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Introduction
The evolution of affordable next-generation sequencing (NGS) 
technologies transformed microbial research from culture-based 
to genome-based methods, named metagenomics.1 This approach 
has been used to explore the microbial communities that interfere 
with the human host cells.2 Infectious pathologies have generally 
relied on one disease-equivalent pathogen.3 Nevertheless, we now 
realize that microbiota dysbiosis is often correlated with several 
distinct disease states. In many cases, a decline in the microbial 
diversity and growth of some particular species may contribute to 
harmful consequences, such as inflammation or infections.4 
Studies have given evidence of the possible participatory of the 
microbiome in nearly all forms of complications associated with 
our health, including COVID-19.

Nowadays, many researchers focus on studying the composi-
tion of the gut microbiota in relation to a disease, such as the 
COVID-19 caused by the SARS-CoV-2 virus.5 A multitude of 
different microorganisms lives in our gut. Hence, imbalances in 
the composition of the intestinal microbes may induce an 

intestinal microbiota dysbiosis.5 Studies in mice and humans have 
revealed the existing correlation between the gut microbiota dys-
biosis and disease through a large scope of chronic disorders.5 For 
instance, Allali et  al6 found relevant differences between the 
microbiota composition of healthy individuals and patients with 
colorectal cancer.6 This is noteworthy that the angiotensin-con-
verting enzyme (ACE2), known to be the host cell entry molecule 
of SARS-CoV-2, is found at high-level concentrations in the gas-
trointestinal epithelial cells and regulates intestinal inflammations. 
In fact, the gut microbiota is influenced by the ACE2 in an indi-
rect way, which may indirectly induce a cardiopulmonary risk.7

Yet, microbiome studies yield large data that require advanced 
computing methods, and the technologies used are constantly 
progressing. In addition, researchers also need to maintain vigi-
lance that microbiome classification, data processing, and mod-
elling is just a tiny component of the process of discovery and 
should be used to supplement standard in vitro and in vivo mod-
elling approaches. Nevertheless, the use of metagenomics is 
changing microbiology by specifically quizzing the group 
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composition in an impartial course, allowing further species 
identification and decreasing dependency on cultural 
approaches8,9 (p. 4). The future application of these tools to 
enhance diagnostics and in public health environments has 
already been acknowledged on a large scale.7,10 Comprehensive 
ongoing projects are being conducted to resolve the issues with 
the therapeutic employment of these techniques.7,11

Herein, we present and discuss bioinformatics methods and 
tools that are available to characterize the influence of the gut 
microbiome on the evolution of the COVID-19 disease or to 
evaluate the impact of the disease on that microbiome (Table 1). 
We will also describe the studies on the human gut microbiota 
in relationship to the SARS-CoV-2 virus infection and discuss 
how these microbes would be involved in the fight against 
harmful microorganisms.

Bioinformatics Tools for Studying the Microbiome
There are a variety of technologies accessible to research the 
gut microbiome. One of these technologies is gene marker 
analysis that uses the NGS platforms for sequencing. The 
common softwares used with it are QIIME2,16 Mothur,17 
VEGAN,18 phyloseq,19 and DADA2.20 The latter tools are 
cost-effective, and its analytical pipelines are widely accepted 
but lack clear functional information and can produce errors 
in the taxa differentiation.21 Another widely used technology 
is the shotgun metagenomics, even though it is expensive and 
computationally demanding, it is a great approach to capture 
all microbial genomes within the sample. Mostly used soft-
wares to analyse shotgun metagenomics data include 
IDBA-UD,22 SPades,23 MEGAHIT,24 MetaPhlAn2,25 
MG-RAST,26 and HUMAnN2.27 Metatranscriptomics is 
another approach for studying the microbiome to assess gene 
expression level with the SOAPdenovo,28 the commonly used 
software. Another approach that allows the identification and 
quantification of proteins within the sample is metaproteom-
ics, but this technology does not give the protein’s origin.29 

Metabolomics is a further technology used to perform profil-
ing of the metabolites produced by the gut microbiota.29

Shotgun Metagenomics to Perceive the Microbiome 
in Patients with COVID-19
One of the first studies on the gut microbiome in COVID-19 
patients has been carried out in Hong Kong.12 The authors 
performed metagenomic analysis of 15 faecal samples extracted 
from patients with COVID-19. Bacterial population profiling 
was done using MetaPhlAn2 (v2.9),25 which is a computa-
tional tool for profiling the composition of microbial commu-
nities from metagenomic shotgun sequencing data.25 The 
obtained reads have been mapped against clade-specific mark-
ers, that are defined as coding sequences highly preserved 
within the genomes of the clade and that have no local similar-
ity outside the clade with any sequence.12 As a result, intestinal 
microbiome profiles correlated with disease severity and higher 
faecal release of SARS-CoV-2. Zuo et  al12 observed that 
patients with COVID-19 have substantial changes in faecal 
microbiome relative to the control, marked by enrichment of 
opportunistic microorganisms and reduction of helpful com-
mensals, within hospitalization and at all times throughout 
hospitalization.12 Depleted symbiotics and intestinal dysbiosis 
continued well after the elimination of SARS-CoV-2, assessed 
from the throat swabs, and the relief of respiratory problems.30 
The residual abundance of Coprobacillus, Clostridium hathewayi, 
and Clostridium ramosum was associated with the infection’s 
severity; the abundance of Faecalibacterium prausnitzii, an anti-
inflammatory bacterium, was inversely correlated with the dis-
ease severity. In the middle of hospitalization, Bacteroides dorei, 
Bacteroides massiliensis, Bacteroides thetaiotaomicron, and 
Bacteroides ovatus, that reduces the expression of ACE2 in the 
murine intestine, are inversely linked with SARS-CoV-2 con-
tent in faecal samples of patients.30

In another study, Zuo et  al31 (p. 19) conducted RNA 
metagenomic sequencing of repeated faecal viral extractions 

Table 1.  List of published Microbiome studies in COVID-19 patients by September 30, 2020.

Study approach Country Tools Results Publication

WGS metagenomics Hong-Kong MetaPhlAn2 Enrichment of opportunistic microorganisms and reduction of 
helpful commensals in COVID-19 patients

[12]

Gene marker 
analyses (16S)

China UPARSE Increased relative abundance of Enterococcus and 
Rhodococcus, and decreased relative abundance of 
Faecalibacterium and Clostridium XlVa in COVID-19 patients

[13]

Metatranscriptomics China HUMAnN2 Increased transcriptional activities of Escherichia coli and 
Klebsiella pneumoniae, virulence factors, and antibiotic 
resistance genes, and decreased activities of 
Faecalibacterium prausnitzii in patients of COVID-19

[13]

Metaproteomics China Machine-learning 
model

The proinflammatory cytokines were mainly found among 
elderly individuals compared to younger ones and that they 
were positively associated with the proteomic risk score

[14]

WGS metagenomics China BWA, MEGAHIT Microbiota of COVID-19 patients was found to contain the most 
known pathogens

[15]
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taken from 15 hospitalized patients with COVID-19. They 
analysed faecal microbiome diversity and the gut microbiota 
functionality, in accordance with faecal SARS-CoV-2 infec-
tivity profiles31 (p. 19). The authors used MetaPhlAn2 (V2.9)25 
to perform taxonomic profiling of the faecal bacterial com-
munities by mapping reads to clade-specific markers31 (p. 19). 
HUMAnN V2.0.1827 was used to perform functional profil-
ing of faecal bacterial communities31 (p. 19). Seven out of 15 
patients had stool positivity for SARS-CoV-2 by viral RNA 
metagenomic sequencing. Furthermore, in the absence of 
gastrointestinal manifestations, the 7 patients displayed sig-
nificantly increased coverage and density of the 3′ versus 5′ 
end of the coronavirus genome in their faecal viral metagen-
ome samples31 (p. 19). The faecal viral metagenome of 3 cases 
persisted to exhibit the signature of active viral infection31 (p. 

19). Faecal samples containing elevated SARS-CoV-2 infec-
tiousness had greater concentrations of the bacterial species, 
Morganella morganii, Collinsella tanakaei, Streptococcus infan-
tis, and Collinsella aerofaciens; while faecal samples with 
reduced-to-none SARS-CoV-2 infectivity had elevated 
abundance of bacteria that produce short-chain fatty acid, 
namely Bacteroides stercoris, Parabacteroides merdae, and 
Alistipes onderdonkii31 (p. 19).

In addition, Wu et  al13 examined in another study the 
intestinal microbiome properties of a group of COVID-19 
patients throughout probiotic-assisted therapy. Wu et al13 used 
UPARSE21 to assign each operating taxonomic unit (OTU) 
representative sequences to a taxonomic level in the RDP 
database, with aid of the RDP classifier at an 80% confidence 
level. The authors also conducted a metatranscriptomic analy-
sis of faecal samples using an Illumina Hiseq 4000 platform. 
The resulting reads were taxonomically profiled using 
Kraken,13 and the relative abundance of metabolic pathways in 
MetaCyc32 database was calculated using HUMAnN2.27 
ShortBRED33 was used to quantify the abundance of antibi-
otic resistance genes and virulence genes against the CARD 
database and Virulence Factors Database.13

Furthermore, to look for any potential agent causing pneu-
monia besides the coronavirus, a metagenomic study was con-
ducted using samples of the BronchoAlveolar Large Fluid 
(BALF) from a patient held in the intensive care unit. The 
aforementioned BALF samples were used for RNA extraction 
and NGS sequencing using both BGI MGISEQ 2000 and 
Illumina MiSeq 3000 sequencers, while the metagenomic 
analysis was carried through the MGmapper34 bioinformatics 
platform. The raw NGS reads were primarily analysed by 
Cutadapt (v.1.18)35 and alignment performed using BWA 
(v.0.7.12-r1039)36 against a local database. To filter reads of 
the hosts’ genomes before aligning them against the virus 
database, Zhou et  al37 used a local nucleic acid database for 
humans and mammals. The authors used Geneious (v.11.0.3) 
and MEGAHIT24 (v.1.2.9) to assemble the NGS reads. The 
Clone Manager Professional Suite 8 (Sci-Ed Software) was 

used to annotate the genomes. Results showed that more than 
87% of the sequences retrieved from the BALF matched per-
fectly with the SARS-CoV-2 genome,37 while the remaining 
ones belonged to six other viruses. Therefore, the most poten-
tially harmful agent to be considered was the SARS-CoV-2.37 
According to the same study, a heat map of the lung microbi-
ota composition was done by clustering the microbiota into 3 
different groups (Type I, Type II, and Type III). Type I micro-
biota had the most pathogens, while Type II and III, respec-
tively, contained environmental organisms and commensal 
species. The microbiota of patients with COVID-19 was clus-
tered more in type I, which is considered as the most patho-
genic one.37

Another recent study analysed alterations in the mycobiome 
of 30 patients with COVID-19 by Zuo et al,38 reporting that 
these patients compared to the controls had significant altera-
tions in their faecal mycobiome, distinguished by the enrich-
ment of Candida albicans and a highly heterogeneous 
mycobiome configuration, at the time of hospitalization.38 
With that being said, 22 of the 30 patients with COVID-19 
did not significantly change from the controls during the hos-
pitalization period.38 Therefore, more studies are needed to 
conclude if the mycobiome changes and enrichment of fungal 
pathogens contribute to the COVID-19 progression or can be 
used as a predictor in it.38

In addition to that Wang et al39 performed some analysis 
on 159 Italian patients with pneumonia using a phage-display 
method to characterize circulating antibodies binding to 
93,904 viral peptides encoded by 1,276 strains of human 
viruses. These researchers developed VirScan’s, a tool that 
predicts SARS-CoV peptides and its clinical severity, an 
effective tool used to detect SARS-CoV-2 antibodies in the 
host plasma.39

Actually, some researchers are suggesting phages as a 
means of therapy that could build a protective barrier to 
eukaryotic virus particles by an increase in phage transcyto-
sis by epithelial cells, given that lung epithelium is also 
involved in transcytosis of phages.40 Therefore, such a phe-
nomenon may play an intriguing role in protecting those 
lung epithelium cells from invasion by coronaviruses. 
Nevertheless, further studies need to be done to conclude 
whether phages have the potential to at least be an adjunct 
treatment of the SARS-CoV-2 infection.40

Surprisingly, none of the analysed studies measured 
immunity in dependence of the gut flora. However, Donati 
Zeppa et al,41 stated that the various responses to the virus 
infection may be explained by an adaptive immune system 
that is not effective enough, or/and pneumonia can begin 
before the immune system responds.6 The first line of 
defence against SARS-CoV-2 is innate immunity, the 
response of which, unlike the adaptive response, is activated 
within a few hours of the infection.6 The natural history of 
the disease is determined by this first encounter between the 
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innate immunity of the host and SARS-CoV-2 virus, and by 
exposure over the following 2 weeks to the virus.41

As in another study by Yeoh et  al,42 the gut microbiota 
composition of COVID-19 patients was found to be consist-
ent with the infection’s severity and that many inflammatory 
cytokines, chemokines, and blood markers of tissue damage 
were found with immense concentrations in the host 
plasma.42 In addition to that, the authors found that patients 
with COVID-19 were depleted in gut bacteria with known 
immunomodulatory potential, namely Faecalibacterium 
prausnitzii, Eubacterium rectal, and numerous bifidobacterial 
species.42

However, this aspect of intestinal microbiota alterations in 
combination with immune dysregulation has shown that intes-
tinal microorganisms are likely to engage in modulating host 
inflammatory reactions in COVID-19 infection.42 With proof 
that intestinal microorganisms are associated with inflamma-
tory diseases inside and outside the intestine, these discoveries 
underscore an important need to consider the particular 
involvement of intestinal microorganisms in human immune 
function and systemic inflammation.42

From studies that performed taxonomic profiling, all 
COVID-19 patients (mild, moderate, critical, and severe) had 
an increase in pathogenic and opportunistic microorganisms, 
wherein severe cases had a further depletion of many bacterial 
species that are commensal microorganisms beneficial to the 
healthy and effective immunity of the host including 
Faecalibacterium prausnitzii that was very recurrent12 (see Table 
2). Twenty-three bacterial taxa were found to be significantly 
associated with COVID-19 disease severity, most of which (15 
of 23) were from the Firmicutes phylum, among them, 
Erysipelotrichia and Actinobacteria classes showed positive 
correlation with the disease severity, while Gammaproteobacteria, 
Bacteroidia, and Clostridia classes showed negative correlation 
with disease severity.12

Statistical studies (PERMANOVA test) on host’s factors 
that mostly affect the gut microbiota of COVID-19 patients 
showed that SARS-CoV-2 infection and antibiotics treatment 
affect the gut microbiota, while age and gender had no signifi-
cant correlation with microbiome alteration.12

A Metatranscriptomic Approach to Assess the 
Expression of the SARS-CoV-2 Host Receptor 
Molecule
Furthermore, a metatranscriptomic analysis has been recently 
performed, to profile the transcriptionally active gut micro-
biota in patients with different types of pneumonia, which is 
associated with the immunity response in the lung. This 
study was conducted including 8 COVID-19 patients. Data 
from 25 patients with community-acquired pneumonia 
(CAP) and 20 healthy controls, have been analysed for 
metatranscriptome comparison.15 Quality control comprised 
the trimming of adapters and the elimination of reads with 

low quality, using fastp software (version 0.20.0).43 
Komplexity software was used to remove low-complexity 
reads, Shen et al15 used the bmtagger software to remove the 
hosts’ reads and SortMeRNA software (version 2.1b)44 to 
remove ribosomal reads. BLAST + software (version 2.9.0)44 
was used to map the subsequent reads against the NCBI 
Nucleotide Database. In addition, Shen et al15 conducted a 
taxonomic classification using MEGAN programme (ver-
sion 6.11.0).45 Following a per-mutational multivariate anal-
ysis of variance and general key coordinate analysis, samples, 
and microorganisms were selected for advanced studies. 
Samples containing less than 5000 microbial reads have been 
dismissed. As a result, only samples from the BALF belong-
ing to COVID-19 patients had SARS-CoV-2, yet some 
mild β-coronaviruses species were detected in the healthy 
and CAP patients.15

In addition, Shen et  al15 used the BWA-MEM package 
(version 0.7.12)36 to map clean metatranscriptomics reads 
against the COVID-19 reference genome.15 The authors 
eliminated duplicated reads using Picard tool (version 
2.18.22),46 then created the mpileup file using samtools soft-
ware (version 1.8)47 and used VarScan software (version 
2.3.9)48 to define intrahost variants. For the intrahost variants 
in the genome of SARS-CoV-2, 84 variants were identified 
with a minor allele frequency (MAF) greater than 5%, and 25 
variants were detected with MAF higher than 20%. Therewith, 
the variant number was proportional to the gene length, but 
only 2 out of 84 of these variants were identified in multiple 
patients.15 The analysis of the lung microbiota revealed a dif-
ference between CAP, COVID-19 patients, and the healthy 
group, implying a dysbiosis in the lung microbiota of the 
unhealthy CAP and COVID-19 patients.15

Gene Marker Analyses Approach to Discern Key 
Underlying Factors of COVID-19 Disparity
To identify one of the key underlying factors of COVID-19 
disparity, in terms of the disease’s severity, a very recent study 
suggests that the composition of the gut microbiota could par-
tially explain the difference in susceptibility.49 As in a set of 
336 individuals, these gut microbiota features were highly cor-
related with proinflammatory cytokines14 (p. 19). The authors 
used UPARSE21 to cluster sequences that have a 97% similar-
ity into one OTU, and the RDP classifier to assign the OTUs 
taxonomy and to align sequences14 (p. 19). They additionally 
used the QIIME software 1.9.0 to analyse OTUs.16 Hence, 
the predisposition of normal individuals to severe COVID-19 
may be predicted by the gut microbiome, which brings a com-
pletely new aspect of what is currently understood about the 
virus14 (p. 19).

In another study, Tao et al50 used the 16S rRNA amplicon 
profiling to investigate the possible effect of SARS-CoV-2 
infection on the intestinal flora composition. The authors used 
a customized pipeline that combined USEARCH (v8.1),49 
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VSEARCH (v2.13.0),51 and QIIME (v1.9.1)16 to analyse data 
for microbial diversity. Unfortunately, the aforementioned tools 
do not give clear functional information and may give errors in 
taxa differentiation. Alpha-diversity analysis demonstrated 
that the gut microbiota composition was less diverse in 
COVID-19 patients in contrast with both flu patients and 
control cases.50 Assessed by weighted UniFrac,52 the genus 
level in each group revealed that the abundance and composi-
tion of faecal bacteria in COVID-19 patients varied from 
those in both control cases and seasonal influenza patients.50 
The increased abundance of Streptococcus in COVID-19 
patients was indicative of the risk of infection by opportunistic 
pathogenic bacteria in this group. However, the approach used 
in this study was not enough to capture all microbial genomes 
within samples and thus not reaching the species level.50

Conclusion
Pithily, we are on the brink of a quickly evolving research field 
that holds an enormous opportunity to clarify and describe 
microbial interactions on the human interrelatedness. Early in 
the COVID-19 pandemic, researchers smartly pointed to the 
microbiome as a key element in understanding the etiology, 
infection, and transmissibility processes of the emerging 
SARS-CoV-2 virus. Three out of 5 studies reported that there 
was (1) a significant enrichment of opportunistic microorgan-
isms such as Clostridium hathewayi, Actinomyces viscosus, 
Bacteroides nordii;29 (2) reduction of helpful commensals in 
COVID-19 patients, and (3) an interesting decrease of 
Faecalibacterium prausnitzii in patients with COVID-19.1-3 
Faecalibacterium prausnitzii plays an important role in promot-
ing gut health.4 The aforementioned species may be a useful 
potential biomarker in diagnostics and prognostics for certain 
diseases, such as Crohn’s disease, and ulcerative colitis.4 
Faecalibacterium prausnitzii has frequently been identified as 
one of the major butyrate contributors in the gut.4 Butyrate 
plays a significant part in the physiology of the intestines and 
in the well-being of the host.4 Butyrate can minimize inflam-
mation in the intestinal mucosa by inhibiting the activation of 
NF-κB transcription factor, up-regulating PPARγ, and inhib-
iting interferon gamma (IFN-γ).4 Moreover, anti-inflamma-
tory properties have been linked to this species due to its 
capacity to cause a tolerogenic cytokine profile (with quite low 
secretion of proinflammatory cytokines such as interleukin 
[IL]-12 and IFN-γ) and enhanced secretion of anti-inflamma-
tory cytokines IL-10.4

We reported these few studies to shed further light on this 
promising route for new diagnostics and therapeutic strategies, 
yet we acknowledge that it is too early to make strong conclu-
sions. It is noteworthy that most available metagenomics tools 
do not reach the optimal level of accuracy. After all, most taxo-
nomic classifiers are also encumbered by a large number of false 
positives at the poor abundance that needs to be discussed. 
Further than this, significant advances and innovation will be 
required in so many other ways, namely in managing 

experimental contamination sources and bias and in managing 
the rapid growth of reference databases, to establish world-
changing improvements in metagenomics classification 
towards microbial identification and classification (Table 3). 
Actually, our current scientific information and understanding 
of the gut microbiota and COVID-19 relationship is less than 
precise but continues to evolve fast. Thus, understanding how 
to choose the computational tools and strategies to analyse 
efficiently the gut microbiota is one important thing to deci-
pher the most pertinent microbiome profile for diagnostics and 
the precise antiviral or preventive microbial composition.
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