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Abstract

It is widely agreed that complex diseases are typically caused by the joint effects of multiple instead of a single genetic
variation. These genetic variations may show stronger effects when considered together than when considered individually,
a phenomenon known as epistasis or multilocus interaction. In this work, we explore the applicability of information
interaction to discover pairwise epistatic effects related with complex diseases. We start by showing that traditional
approaches such as classification methods or greedy feature selection methods (such as the Fleuret method) do not
perform well on this problem. We then compare our information interaction method with BEAM and SNPHarvester in
artificial datasets simulating epistatic interactions and show that our method is more powerful to detect pairwise epistatic
interactions than its competitors. We show results of the application of information interaction method to the WTCCC
breast cancer dataset. Our results are validated using permutation tests. We were able to find 89 statistically significant
pairwise interactions with a p-value lower than 10{3. Even though many recent algorithms have been designed to find
epistasis with low marginals, we observed that all (except one) of the SNPs involved in statistically significant interactions
have moderate or high marginals. We also report that the interactions found in this work were not present in gene-gene
interaction network STRING.
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Introduction

The availability of ever more extensive genetic information has

spurred intense research on the search for the genetic factors that

influence common complex traits. Genome Wide Association

Studies (GWAS) aim at discovering associations between genetic

factors and complex traits such as diseases. In GWAS, hundreds of

thousands of Single Nucleotide Polymorphisms (SNPs) are

analyzed to determine whether they are associated with the

disease or conditions of interest. Due to limitations on the data,

these analyses are usually performed using single SNP statistical

tests and correcting for multiple testing.

This approach has severe limitations since epistatic interactions

of SNPs are very important in determining susceptibility to

complex diseases. Existing methods for SNP interaction discovery

perform poorly when marginal effects of disease loci are weak or

absent. As an example of a case where this may happen, it has

been suggested that many genes with small effects rather than few

genes with strong effects contribute to the development of asthma.

The problem is that the individual effects of the interacting SNPs

may be too small to be detected with the most commonly used

statistical methods. Therefore, there is a need for more powerful

methods that are able to identify interactions between SNPs with

low marginal effects.

A number of different methods have been used to find epistatic

interactions, including statistical methods (e.g. ATOM [1]), search

methods (e.g. BEAM [2] or SnpHarvester [3]), regression methods

(e.g. Lasso Penalized Logistic Regression [4]) and machine

learning methods (e.g. [5], MegaSNPHunter [6] or decision tree

based methods [7]). Classic methods such as Logistic Regression

have been pointed as appropriate methods to consistently estimate

the strength of association between a predictor and disease [8] [9].

An additional advantage of regression methods is the ability to

deal with population structure by including principle components

as covariates [10]. However it has also been stated that logistic

regression has limited power for modelling high-order non-linear

interactions that are likely important in the etiology of complex

diseases [11]. Multivariate regression is not suited for problems

with hundreds of thousands of variables. Intermediate strategies

that permits fast computation while preserving the spirit of

multivariate regression have been explored [4] [12]. The lasso

penalty is an effective device for continuous model selection,

especially in problems where the number of variables far exceeds

the number of observations. The problem is that even these

intermediate regression strategies are not prepared for dealing

with the interactions between a large number of variables. That is

why these methods are usually combined with filtering strategies

such as selecting SNPs with high marginals and building the

regression model considering only the interactions between these

high-marginal SNPs [4]. However in this paper we chose not to

use any filtering strategy in order not to loose any potentially

important SNP on this step.
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In this paper, we describe results obtained using a measure

known as information interaction, that was used to identify pairs of

SNPs that, together, provide a significantly higher risk of disease.

Information interaction expresses the amount of information

(reduction of entropy) provided by a set of variables, beyond that

which is present in any subset of those variables. Using a

computationally efficient approach, we compute the pair of SNPs

with the highest information interaction, relatively to the

phenotype of interest. To control for multiple hypothesis testing,

the significance of the relevant results is validated using a

permutation testing procedure. Information interaction has

already been applied to epistasis detection [13] [14], however,

those applications involved the use of a filtering step that may

remove important SNPs. We show in our paper that it is possible

to apply information interaction to the WTCCC breast cancer

dataset without any filtering step.

The results obtained in artificial datasets show that the

approach vastly outperforms existing methods such as SnpHarve-

ster [3], and Beam [2]. Results obtained in the Wellcome Trust

Breast Cancer dataset [15] have shown that the approach is

applicable to the large amounts of data used in GWAS and that

previously unknown, statistically significant, interactions can be

discovered. We show also that the interactions that were

statistically significant are composed of SNPs with moderate or

large marginals.

Materials and Methods

To test methods to find interactions with low marginals, we

need to have a dataset that simulates these type of interactions. We

selected simulated datasets that were tested with the SNPHarvester

algorithm [3]. We used datasets in which there are multiple disease

loci without marginal effects. Our argument is that if our method

can detect these interactions in the artificial datasets, then it will be

able to find similar types of interactions in real datasets such as the

Wellcome Trust Breast Cancer Dataset.

Artificial datasets
60 different epistatic models were the base for the generation of

datasets in which disease loci do not have marginal effects. These

epistatic models, firstly used in [16] use different parameter values

for parameters such as heritability (h2) and minor allele frequency

(MAF). Heritability ranges from 0.025 to 0.4 and MAF ranges

from 0.2 to 0.4. 100 datasets were generated for each disease

model, each one with 200 cases, 200 controls and 1000 SNPs. In

these datasets there is only a pair of interacting SNPs in positions 1

and 10 from left to right.

The datasets in which there are multiple disease loci without

marginal effects try to simulate the expectation that there might

exist multiple SNP-SNP interactions in the association studies.

Eight hybrid models were used for the generation of the datasets.

Each hybrid model is a mixture of five pure epistatic models with

the same heritability and MAF. For example if a hybrid model

HM1 consists of models m1:::m5, the first interaction is based on

model m1, the second interaction based on model m2 and so on.

Thus there are five interactions in the HM that are simulated

independently. 100 datasets were simulated for each hybrid model

and each dataset contains 200 cases, 200 controls and 1000 SNPs.

The 10 SNPs that belong to the 5 pairwise interactions are in

positions (1,100), (201,300), (401,500), (601,700) and (801,900).

Since these datasets with multiple loci are closer to what we may

expect in reality, we will report the results of our methods in these

datasets generated with hybrid models.

Wellcome Trust Case Control Consortium breast cancer
dataset

The artificial datasets are very important to test the methods

and estimate their power. If we can develop a method that

successfully detects the associations in the artificial datasets, then

we can apply that method to real world datasets in order to detect

associations with similar characteristics. The Wellcome Trust Case

Control Consortium (WTCCC) breast cancer dataset is a large

real world dataset with 1045 cases, 1476 controls and 15436 SNPs.

We used only the SNPs that were also used in the WTCCC

original publication [15] after data cleaning. Due to efficiency

reasons it was also necessary to convert genotypes into binary

variables. Each SNP is therefore coded with 2 bits which is enough

since we use 3 values for the genotypes and 1 value for missing

data. This encoding of the SNPs is not the same that was used in

other works such as [13] or [14]. The reason for this is that the

source code of the tool uses bitwise operations that make the

execution to run much faster. As we will see in the results in the

artificial datasets, our method, using this encoding, overcomes

state-of-the-art methods BEAM and SNPHarvester in terms of

power to detect pairwise epistatic associations.

Classification methods
Our first approach was to select for study one artificial dataset

that contains multiple disease loci, without marginal effects, and

apply classification methods to see if it was possible to explain the

phenotype based on the 1000 SNPs (10 of which are the disease

loci).

We used WEKA to test several classification methods such as

Alternating Decision Trees, Voted Perceptrons and Support

Vector Machines. We also tested SMLR method (Sparse

Multinomial Logistic Regression).

Alternating Decision (AD) Trees [17] are a generalization of the

well known decision tree learning algorithm. The AD Tree

learning algorithm is based on boosting. Boosting is a machine-

learning meta-algorithm that tries to learn a strong classifier, based

on weak classifiers. The models produced by AD Tree learning are

relatively easy to interpret, especially if compared with other

boosting procedures. AD Trees were originally proposed for

binary classification, but posterior work extended it to work for

multiple classes [18].

Voted perceptrons [19] are an evolution of the perceptron

algorithm which is an Artificial Neural Network with only one

neuron. Voted perceptrons store the list of all prediction vectors

generated after each mistake. For each vector the method keeps

the number of iterations it survives until the next mistake is made.

This number is called the weight of the vector. To calculate a

prediction, the binary prediction of each one of the vectors is

computed and all predictions are combined by a weighted

majority vote.

Support Vector Machines (SVMs) [20] are the basis of

classification method based on creating a maximum-margin

hyperplane in a transformed input space. The transformation of

the input space is done implicitly by means of a kernel function.

The parameters of the solution hyperplane are derived from a

quadratic programming optimization problem using algorithms

such as Sequential Minimal Optimization (SMO) [21].

Sparse Multinomial Logistic Regression (SMLR) [22] algorithm

learns a multi-class classifier and simultaneously performs feature

selection to identify a small subset of features relevant to the

decision. The learned classifier reports the probability of a sample

belonging to each of the m classes given m sets of feature weights,

one for each class.

Discovering Epistasis with Information Interaction
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Fleuret method
Fleuret published a fast binary feature selection technique (that

we call the Fleuret method) based on Conditional Mutual

Information Maximization (CMIM) [23] that we wanted to apply

to our problem of detecting interacting SNPs with low marginals.

This method is based on picking features that maximize their

mutual information with the class to predict, conditional to any

feature already picked. According to the author, this method

selects features which are both individually informative and two-

by-two weakly dependant.

The goal of this method is to select a small subset of features that

carries as much information as possible. To measure the amount

of information carried by the features, the Fleuret method uses

Conditional Mutual Information. This information theory mea-

sure is based on another very important measure which is the

Entropy H(U) of a random variable, which quantifies the

uncertainty of U . The conditional entropy H(U DV ) quantifies

the remaining uncertainty of U , when V is known. If U is a

deterministic function of V then H(U DV )~0. On the other hand

if U and V are independent, knowing V does not tell anything

about U and H(U DV )~H(U). The Conditional Mutual Infor-

mation is given by Equation 1:

I(U ; V DW )~H(U DW ){H(U DW ,V ) ð1Þ

This value can be seen as the difference between the average

remaining uncertainty of U when W is known and the same

uncertainty when both W and V are known. If V and W carry

the same information about U , the conditional mutual informa-

tion is zero. On the other hand if V brings information about U

that is not already contained in W , I(U ; V DW ) is different from

zero.

The standard implementation of the algorithm is done by

keeping a score vector s which contains for every feature Xn, after

the choice of feature v(k), the score s½n�~minlƒkÎI(Y ; XnDXv(l)).

The score table is initialized with ÎI(Y ; Xn) and the algorithm picks

at each iteration the feature v(k) with the highest score. Every

score s½n� is then refreshed by taking the minimum of s½n� and

ÎI(Y ; XnDXv(k)). Fleuret proposed a faster implementation which is

based on the fact that the score vector can only decrease when the

process goes on and bad scores may not need to be refreshed. This

faster implementation produces the same results as the standard

implementation described.

Information interaction pairwise search method
The application of a systematic search over all possible pairs of

SNPs came as a natural idea after the bad performance of the

Fleuret method. If we are not able to have any type of information

to guide the choice of our first disease locus, that means we need to

consider all the pairs of SNPs, to decide which ones may be

interacting in a way that help us to explain the phenotype.

The choice of information interaction as the metric to evaluate

if a pair of SNPs is associated with the phenotype arose as a

natural option. We define that a pair of SNPs (A,B) is associated

with the phenotype with a user-defined threshold T if and only if

I(A; B; Y )wT . I is the information interaction (or synergy) and

expresses the amount of information bound up in a set of variables,

beyond that which is present in any subset of those variables

(Equation 2).

I(A; B; Y )~I(A; BDY ){I(A; B)

~I(A; Y DB){I(A; Y )

~I(B; Y DA){I(B; Y )

ð2Þ

If the information that SNP A provides about class Y is higher if

we know SNP B than it is if we do not know SNP B, then this

additional information is the interaction information or synergy

between the two variables A and B with respect to class Y .

In our experiments in Breast Cancer dataset, the user-defined

threshold T is defined by running 1000 permutation tests and

selecting the highest interaction information value found. This

way, all our selected interactions will have a p-value greater than

0.001.

Mutual information search method
We also applied mutual information to all SNPs in order to find

single SNP associations to the phenotype and be able to compare

the results with information interaction method.

Similarly to the information interaction method, a SNP A is

associated with the phenotype with a user-defined threshold T if

and only if I(A; Y )wT . I(A; Y ) is the mutual information and

expresses the amount of information that is shared between A and

Y (Equation 3).

I(X ; Y )~H(X ){H(X DY )

~H(Y ){H(Y DX )

~H(X )zH(Y ){H(X ,Y )

~H(X ,Y ){H(X DY ){H(Y DX )

ð3Þ

In our experiments in Breast Cancer dataset, the user-defined

threshold T is defined by running 1000 permutation tests and

selecting the highest mutual information value found. This way, all

our selected single SNP associations will have a p-value greater

than 0.001.

Permutation testing
Permutation testing is a non-parametric procedure for deter-

mining statistical significance based on rearrangements of the

labels of a dataset. It is a robust method but it can be

computationally intensive. A test statistic, which is computed from

the dataset, is compared with the distribution of permutation

values. These permutation values are computed similarly to the

test statistic, but under a random rearrangement of the labels of

the dataset. Permutation tests can help reduce the multiple testing

burden [24] and can be used to compare statistical tests [1].

In bioinformatics, permutation tests have become a widely used

technique. The reason for this popularity has to do with its non-

parametric nature, since in many bioinformatics applications there

is no solid evidence or sufficient data to assume a particular model

for the obtained measurements of the biological events under

investigation [25].

Results

Application of classification methods to artificial datasets
The application of the classification methods to our selected

artificial dataset did not produce good results. In fact, as we can

Discovering Epistasis with Information Interaction
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see from Table 1 none of the methods achieved a 10-fold cross

validation accuracy above 56.5%.

We also performed experiments using feature selection methods

in WEKA. The 10-fold cross validation accuracies improved, but

none of the variables selected by the feature selection methods

corresponded to the disease loci. We tried several feature selection

methods available on WEKA and none was able to identify some

of the 10 disease loci.

A question that arised was how the performance of classifiers

behaves when we add more noisy variables. To study that we

performed a study in which we started by training a classifier with

the 10 disease loci. We then add one noisy variable at each step

and retrain the algorithm using the same training parameters.

Even taking into account that the training parameters are not

adjusted when we add more variables, it is interesting to see how

the 10-fold cross validation accuracy rapidly degrades with the

addition of noisy variables (see Figure 1).

We conclude that classification methods are not capable of

identify the relevant factors when many irrelevant attributes are

present.

Application of fleuret method to artificial datasets
In our experiments, we used an implementation of the Fleuret

Method available on the author’s web page http://www.idiap.

ch/,fleuret. This tool is able to perform feature selection with the

Fleuret method and train/test a bayesian or a perceptron classifier.

We were interested only in checking if the feature selection

method was able to find the interacting SNPs of two artificial

datasets, one with two interacting loci and the other with a total of

10 disease loci. However, the Fleuret method was not able to

detect any of the interacting SNPs on these two datasets.

These bad results may happen because the Fleuret method

initializes the score table s with mutual information ÎI(Y ; Xn). At

the first step the algorithm greedily chooses the feature v(k) with

the highest mutual information. This first step selects the wrong

variable in SNPHarvester datasets, since the disease loci marginals

are very low. This has an impact on the following steps since each

disease locus does not add new information about the class to the

wrongly selected SNP. As a consequence, the algorithm will

continue to make wrong decisions.

The first steps are crucial and that is why we propose another

approach that is based on testing all the possible pairs and evaluate

them with Information Theory measures.

Table 1. 10-Fold Cross Validation Accuracies of the classifiers
applied to the Artificial dataset.

AD Trees 55.5%

Voted Perceptron 54.5%

SVMs 51.5%

SMLR 56.5%

doi:10.1371/journal.pone.0076300.t001

Figure 1. 10-Fold Cross Validation Accuracy of classification methods with the addition of noisy variables.
doi:10.1371/journal.pone.0076300.g001
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Application of information interaction method to
artificial datasets

We applied information interaction metric to all possible pairs

of SNPs in one artificial dataset and found that there was a big

difference between values of true disease loci pairs and other noisy

pairs of SNPs. It was possible to define a threshold that could

perfectly distinguish between true disease loci pairs and not

associated SNPs. Figure 2 shows the results obtained with

Information Interaction method on one artificial dataset. The

distinction between true disease loci and other SNP pairs is very

explicit making it possible to detect the 5 pairwise interactions. We

can see 5 points representing the 5 pairs of SNPs that are causing

the disease in this simulated dataset. The minimum information

interaction value of the 5 pairs of SNPs is 0:194 while the highest

information interaction value of all the other pairs of SNPs is

0:0317. There are however other harder artificial datasets in

which it is not so clear to detect all the 5 pairwise interactions as

shown in Figure 3.

The results obtained in the artificial dataset, encouraged us to

apply to all the datasets that were generated with equal or different

simulation parameters. We could then compare the results

obtained with the results of SNPHarvester and BEAM methods.

One of the main issues in applying information interaction (II)

search is the choice of threshold T . In preliminary experiments we

used three variations. The first one was already described and is

based on using a fixed value of T to all the datasets. However, in

different datasets this value of T might not be the most

appropriated. That is why se decided to use a permutation testing

strategy to select T . Our method is as follows: For each dataset we

run P permutations and select the maximum II value between all

the interactions. We multiply that maximum value by a given

constant C (we used C~1:2 in our experiments) and that resulting

value is the threshold T that we are going to use for that particular

dataset. In our preliminary experiments we tested the number of

permutations P for threshold selection to be P~100 and P~10.

We decided to use P~10 in our experiments.

We performed a comparison of our method with the results

reported in [3] both for SNP Harvester and BEAM. In this

comparison we used the Information Interaction Method (IIM)

with a permutation strategy for threshold selection using C~1:2
and P~10. The results of the comparison are shown on Figure 4.

As we can see, our Information Interaction method (IIM)

outperforms both SNP Harvester and BEAM in terms of power.

In Hybrid Model 8 our method has more problems in discovering

the interactions because the signal is more dispersed in the noise.

However, even in those harder conditions, our method performed

better than SNP Harvester and BEAM. We also show in Figure 5

the comparison between our method and SNP Harvester in terms

of the generation of false positives. As we can see, both methods

Figure 2. Information Interaction values for all pairs of SNPs (Xi,Xj) in artificial dataset. Xi is on the horizontal axis and Information
Interaction is on the vertical axis. The 5 interacting pairs are very explicit, with information interaction values above 0.19.
doi:10.1371/journal.pone.0076300.g002
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Figure 3. In this dataset, two pairwise interactions seem evident, but the other three are difficult to detect.
doi:10.1371/journal.pone.0076300.g003

Figure 4. Comparison of Information Interaction Search with 10 permutations for threshold selection with SNP Harvester and
BEAM in terms of Power.
doi:10.1371/journal.pone.0076300.g004
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generate few false positives. In a total of 800 datasets, SNP

Harvester discovers a total of 5 false positives while our method

discovers 8.

Information Interaction search showed to be a very powerful

method to detect interactions between SNPs with low marginals

and is therefore a very valid option to apply to real GWAS data.

Application of regression methods to WTCCC breast
cancer dataset

We tried to apply regression on the SPSS tool, but it was hardly

possible: due to the high number of variables the software blocked

(in a computer with 8 Gigabytes of RAM). We decided then to use

statistical tool R in order to perform our experiments with

regression and the same problem occurred given the high

dimensionality of the parameters space. The methodology that

we were able to run successfully was to use Bayesian Information

Criterion (BIC) as the model selection criterion. When we learn

the model of marginal effects using Lasso Penalized Logistic

Regression and BIC, only 38 variables are selected. We then build

the data matrix with all the interactions between these 38 selected

variables and trained the model with Lasso and BIC. The final

model includes 37 (of the 38) marginal variables and 11 interaction

variables. This methodology has the disadvantage of eliminating

SNPs with small effects that can be involved in interactions with

low marginals.

Application of information interaction method to WTCCC
breast cancer dataset

After the pre-processing of the WTCCC Breast Cancer dataset,

we applied the information interaction method. To determine the

threshold T to use, we ran 1000 permutations tests. In each

permutation test we applied the information interaction measure

to all possible pairs of variables. At the end we selected the highest

value h of information interaction between all pairs of SNPs

discovered in the 1000 permutation tests. We then used a value of

T greater than h so that each interaction discovered is statistically

significant at the 0:001 level of confidence. In our permutation

procedure h was found to be h~0:008875. We then fixed

T~0:009. The distribution of information interaction values,

greater than T~0:009, found in the original WTCCC Breast

Cancer dataset is shown in Table 2 and Figure 6.

Figure 7 shows the network of interactions found with

information interaction method in the WTCCC Breast Cancer

dataset. Each SNP that was found with IIM is represented in the

graph by a node that has the name of the gene to which the SNP

belongs to. For each pairwise interaction discovered, we draw an

edge between the nodes that correspond to the SNPs involved.

The null hypothesis that is considered in this work is that the

phenotype is independent from the SNPs. If this is true, then we

can make permutations of the phenotype and the distribution of

information interaction values would be similar. However we

observe that in our 1000 permutation tests it was not possible to

find any II value above 0:009. On the other hand we can see that

in our original dataset there are 89 pairs of SNPs that have an II

value higher than 0:009. This means that we can use any of these

Figure 5. Comparison of II Method and SNP Harvester in terms of False Positives. SNP Harvester false positives were obtained by
inspecting SNP Harvester results files that are available in http://bioinformatics.ust.hk/SNPHarvester.html.
doi:10.1371/journal.pone.0076300.g005

Table 2. Number of SNP pairs detected in the WTCCC Breast
Cancer dataset with Tw0:009.

Information Interaction Number of SNP Pairs

0:016{0:017 1

0:015{0:016 2

0:014{0:015 10

0:013{0:014 6

0:012{0:013 16

0:011{0:012 16

0:010{0:011 35

0:009{0:010 3

doi:10.1371/journal.pone.0076300.t002
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89 pairs of SNPs to reject the null hypothesis with a confidence of

0:001, which is our p-value.

Application of mutual information method to WTCCC
breast cancer dataset

We also applied the mutual information method to the

WTCCC Breast Cancer dataset. As already mentioned, we used

1000 permutation tests to determine the threshold T . In each

permutation test we applied the mutual information measure to

each SNP and the phenotype. At the end we selected the highest

value h of mutual information between each SNP and the

phenotype in all the 1000 permutation tests. We then used a value

of T greater than h so that each association discovered is

statistically significant at the 0:001 level of confidence. In our

permutation procedure, h was found to be h~0:0078. We then

fixed T~0:0079. A total of 90 different SNPs were found to share

information with the phenotype with a mutual information value

above the fixed threshold T . The distribution of mutual

information values greater than T~0:0079, found in the original

WTCCC Breast Cancer dataset is shown in Table 3 and Figure 8.

Performance characteristics of information interaction
method

The execution of the Information Interaction Method on the

Wellcome Trust Breast Cancer dataset takes around 45 minutes in

a 2.3 GHz AMD Opteron Processor. The execution of 1000

permutations in a single processor would take about a month, or 3

days if we use 10 processors. We also made some experiments with

Figure 6. Accumulated number of pairwise interactions detected with Information Interaction in WTCCC Breast Cancer Dataset
with Tw0:009 and p{valuev0:001.
doi:10.1371/journal.pone.0076300.g006

Figure 7. Graph representing the gene-gene interactions found with information interaction method on the WTCCC Breast Cancer
dataset.
doi:10.1371/journal.pone.0076300.g007
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an Alzheimer dataset from the Alzheimers Disease Neuroimaging

Initiative (ADNI) with 600000 SNPs and the execution after data

quality procedures took around four days. We did not complete

the execution of the 1000 permutation tests because we could

conclude in advance that the results would not be statistically

significant. The complete set of 1000 permutation tests would take

several years to complete in a single processor, although it could be

parallelized. Since most of the time it is not practical to have access

to a large number of processors, there is still the need for methods

that need less permutation tests in order to measure statistical

significance. We are currently working on methods that obtain the

estimates of the p-values with a much smaller number of

permutation tests.

Discussion

In our work, we adapted the source code from the Fleuret

method in order to calculate information interaction over all

possible pairs of SNPs. With this approach we benefited from the

efficient calculations of conditional mutual information that was

already developed. Even though computational efficiency is an

important issue, because we want results in feasible time, it was not

our major point of interest. We gave priority on designing a

method that could give us some guarantees of finding pairwise

interactions, in cases where both variables have low marginals, if

they exist, even if we have to wait for the results. We saw from the

results of the application of our method to the artificial datasets

that our method was powerful when compared to other state of the

art methods. Therefore, if that type of interactions exist in the real

breast cancer dataset, our method would detect them. Another

advantage of our information interaction method over stochastic

methods is the fact that it is deterministic. One of the problems of

stochastic methods is that they can give different results in different

runs. Our method makes an exhaustive analysis of pairs of SNPs

and gives always the same results.

In the artificial datasets that were used with the information

interaction method, all the interactions had low marginals. Each

SNP of the pairwise interactions did not have any statistically

significant association with the phenotype when considered alone.

We showed in our results that our method based on information

interaction could find these pairs of SNPs more often than other

state of the art methods such as SNPHarvester or BEAM.

The application of the mutual information method to the

WTCCC breast cancer dataset found that there were 90 SNPs

that individually shared information with the phenotype with a p-

value pv0:001. In addition, as was already reported, the

application of the information interaction method to the WTCCC

breast cancer dataset found 89 pairs of SNPs that, when

considered together, share more information with the phenotype

than when considered individually. A total of 49 different SNPs

were involved in the 89 interactions. 48 of these 49 SNPs found

with information interaction were also found with the mutual

Figure 8. Accumulated number of single-SNP associations detected with Mutual Information in WTCCC Breast Cancer Dataset with
Tw0:0079 and p{valuev0:001.
doi:10.1371/journal.pone.0076300.g008

Table 3. Number of SNPs detected in the WTCCC Breast
Cancer dataset with Mutual Information Method and a
threshold Tw0:0079.

Mutual Information Number of SNPs

0:0400{0:045 1

0:0350{0:040 5

0:0300{0:035 10

0:0250{0:030 18

0:0200{0:025 12

0:0150{0:020 9

0:0100{0:015 25

0:0079{0:010 10

doi:10.1371/journal.pone.0076300.t003
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Table 4. SNPs and their respective genes discovered with both IIM and MIM, only with IIM and only with MIM. Between
parenthesis we have the number of SNPs in the respective category.

IM and MIM (48) IIM only (1) MIM only (42)

SNP Gene SNP Gene SNP Gene

rs1048347 BTBD16 rs660895 MHC NCBI35_X_15303842

rs1129923 DUSP23 rs10456324 LRRC16A

rs12003 GMIP rs1059655 HLA-E

rs12665700 MUC22 rs1132200 TMEM39A

rs12833456 KRT72 rs1151687 OR2G2

rs1367580 FANCM rs11558709 ENSG00000188699

rs1635 NKAPL rs12984558 DHX34

rs17256042 TMEM176B rs1385698 EDA2R

rs17319801 ENTHD1 rs1727 IFIT2

rs17641488 C5orf4 rs17280682 NLRP14

rs1800255 COL3A1 rs176024 MAGEC3

rs180223 TG rs1788799 NPC1

rs197414 DDX20 rs1800280 DMD

rs2071299 SLC17A2 rs1800309 GAA

rs2073924 GBGT1 rs1804027 SP110

rs2273198 NRD1 rs1968956 ELTD1

rs2281820 MLN rs2071307 ELN

rs2290344 PIGB rs2072994 PTCHD2

rs2293877 C14orf55 rs2093066 BPIFB3

rs3088040 USP36 rs2207337

rs363504 GRIK1 rs2227289 CD320

rs3764795 GML rs2229995 APC

rs3787429 HRH3 rs2283432 FANCI

rs3810715 FATE1 rs2706762 PCYOX1

rs4826381 PAGE3 rs3012075 CTBP2

rs482912 LAMP3 rs3115572

rs4830 LGALS14 rs3810510 JPH2

rs4905757 C14orf177 rs393414

rs592229 SKIV2L rs4826957

rs5927629 TAB3 rs4827331 SYTL5

rs5930931 GPR112 rs4897783 FLJ46300

rs5931046 GPR101 rs5924658 PASD1

rs5951328 TAF7L rs5930932 GPR112

rs5956583 XIAP rs5951332 ARMCX4

rs5969783 TXLNG rs595413 FAM217A

rs5983 F13A1 rs5955762 MAP3K15

rs598318 TCP1P2 rs599176

rs604630 CTSW rs631357 KIF17

rs6553229 rs652438 MMP12

rs6564956 SDR42E1 rs6525447 SLC7A3

rs664850 RGS3 or LOC100288542 rs662204 MHC

rs7054230 PHKA1 rs706107 SPINK4

rs723077 TTC12

rs7349683 EPHA5

rs7645635 LPP

rs7879053 LOC139363

rs90951 CLEC10A

rs911973 MYO16

doi:10.1371/journal.pone.0076300.t004
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information method. The only exception was SNP rs660895 from

MHC gene that was found with the information interaction

method but not with the mutual information method. Table 4

summarizes the SNPs that were found with mutual information

and information interaction methods.

Even though the scientific literature refers the need for methods

to discover low marginal interactions, our results suggest that most

epistatic interactions with relevance to breast cancer have

moderate or high marginals. In addition none of the interactions

discovered with the information interaction method were reported

in the STRING network. We believe that this method should be

applied to more breast cancer datasets and also to other datasets

from other diseases in order to find more about the kind of

epistatic interactions that exist in real diseases.
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