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A B S T R A C T   

Although several previous studies have used resting-state functional magnetic resonance imaging and diffusion 
tensor imaging to report topological changes in the brain in epilepsy, it remains unclear whether the individual 
structural covariance network (SCN) changes in epilepsy, especially in pediatric epilepsy with visual cortex 
resection but with normal functions. Herein, individual SCNs were mapped and analyzed for seven pediatric 
patients with epilepsy after surgery and 15 age-matched healthy controls. A whole-brain individual SCN was 
constructed based on an automated anatomical labeling template, and global and nodal network metrics were 
calculated for statistical analyses. Small-world properties were exhibited by pediatric patients after brain surgery 
and by healthy controls. After brain surgery, pediatric patients with epilepsy exhibited a higher shortest path 
length, lower global efficiency, and higher nodal efficiency in the cuneus than those in healthy controls. These 
results revealed that pediatric epilepsy after brain surgery, even with normal functions, showed altered topo
logical organization of the individual SCNs, which revealed residual network topological abnormalities and may 
provide initial evidence for the underlying functional impairments in the brain of pediatric patients with epilepsy 
after surgery that can occur in the future.   

Introduction 

Epilepsy is a neurological disorder characterized by seizures that 
affect brain function [1]. Several studies have indicated structural and 
functional abnormalities in epilepsy [2–7]. However, an increasing 
number of studies have demonstrated that multiple brain regions 
frequently interact to form complex networks [8–14]. Graph theory was 
introduced to study the topological properties of the brain as a small 
world [15]. Small-world organization of the brain is important for 
functional integration and segregation [10]. Brain topographic abnor
malities in epilepsy have been detected using electroencephalography, 
resting-state functional magnetic resonance imaging (MRI) and diffusion 
tensor imaging [16–18]. Surgical removal of epileptic lesions is one of 
the most important treatments. However, how the individual structural 
covariance network (SCN) topologically changes in epilepsy, especially 
in pediatric epilepsy after brain resection but with normal functions, 
remains unknown. Revealing residual network topological 

abnormalities in pediatric epilepsy after surgery could help in early 
intervention for functional decline. 

Structural MRI offers an opportunity to noninvasively study brain 
morphology and coordinated developmental patterns in vivo [19–21]. 
Traditionally, brain networks have been mapped using functional MRI 
and diffusion MRI [22–27]. Structural MRI has many advantages over 
both functional and diffusion MRI, including ease of acquisition, high 
signal-to-noise ratio, and robustness to artifacts. A whole-brain struc
tural network was proposed to explore the brain network topology by 
calculating inter-regional morphological similarities [28–30]. Previous 
studies have constructed SCNs at the group level by taking each indi
vidual subject as a time point, ignoring individual variability [29,31]. To 
characterize individual network topologies, Wang et al., [32] developed 
an individual morphological covariance network method to study 
abnormal network architectures in brain diseases [33,34]. An individual 
SCN may provide global insight into brain network topological organi
zation patterns in pediatric epilepsy with resection of the visual cortex 
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but with normal functions. 
Herein, we used a noninvasive structural MRI technique and graph 

theory to map individual morphological covariance networks to inves
tigate residual brain network topological abnormalities in seven pedi
atric patients with epilepsy after brain surgery and 15 age-matched 
healthy controls. From this new perspective, we aimed to reveal whether 
global brain network topological abnormalities exist in pediatric epi
lepsy after resection of epilepsy foci but with normal functions. 

Material and methods 

Participants 

The structural MRI dataset of pediatric patients with epilepsy after 
surgery and healthy controls is a public dataset and was downloaded 
from the website https://kilthub.cmu.edu/articles/dataset/Pediatric_e 
pilepsy_resection_MRI_dataset/9856205. Eight pediatric epilepsy pa
tients with resection of epilepsy foci (six pediatric patients with re
sections to the ventral occipito-temporal cortex (VOTC) and two patients 
with resections outside the VOTC; mean age = 15.48 ± 2.83 years) and 
15 age-matched healthy controls (3 female, 12 male, mean age = 14.5 
± 3.1 years) were included in this study (statistic p values: age, p =
0.67). The public dataset was collected at Carnegie Mellon University 
with data collection approved by the Institutional Review Boards of 
Carnegie Mellon University and the University of Pittsburgh [35]. Par
ents provided informed consent and minor participants were given 
assent prior to the scanning session [35]. The details for the subjects and 
dataset can be found in a previous study [35]. For all the eight pediatric 
epilepsy patients, one only provided structural T1 image before resec
tion. Thus, only 7 participants with T1 images after resection were used 
for final analyses. 

Structural MRI acquisition and preprocessing 

Structural MRI data was acquired on a Siemens Verio 3T scanner 
with a 32-channel head coil at Carnegie Mellon University [35]. The 
imaging parameters for the structural MRI were as follows, repetition 
time (TR) = 2300 ms, echo time = 1.97 ms, acquisition time = 5m21s, 
voxel-wise resolution 1 × 1 × 1 mm3. 

To map SCN, the structural MRI images were processed and the gray 
matter volume images were obtained using voxel-based morphology 
(VBM8) toolkit. The VBM analysis as follows: structural MRI images 
were first segmented into gray matter (GM), white matter (WM), and 
cerebrospinal fluid (CSF). The GM images were then transformed to 
Montreal Neurological Institute (MNI) space using Diffeomorphic 
Anatomical Registration using Exponentiated Lie algebra (DARTEL) 
approach. Finally, all the GM images were modulated and smoothed 
using a Gaussian kernel of 8 mm full-width at half maximum (FWHM) 
for further analyses [31,36]. 

Individual SCN analysis 

Individual cortical SCN were calculated based on the automated 
anatomical labeling (AAL) template (including 90 cerebral regions) in 
both pediatric patients with epilepsy after surgery and healthy controls. 
Each subregion in AAL template was defined as a node and the edge of 
the individual SCN was defined as the inter-regional similarity of the 
distribution of the regional GM volume. To calculate the edge of the 
individual SCN, the kernel density estimation (KDE) was employed to 
estimate the probability density function of the extracted GM volume 
values of each AAL subregion and the variation of the KL divergence 
(KLD) is adopted to calculate the similarity between probability density 
functions. The similarities were taken as the edges of SCN [32,37], and a 
90 × 90 correlation matrix for each subject was obtained for network 
analysis. 

Network analyses 

The binary network topology analyses were performed with the 
sparsity (S) of 0.05 < S < 0.4 with step length of 0.02 [15,25]. Under 
each sparsity value, both global and nodal network parameters were 
calculated using graph theory with GRETNA software (http://www.nit 
rc.org/projects/gretna/). The network parameters included small- 
worldness, characteristic path length Lp, global efficiency Eglob, clus
tering coefficient Cp, local efficiency Eloc, synchronization, modularity, 
hierarchy, assortativity and two nodal centrality metrics: betweenness 
centrality Be and degree K. For statistical analyses, the normalized value 
(area under the curve (AUC)) of the above parameters which is inde
pendent of single threshold selection was calculated. To identify the 
network parameters differences between pediatric epilepsy after surgery 
and healthy controls, Wilcoxon rank sum test was performed on the AUC 
of each network metric. The statistical results of the nodal parameters 
were corrected using false discovery rate (FDR) method with p < 0.05. 

Results 

Small-worldness of brain networks 

Both the pediatric patients with epilepsy and healthy controls 
showed high gamma but almost identical lambda values compared with 
that in a random network (γ ≫ 1 and λ ≈ 1), indicating that the brain 
networks of pediatric patients with epilepsy after brain surgery and 
healthy controls were small-world organizations (Fig. 1). 

Changed global network parameters in pediatric epilepsy 

Graph theory was used to calculate individual SCN topological pa
rameters to identify network topological changes in pediatric patients 
with epilepsy after brain surgery. Compared with healthy controls, pe
diatric patients with epilepsy exhibited significantly decreased global 
efficiency and increased shortest path length after brain surgery (Fig. 2). 
In addition, we compared other global parameters, including the clus
tering coefficient, local efficiency, degree, betweenness, synchroniza
tion, modularity, hierarchy, and assortativity, between patients with 
epilepsy after surgery and healthy controls, although no significant 
differences were found in these network topological parameters (Fig. 4). 

Changed nodal network parameters in pediatric epilepsy 

In addition to the global network parameters, we explored changes in 
the nodal network parameters in pediatric epilepsy after surgery. 
Compared with that in healthy controls, pediatric patients with epilepsy 
only showed a significantly increased nodal efficiency in the cuneus 
after brain surgery (Fig. 3). No other differences in other nodal param
eters, such as betweenness, were observed. 

Discussion 

In this study, we used a novel individual SCN method to investigate 
topological differences between healthy controls and pediatric patients 
with epilepsy who underwent resection of the visual cortex but had 
normal functions. Three main findings were obtained. First, the SCN 
exhibited small-world properties in both healthy controls and pediatric 
patients with epilepsy after surgery, suggesting that the SCN is specif
ically suitable for investigating network reorganization in patients un
dergoing brain surgery. Second, pediatric patients with epilepsy after 
surgery showed reduced global efficiency but a higher shortest path 
length than healthy controls, indicating residual brain network abnor
malities in pediatric patients with epilepsy after surgery, although no 
obvious functional impairments were observed. Third, pediatric patients 
with epilepsy showed increased nodal efficiency in the cuneus after 
surgery compared with that in healthy controls, suggesting functional 
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compensation of this area for visual cortex resection. In summary, these 
findings provide initial evidence for residual brain network topological 
abnormalities and functional compensation in pediatric epilepsy after 

visual cortex resection, which may provide insights into potential 
functional impairments occurring in the future. 

The human brain is a complex system exhibiting small-worldness, 
functional segregation, and integration. [8]. We found that pediatric 
patients with epilepsy after brain surgery and healthy control subjects 
showed small-world topological properties of the SCN, consistent with 
previous findings obtained using other modalities [38]. The global to
pological properties of global efficiency and shortest path length 
changed significantly in pediatric patients with epilepsy after surgery 
compared with those in healthy controls. Our findings are supported by 
those of a previous group-level SCN study [39]. The global efficiency 
and shortest path length primarily reflect the network information 
transmission capabilities. The decreased global efficiency and increased 
shortest path length suggest that integration of global information was 
disrupted. Thus, although all pediatric patients with epilepsy showed 
normal function after brain surgery, the brain still had residual struc
tural network topological abnormalities. 

We also found that the local topological property of the nodal effi
ciency of the cuneus was significantly higher in pediatric patients with 
epilepsy after brain surgery than that in healthy controls. The cuneus 
plays an important role in processing visual information [40]. Given that 

Fig. 1. The small-world attributes in pediatric patients with epilepsy after surgery and healthy controls. Under the sparsity from 0.05 to 0.4 with interval of 0.02, 
both pediatric patients with epilepsy and healthy controls showed small-world properties. 

Fig. 2. Abnormal global network properties in pediatric patients with epilepsy after surgery. Pediatric patients with epilepsy after surgery showed decreased global 
efficiency while increased shortest path length compared to healthy controls. 

Fig. 3. Abnormal nodal efficiency in pediatric patients with epilepsy after 
surgery. Pediatric patients with epilepsy after surgery showed increased nodal 
efficiency of cuneus compared to healthy controls. 
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most pediatric patients with epilepsy have resections to the ventral 
occipitotemporal cortex but with normal functions, increased nodal ef
ficiency of the cuneus suggests that these patients may have elevated 
visual information processing after surgery. Increased nodal efficiency 
may be a compensatory mechanism for damaged visual information- 
processing pathways in pediatric epilepsy after surgery. Overall, the 
increased nodal efficiency in the cuneus indicates that epilepsy after 
resection of the visual cortex may trigger the integration of visual 
information. 

The current study has some limitations. First, although several pre
vious studies have used a covariance approach to construct networks, 
the rationality of SCN must be validated compared with functional and 
anatomical network. Second, only seven pediatric patients with epilepsy 
after surgery were included in the current study, and the findings should 
be further validated in a larger sample. Third, this study used a public 
dataset that shared only MRI data and lacked other relevant informa
tion; however, given the uniqueness of the data, this study is note
worthy. Fourth, all patients with epilepsy underwent brain surgery, 
which may have affected the results of the brain network analysis. To 
avoid this problem, we employed an individual SCN method that uses 
the gray matter volume of voxels unaffected by surgery to obtain the 
distribution patterns of these matter volumes to calculate the regional 
similarity. This method can overcome the effects of brain surgery to a 
degree. Finally, sex information was not provided, and whether sex 
differences affect the results requires further study. Furthermore, the 
differences in the anatomical locations of brain resection may influence 
the results because of the small sample size. 

Conclusions 

We studied the individual SCN and graph theory in pediatric patients 
with epilepsy after surgery with no obvious functional impairments and 
revealed that these patients exhibited small-world properties after brain 
surgery. Compared with healthy controls, pediatric patients with epi
lepsy showed significantly decreased global efficiency, increased 

shortest path length, and increased nodal degree of the cuneus after 
surgery. These findings indicate that residual abnormalities of the brain 
network topological organization in pediatric patients with epilepsy 
with normal functions after resection of the visual cortex may help in the 
early prevention of potential functional impairments occurring in 
future. 
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