMT by several
studies is that of the cancer stem cell (CSC) endowed with unlimited self-renewal capabilities,
heightened resistance to apoptosis and strong chemoresistance [97]. Shuang et al. [98] reported that
TGF-β1-induced EMT provides CCA cells with a range of stem cell-like features, including expression
of pluripotency transcription factors (Sox2 and Oct3/4) and enhanced resistance to chemotherapeutic
drugs. Consistently, CCA cells constitutionally expressing the CSC biomarker aldehyde dehydrogenase
(ALDH), showed reduced E-cadherin expression, and increased expression of vimentin, fibronectin and
N-cadherin, compared with ALDH-negative cells [98]. This intimate link between EMT and stemness
may be a pivotal factor promoting metastatic colonization. Indeed, the concept that only metastasizing
cells endowed with self-renewal capabilities are responsible for ectopic tumor dissemination [5]
is emerging. Interestingly, co-expression of stem cell and EMT properties has also been reported
in cell populations isolated from early human fetal liver [99], suggesting that the “transitional”
changes undergone by neoplastic cholangiocytes may overall represent an aberrant reactivation
of an embryonic behavior.

7. Conclusions

The aggressiveness of CCA is associated with the expression by neoplastic ducts of
“transitional”/pro-invasive features, some of which have also a strong prognostic value. These are
the result of paracrine signals originating from the stromal compartment, which closely accompanies
the growth of tumoral ducts, acting in concert with signaling perturbations arising in the cancer
cells themselves (Figure 1). However, these phenotypic changes do not reflect a full conversion of
CCA cells towards a mesenchymal phenotype, which potentially would lead to the generation of the
reactive stroma, a feature particularly abundant in CCA. Nonetheless, the gain of EMT-like features by
neoplastic cholangiocytes may have profound implications for the management of CCA patients, by
identifying biomarkers serving as prognostic factors and/or predictors of treatment response, as it is
the case with nuclear S100A4, and by providing novel molecular therapeutic targets. Notably, some
EMT-interfering agents, such as inhibitors of TGF-β signaling, TGF-β type I receptor, and EGF receptor,
have been recently tested in clinical trials in patients with carcinomas with promising effects [100].
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traits in CCA cells (up-regulation of N-cadherin, vimentin, S100A4 and metalloproteinases, along
with down-regulation of E-cadherin and membranous β-catenin) is driven by a set of embryonic
transcription factors (Snail, Slug, Twist1/2, and Zeb1/2), whose expression is induced by both soluble
factors released in the tumor microenvironment (cyto/chemokines, growth factors, and morphogens)
and mutational events affecting the activity of miRNAs, oncogenes, and tumor suppressor genes.
These “transitional” changes allow cancer cells to reduce intercellular adhesion and dismantle the
basement membrane, resulting in a motile phenotype. Transforming growth factor β1, TGF-β1; tumor
necrosis factor α, TNF-α; interleukin 6, IL-6; high-mobility group box 1, HMGB1; stromal cell-derived
factor 1, SDF-1; epidermal growth factor, EGF; fibroblast growth factor 19, FGF-19; Hedgehog, Hh;
F-box and WD repeat domain-containing 7, FBXW7; mitogen-activated protein 3 kinase 4, MAP3K4;
yes-associated protein, YAP; spalt-like transcription factor 4, SALL4; metalloproteinase, MMP.
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