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Abstract: Photoplethysmography is a widely used technique to noninvasively assess heart rate, blood
pressure, and oxygen saturation. This technique has considerable potential for further applications—
for example, in the field of physiological and mental health monitoring. However, advanced applica-
tions of photoplethysmography have been hampered by the lack of accurate and reliable methods
to analyze the characteristics of the complex nonlinear dynamics of photoplethysmograms. Meth-
ods of nonlinear time series analysis may be used to estimate the dynamical characteristics of the
photoplethysmogram, but they are highly influenced by the length of the time series, which is often
limited in practical photoplethysmography applications. The aim of this study was to evaluate the
error in the estimation of the dynamical characteristics of the photoplethysmogram associated with
the limited length of the time series. The dynamical properties were evaluated using recurrence
quantification analysis, and the estimation error was computed as a function of the length of the time
series. Results demonstrated that properties such as determinism and entropy can be estimated with
an error lower than 1% even for short photoplethysmogram recordings. Additionally, the lower limit
for the time series length to estimate the average prediction time was computed.

Keywords: photoplethysmogram; nonlinear dynamics; nonlinear time series analysis; data length
assessment

1. Introduction

Cardiovascular diseases (CVD), such as heart failure, stroke, and hypertension are the
leading cause of death worldwide [1]. It is recognized that accessible health monitoring and
early detection of CVD can be helpful in preventing and monitoring CVD. According to the
World Health Organization (WHO), over three quarters of CVD cases worldwide occur in
low- and middle-income countries [1], supporting the need for accessible, affordable health
monitoring systems. The photoplethysmogram (PPG) is a biological signal that has been
used for decades for health monitoring in clinical settings as well as in wearable devices.
Besides its main applications, which are the estimation of heart rate, respiration rate, blood
pressure, and oxygen saturation, PPGs are also used for vascular assessment, arterial disease
and state evaluation, sleep disorders studies, and other applications [2–5]. Moreover, a num-
ber of studies reported that the PPG is also applicable for mental health monitoring [6–11].
Thus, PPG can be used for mental stress identification [6–8] and early detection of depres-
sion [10], which is one of the mental disorders with various social and health consequences
recognized by the WHO as a leading cause of disability worldwide [12]; it is also applicable
for estimation of psychiatric patients’ recovery [9]. Additionally, PPG was previously
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applied for occupational physiological health monitoring [13–15]. In addition to its wide
applicability for health monitoring purposes, PPG technology is also simple and inexpen-
sive, and—as such—it has considerable potential for use in accessible, affordable mobile
health monitoring for prevention and early detection of disease, including CVD and men-
tal disorders.

Common PPG applications require basic signal processing and analysis, such as
contour analysis and time–frequency techniques [3,4,16–18]. Recent studies also employ
neural networks and deep learning to improve the assessment or prediction of physio-
logical states and parameters [19–21]. However, as the cardiac and respiratory dynamics
in general [22–24] and the PPG dynamics in particular are recognized as deterministic
chaos [9,25,26], alternative complex approaches may be required for extracting accurate
information on the physiological and mental health state, as follows from previous stud-
ies [9,27]. For example, nonlinear time series analysis of PPG dynamics was applied in
previous studies related to mental health monitoring [9–11].

There is considerable potential for extracting information about disease and health
status from the PPG dynamics by using advanced analysis methods. However, the applica-
bility of such analysis to the PPG might be limited due to the typically high measurement
noise and the presence of movement artifacts [24–26]. The measurement noise can be lim-
ited in clinical settings, as the measurement process and settings can be strictly controlled.
However, in case of measurements taken using wearable devices, both measurement noise
and movement artifacts can severely hamper the extraction of information from the PPG.
A common approach to address these issues involves noise filtering and motion artifact
reduction, which are typically included in modern PPG devices and enable accurate estima-
tion of heart rate, arterial oxygen saturation, etc. [28–32]. However, while filtering yields
improvement in the estimation of these common physiological parameters, it may alter
the PPG signal and affect its nonlinear dynamic features [33,34]. However, the majority of
studies on PPG filtration and movement artifact reduction do not take the preservation of
complex dynamics into consideration. As such, filtered signals can be efficiently used for
traditional PPG applications, but they are not suitable for advanced analysis—for example,
nonlinear time series analysis. As an alternate approach to limit the impact of noise and
movement artifacts, it is possible to use only high-quality short segments of the recorded
signal, as was done in [35]. Moreover, other advantages of using short signal segments
include a reduction in computational cost, the potential for a decrease in battery consump-
tion, and enabling real-time signal processing, all of which are particularly important in
wearable device applications. However, short signal length may limit the applicability of
nonlinear analysis and the accuracy of dynamic features estimates.

In studies involving the investigation of PPG dynamics, applied data length greatly
varies, such as 2.1 s [36], 100 s [9], 2 min [37], 3 min or longer [10], and 5 min [25,26]. To
the best of our knowledge, the applicability of nonlinear analysis methods to short PPG
recordings has not been systematically investigated. Among the different methods for
nonlinear time series analysis, recurrence plots, which visualize the signal dynamics as
a two-dimensional binary image, and the related quantification analysis can be used to
estimate the dynamical properties of time series [38,39]. Recurrence quantification analysis
(RQA) was applied to the PPG to assess the effect of filtering on PPG dynamics [33] as well
as in a data-driven study on hypertension from short PPG recordings [36]. However, in
the latter study, the effect of the short recordings on nonlinear analysis was not discussed.
Previous studies suggested that, in contrast to the majority of nonlinear time series analysis
methods, RQA applied to recurrence plots is not affected by the length and drift of the
data [40]. However, at the same time, for the RQA, it is generally known that longer
time series provide more precise estimates of the system’s dynamical properties [39,40],
as convergence of the RQA indexes is observed for sufficiently long time series. Overall,
based on various reports [40], it appears that depending on the data under investigation,
meaningful results might be achieved even when the time series length is recognized as
short, allowing us to surmise that properties of the short-recorded PPGs might be extracted
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by RQA. Overall, no study so far has investigated the minimum length of a time series
that can lead to reliable estimates of dynamical properties. Stated differently, the error
associated with the estimates of the dynamical properties for short PPG signals is unknown.

The aim of this paper is to assess the applicability of RQA to short PPG signals obtained
from healthy human subjects in reference environment, to investigate RQA indexes that
can be used to extract dynamical property information from short PPG signals, and to
estimate the minimum length of PPG time series necessary to keep the error below an
acceptable limit. As a result, it is found that by using RQA, minimal time series length
required for accurate dynamical property estimation can be elucidated, thus providing a
novel technique for designing data acquisition on one hand and assuring that RQA can be
applied for robust estimation of the determinism and complexity for short PPG recordings
on the other.

2. Data
2.1. Photoplethysmogram

Since PPG was introduced in 1937 [41], it has been widely used for heart rate monitor-
ing, and since then, the number of its applications has expanded [2,4,18]. PPG measurement
technology mainly relies on measurement by the photodetector of LED light reflected or
transmitted through the skin tissue. Green, red, and near-infrared (NIR) light are the most
commonly used light sources for PPG measurement. There are two main device setups
depending on whether the light is transmitted or reflected. PPG device with transmission-
type setup schematically shown in Figure 1 utilizes red and NIR light and is common
in hospital use, while reflection-type devices utilize green light sources and are mostly
applied in wearables due to the lower movement sensitivity of the green light PPGs and
their flexibility in measurement location [42,43].
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Figure 1. Conventional transmission PPG device setup.

2.2. Experimental Data

In this study, the widely used NIR PPG recordings were investigated. The measure-
ments were conducted at the Institute of Vegetable and Floriculture Science (NIVFS), NARO
in 2017–2018. The experiment protocol was approved by the NIVFS ethical committee, and
all participants provided informed consent prior to the experiment. Data were collected
from 21–49-year-old participants in a relaxed sitting position inside an air-conditioned
room with a temperature of 25 ◦C. Measurements were conducted for 5 min and repeated
twice using a IWS920 (I.W. Technology Firm, Inc. Tokyo Devices) PPG recording device
with a sampling rate 409.6 Hz.

Participants were asked to evaluate their temperature and comfort perception based
on category scales for comfort and temperature sensation proposed in [44]. Before the
experiment, participants were asked to answer a questionnaire regarding personal history
of CVDs, gender, age, presence of sickness at the time of data collection, and lifestyle habits
such as smoking and sports activity. Only data from nonsmoking participants with no
history of CVDs and in good health condition who reported comfortable environmental
conditions were included in this study. As a result, a total of 30 datasets were used. An
example of a 60 s segment from one of the PPG recordings is shown in Figure 2.
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Figure 2. Example of a 60 s segment from a PPG recording.

Additionally, in many practical cases, lower-sampling-rate PPG data are used [45–47].
To broaden the applicability of this study, collected PPG recordings were two- and four-
times subsampled to generate sparse PPG time series.

2.3. Simulated Data

In the previous study [25] it was reported that the PPG dynamical properties show
certain similarities with the noise-induced chaotic Rössler model, such as single-band-like
reconstructed trajectory structure and predictability decay. Therefore, as a preliminary step,
before evaluating the RQA results as a function of the length of the PPG segment, we assess
the relationship between RQA results and segment length using the well-known chaotic
Rössler model, described as follows:

.
x = −y− z,
.
y = x + ay,

.
z = b + z(x− c),

where a = 0.2, b = 0.2, and c = 5.7 [48]. The Rössler model was numerically solved using
the fourth-order Runge–Kutta method with sampling rate of 1000 Hz. To imitate the
measurement noise, additive dynamical noise was introduced. On each iteration i of the
numerical solution method, noise was added to the solution xi using the following equation:
x̃i = xi + θγi, where θ is the noise scaling coefficient, which varies from 0 (i.e., no noise)
to 0.5 in increments of 0.05; γi is the ith component of a fixed uniform random noise
vector; and x̃i is the input of the next iteration. For computational efficiency, the resulting
time series x was subsampled using a factor of five. Examples of the resulting time series
obtained using the original (θ = 0) and noisy (θ = 0.25) x time series are shown in Figure 3,
where the addition of dynamical noise affected the amplitude of the time series and created
additional fluctuations compared to the original time series.
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Figure 3. Examples of a segment of the original (blue dotted line) and noisy (red solid line) x time
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3. Analysis
3.1. Time Delay Reconstruction

The time delay embedding method [49,50] is used in this study to enable nonlinear
analysis, as information on the trajectory dynamics in a phase space is needed. If a variable
time series {xi}n

i=1 consisting of n observations is obtained, then the points of the time-
delay-reconstructed trajectory in an m-dimensional phase space can be calculated as in [24]:

Xj =
(

xj, xj+τ , xj+2τ , . . . , xj+(m−1)τ

)
,

where j = 1, . . . , N, N = n − (m − 1)τ and τ is a time lag. In this study, the reconstruction
dimension for the NIR PPG signal was set as m = 4 following [25], where the minimum
embedding dimension was estimated by the false nearest neighbors method [51], and the
time lag was defined as the time when the signal autocorrelation falls below 1/e [52]. It is
of note that there are various approaches to the choice of the time lag, and other types of
PPG signals may require adjustment of its value.

3.2. Recurrence Plot

The recurrence plot (RP) visualizes the dynamics of the system as a two-dimensional
binary image and is calculated using the following expression:

Ri,j(ε) =

{
0, i f ‖Xi − Xj‖ > ε

1, i f ‖Xi − Xj‖ < ε

where i, j = 1, . . . , N and ε is the threshold that defines the area where neighboring points
of the time-delay-reconstructed trajectory are searched. If the point Xi is located within the
sphere centered in Xj with radius ε, then the (i, j)-pixel is included in the RP. In this study, ε
was equal to 10% of the reconstructed attractor size [40] defined by the maximum distance
between attractor points: max

i,j=1, ..., N
‖Xi − Xj‖.

3.3. Recurrence Quantification Analysis (RQA)

The RP visualizes the dynamical system as a two-dimensional image, and the dis-
played patterns depend on the system’s dynamics. However, RP represents a qualitative
description of the system’s dynamics. RQA [39] can be applied to extract, based on the
statistics of the RP, quantitative features to assess the dynamical system. In this study, the
following features were estimated:
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Determinism. Determinism (DET) is one of the most important properties of a dy-
namical system and defines whether the process can be expressed in the form of a system
of equations. Determinism can be estimated as:

DET =
∑N

l=lmin
lP(ε, l)

∑N
l=1 lP(ε, l)

,

where P(ε, l) is a histogram of diagonal lines of length l defined as

P(ε, l) =
N

∑
i,j=1

(
1− Ri−1,j−1(ε)

)(
1− Ri+1,j+1(ε)

) l−1

∏
k=0

Ri+k,j+k(ε),

and lmin is a given minimum length. Ideally, for deterministic time series, DET is equal to
unity, whereas it is lower than one when a limited number of samples are available, when
the signal includes noise, etc. Practically, values of DET > 0.9 can be considered as a sign of
determinism [53].

Trajectory divergence. In RQA, exponential trajectory divergence, which is an impor-
tant measure of the chaotic time series, can be defined as the inverse of the length of the
longest diagonal line (Lmax) in the RP, expressed as:

Lmax = max
(
{li}

Nl
i=1

)
,

where Nl = ∑
l≥lmin

P(ε, l) is the total number of diagonal lines in the RP.

Predictability. Short-term predictability—that, is the possibility to predict future
states of the signal based on past observations for a short time window—is an extremely
important property both theoretically and practically. The mean prediction time of the
dynamical system can be estimated by computing the average diagonal line length (L),
defined as

L =
∑N

l=lmin
lP(ε, l)

∑N
l=lmin

P(ε, l)
.

Complexity. Entropy (ENTR) is frequently used in applied studies of RQA. ENTR esti-
mates the complexity of the RP with respect to the diagonal lines and can be calculated as:

ENTR = −
N

∑
l=lmin

p(l) ln p(l),

where p(l) = P(ε, l)/Nl is the estimated probability to find a diagonal line of length l in
the RP, and Nl is the number of diagonal lines.

3.4. Error Estimation

In this study, the lower limit of the length of the time series was determined by
considering the average time required for the original time-delay-reconstructed trajectory
to complete one turn on the time-delay-reconstructed attractor, hereinafter referred to as
“average cycle”. Specifically, the lower limit of the length of the time series was set as
the time required to complete 3–5 average cycles to ensure the presence of at least one
separated cycle fragment of trajectory in the neighborhood depending on the density
of the reconstructed attractor trajectories. The length of the time series (T) assumed to
lead to accurate estimates of the RQA features defined in Section 3.3 was defined as
over 100 average turns of the trajectory on the reconstructed attractor. A set of RPs were
computed, and RQA was performed for varying lengths of the time series. For each RQA
feature S, the relative error El associated with the estimate of S using a time series of length l
with respect to the accurate measure obtained using a time series of length T was calculated
as follows [54]:
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El =
|Sl − ST |

ST
× 100%.

4. Results
4.1. Rössler System

First, for the time series x of the original and noisy Rössler system defined in Section 2.3,
the time-delay-reconstructed attractor was obtained. Figure 4a,b shows the obtained attrac-
tors for the original and noisy time series, respectively. Then, the set of RPs was calculated
for varying length of the segments of the obtained trajectory of the attractor. The length
of the time series varied from 1500 data points (five average cycles) to 50,000 data points
(168 average cycles). For each length, 100 different segments were chosen on the attractor,
and corresponding RPs were calculated. Figure 4c,d shows the RPs corresponding to a length
of 10,000 points for the original and noisy trajectories shown in Figure 4a,b, respectively.
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Rössler systems and the resulting RPs (panels (c) and (d), respectively).

Figure 5 shows the relative errors of DET (a), Lmax (b), L (c), and ENTR (d) as a function
of noise level (θ) and time series length, as averaged over 100 segments. Table 1 shows
four calculated RQA measures reference values for three levels of noise. Table 2 shows the
time series length corresponding to relative errors equal to 5% and 1% for three different
noise levels. A relative error lower than or equal to 1% is considered acceptable. Therefore,
the corresponding length can be used as a benchmark for the minimum length of the time
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series. Figure 6 shows detailed information of the length of the time series associated to
relative error below 5% and 1% for the four RQA features here computed.
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Table 1. Values of determinism, maximal diagonal line length, average diagonal line length, and
entropy obtained for long Rössler’s x time series for three different noise levels.

Noise Level, θ DET Lmax L ENTR

0 0.9992 3763.9 60.4329 4.6079
0.245 0.4138 7.52 2.3379 0.7544
0.5 0.0910 3.24 2.0455 0.1765
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Table 2. Time series length corresponding to relative errors equal to 5% and 1% in the estimates
of determinism, maximal diagonal line length, average diagonal line length, and entropy for three
different noise levels of the Rössler time series. The values highlighted indicate the lower limit of the
length of the time series required for accurately estimating the four features.

Noise Level, θ El DET Lmax L ENTR

0 5% 1500 46,000 4000 10,500
1% 1500 48,500 16,000 26,000

0.245 5% 3000 36,500 2500 7500
1% 17,000 46,000 3500 30,000

0.5 5% 5000 41,500 11,000 42,000
1% 7000 47,000 13,500 43,500
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length (magenta), and entropy (green).

4.2. Photoplethysmogram

Similarly to the Rössler system case described in Section 4.1, for each measured
PPG time series, the time-delay-reconstructed attractor was computed. Then, for each
reconstructed attractor, the set of RPs corresponding to the segment of the trajectory with
length from 3 to 152 average cycles was calculated (i.e., 2.4 s to 122 s). The length of the
average cycle was chosen, taking into account the physiological properties of the PPG
signal. Specifically, the average cycle was set at 0.8 s—that is, the average duration of the
cardiac cycle in an average healthy human subject [55]. Then, the RQA measures were
estimated from the obtained RPs. An example of the time-delay-reconstructed attractor
and the corresponding RP obtained from a 24.4 s-long PPG segment is shown in Figure 7.
Figure 8 shows the average relative error of the RQA feature estimates as a function of the
length of the time series. Table 3 summarizes the lower limits for the length of the time
series, which provides RQA feature estimates with relative errors below 5% and 1% for
time series with original and reduced sampling rates and reference RQA values for original
time series.



Sensors 2022, 22, 5154 10 of 14

Sensors 2022, 22, 5154 10 of 14 
 

 

which provides RQA feature estimates with relative errors below 5% and 1% for time se-

ries with original and reduced sampling rates and reference RQA values for original time 

series. 

 

Figure 7. An example of (a) time-delay-reconstructed attractor and (b) the resulting RP obtained 

from one of the PPGs recorded in this study. 

 

Figure 8. Relative error of the RQA features estimates as a function of the length of the time series. 

  

Figure 7. An example of (a) time-delay-reconstructed attractor and (b) the resulting RP obtained
from one of the PPGs recorded in this study.

Sensors 2022, 22, 5154 10 of 14 
 

 

which provides RQA feature estimates with relative errors below 5% and 1% for time se-

ries with original and reduced sampling rates and reference RQA values for original time 

series. 

 

Figure 7. An example of (a) time-delay-reconstructed attractor and (b) the resulting RP obtained 

from one of the PPGs recorded in this study. 

 

Figure 8. Relative error of the RQA features estimates as a function of the length of the time series. 

  

Figure 8. Relative error of the RQA features estimates as a function of the length of the time series.

Table 3. Average values of the length of the time series corresponding to relative error below 5% and
1% and the reference RQA values.

Lower Time Series Length Limit, Average Cycles Reference
RQA Values

(409.6 Hz)
409.6 Hz 204.8 Hz 102.4 Hz

El, 5% El, 1% El, 5% El, 1% El, 5% El, 1%

DET 3.05 3.05 3.05 3.05 3.05 3.05 0.998
Lmax 144.82 149.39 143.38 150.28 143.39 150.25 49,859
L 65.55 131.10 64.19 132.79 64.02 133.02 144.38
ENTR 7.62 21.34 9.65 22.05 10.67 24.39 5.73
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5. Discussion

The main aim of this preliminary study was to evaluate the error associated with
RQA feature estimates as a function of the length of the PPG time series and to identify
recommended limits for the length of PPG recordings in order to keep the error below
acceptable levels (e.g., 1%). In this study, PPG recordings measured in healthy individuals
sitting comfortably in a relaxed position were used.

In addition, the relative error of RQA feature estimates was assessed for original
and noisy time series generated using the chaotic Rössler model. The distributions of the
relative error associated with the estimates of DET, Lmax, L, and ENTR shown in Figure 5a–d
indicate specific patterns associated with the different RQA features. As seen in Figure 5a,
accurate estimates of determinism can be achieved even for very short time series (e.g.,
1500 points). The lowest acceptable length of the time series increases with increasing
noise, as shown in Figures 5a and 6 and Table 2, but DET remains the feature requiring the
shortest time series length among the RQA features addressed in this study. It is of note
that with high levels of added noise, the time series cannot be considered deterministic, as
DET is significantly below 0.9 (Table 1).

The analysis of the error associated with the Lmax showed that accurate estimates of
this feature—that is, the inverse of the divergence—cannot be achieved for short time series
(Figures 5b and 6), as Lmax requires long time series, i.e., longer than 48,500 points, for
obtaining errors below 1%. It is of note that the average Lmax value for original data (i.e.,
3763.9 points, Table 1) is significantly shorter than the used maximal time series length;
nevertheless, the resulting lower limit for time series length is compatible with the maximal
time series length used. Figures 5b and 6 and Table 2 also clearly demonstrated that in the
absence of noise, the lowest acceptable length of the time series is higher than that observed
with noisy data due to the fact that the presence of noise significantly shortens the length
of the maximal diagonal lines (Table 1).

The error patterns observed for L (Figure 5c), which is an important measure character-
izing the average prediction time, show that the lowest acceptable length of the time series
is longer for original data, and it decreases with increasing noise (in the range 0.065–0.15)
due to the quick shortening of diagonal lines with noise induction (Table 1) while the
determinism is preserved, and then it steadily increases again for higher noise. A similar
pattern was observed for ENTR (Figures 5d and 6), which quantifies time series complexity,
(Figure 5d), suggesting that the observed trend attributed to high levels of noise disrupting
data determinism (Table 1).

Overall, the results observed for the original and noisy Rössler model time series
suggest that determinism can be accurately estimated even for short time series and that,
if the time series is deterministic (i.e., if noise is sufficiently low), L and ENTR can be
estimated accurately for substantially shorter time series than the reference length (i.e.,
50,000). Specifically, θ < 0.2 time series with lengths above 25,000 points or 85 average
cycles provide acceptable estimates if an error limit equal to 1% is set, and shorter time
series could be used if higher errors are accepted (e.g., 10,000 points for 5% error limit).

The PPG signal inevitably contains a certain amount of measurement noise. The results
shown in Figure 8 and Table 3 show that, similarly to the noisy Rössler model, DET can be
correctly estimated even for very short lengths of PPG time series, specifically 1000 points
(3.05 average cycles or 2.44 s). The ENTR can be evaluated with error below 1% for 7000-
point (21.35 average cycles or 17.08 s) time series. For the estimates of L and Lmax, longer
time series are required to reach error below 1%, specifically 43,000 (131.15 average cycles
or 104.92 s) and 49,120 (149.75 average cycles or 119.8 s), respectively. However, the Lmax
lower limit of the time series almost reaches the maximal time series length, and the actual
Lmax value—unlike the results of the simulated data—is comparable with the maximal time
series length, thus making it inapplicable for short recordings of the investigated PPG type.

The observed relationships between the error associated with each RQA feature
estimate and the signal length, as reported in Figure 8, can be used to predict the average
error level in practical applications in which only limited segments of the PPG are available.
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For example, if a 2.5 s PPG time series is available, accurate estimates of determinism can be
expected, and the estimates of ENTR will be associated with an error equal to approximately
12%, whereas for 3.8 s PPG time series, the estimates of ENTR are associated with an average
error lower than 5%; that may be a sufficiently low error in practical applications.

It is of note that the results presented in this study apply to the transmission-type
NIR PPG signals collected in the reference environment; therefore, further studies are re-
quired to confirm limited-time-series-length-related error in dynamical property estimation
using RQA for other types of PPG signals as well as for different experimental settings.
Additionally, it is expected that these results apply to the PPGs with lower sampling rates,
as seen in Table 3, where only minor changes in the time series length are observed for
subsampled PPG data. However, the significantly different sampling rate of the signal may
affect demonstrated results. Moreover, a more systematic investigation of the sampling
rate effect in comparison with reference data with a high sampling rate and sufficient time
series length is needed. Finally, an expansion of this study towards data whose trajectory
is directly filtered in the state space might be beneficial for various applications; such
noise reduction was reported to preserve nonlinear dynamical characteristics for heart rate
variability data [56].

6. Conclusions

The results of this study can support a deeper understanding of the accuracy of the
dynamical features estimated from experimental PPG time series of limited length in real-
world applications—for example, health monitoring using wearable devices. Specifically,
this study investigated the effect of the length of the time series on the accuracy of the
estimates of the RQA features estimated from NIR light-based PPG signals. As a result,
minimum requirements for the length of the PPG time series needed to obtain sufficiently
accurate estimates of the dynamical properties of the signal could be defined as relevant to
practical studies and experiment design.
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