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Rapid progress is occurring in understanding the mechanisms underlying mesenchymal

stromal cell (MSC)-based cell therapies (MSCT). However, the results of clinical trials,

while demonstrating safety, have been varied in regard to efficacy. Recent data from

different groups have shown profound and significant influences of the host inflammatory

environment on MSCs delivered systemically or through organ-specific routes, for

example intratracheal, with subsequent actions on potential MSC efficacies. Intriguingly

in some models, it appears that dead or dying cells or subcellular particles derived

from them, may contribute to therapeutic efficacy, at least in some circumstances.

Thus, the broad cellular changes that accompany MSC death, autophagy, pre-apoptotic

function, or indeed the host response to these processes may be essential to therapeutic

efficacy. In this review, we summarize the existing literature concerning the necrobiology

of MSCs and the available evidence that MSCs undergo autophagy, apoptosis, transfer

mitochondria, or release subcellular particles with effector function in pathologic or

inflammatory in vivo environments. Advances in understanding the role of immune

effector cells in cell therapy, especially macrophages, suggest that the reprogramming

of immunity associated with MSCT has a weighty influence on therapeutic efficacy.

If correct, these data suggest novel approaches to enhancing the beneficial actions

of MSCs that will vary with the inflammatory nature of different disease targets and

may influence the choice between autologous or allogeneic or even xenogeneic cells

as therapeutics.

Keywords: mesenchymal stromal cell, cell therapy, apoptosis, autophagy, mitochondria, extracellular vesicles,

efficacy

INTRODUCTION

The efficacy of MSC administration in preclinical inflammatory models is well-documented
regardless of the source of MSCs (bone marrow, adipose, placenta, other). The basic biology
of MSCs, their mode of action and therapeutic efficacy in clinical studies have been reviewed
extensively elsewhere (1–3). However, translation of preclinical efficacy to the clinical setting is
proving difficult. A possible reason for this is a lack of understanding of the fate of MSCs when
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they encounter highly inflammatory microenvironments. Within
this inflammatory milieu, MSCs are exposed to insults such
as hypoxia and pro-inflammatory cytokines (4). What happens
to MSCs during the transient period in which they are at the
target site is largely unknown (5). The longstanding working
hypothesis has been that viable functional MSCs are critical for
efficacy. However, a number of recent studies have suggested that
MSC survival in the disease milieu may not be as important
as once thought. These studies elegantly demonstrate that
apoptotic or dead MSCs can facilitate protection mediated by
MSC administration in inflammatory microenvironments in vivo
(6–8). However, these studies have opened up a number of
questions about the processes involved in the transition from
live to dead MSCs. Under what circumstances can dead MSCs
substitute for viable cells? What are the limits to use? Can
the pre-apoptotic cargo of extracellular vesicles (EVs) produced
by MSCs or mitochondria transferred from MSCs to other
cells substitute for the MSCs themselves? Is there a role for
autophagy or for efferocytosis in MSCT efficacy? Does autophagy
influence the soluble factors secreted by MSCs before they
die? If we can better understand the fate of MSCs within
the diseased microenvironment, perhaps this knowledge would
lend itself to development of more optimal MSC-based cell
therapies (be that live, autophagic or dead/apoptotic MSCs)
and reduce the disparity between pre-clinical models and the
clinical setting.

The term “necrobiology” has been used to describe the cellular
processes associated with morphological, biochemical, and
molecular changes which predispose, precede, and accompany
cell death, as well as the consequences and tissue response to cell
death (9). The observation that MSC viability and efficacy are not
necessarily correlated (6, 7, 10) suggests that the necrobiology of
MSCT will be a fruitful and essential area for future study. In
this review we focus on key biological processes likely to affect
therapeutic efficacy (Figure 1), summarize what is known about
the questions above, and for the first time attempt to frame these
disparate aspects of research within the concept of necrobiology
or the biology of the dying therapeutic cell.

APOPTOTIC MSCS AND CLINICAL
EFFICACY

There is relatively little data available in pre-clinical disease
models in which apoptotic or dead MSCs were investigated,
either as part of a direct investigation of dead/apoptotic cell
actions or as part of a control group for liveMSC administrations.
Using pre-clinical models of respiratory diseases/critical illnesses
in mice as representative examples (Table 1), intratracheal
administration of apoptotic MSCs in models of acute lung injury
or systemic administration of either fixed or heat-killed MSCs
in mouse models of asthma and sepsis, respectively, did not
mimic the effects of live MSC administration (11–14). Likewise
the administration of other cells such as fixed fibroblasts were
not beneficial, suggesting a role for MSCs that cannot be replaced
by other dead cell types (11, 13). Notably, most of these studies
are relatively old and did not exhaustively explore the effects

of dead or apoptotic cells on immune or inflammatory cells.
Whether this is a phenomenon unique to MSCs is unknown
at present as there are few examples of administering other
types of cells to the lung that might influence inflammatory
or immune pathways. However, there are well documented
anti-inflammatory bystander effects when other apoptotic cells
are engulfed by macrophages and these have been recently
reviewed (15). The extent to which this phenomenon is specific
to lung diseases is relatively unexplored and a ripe area for
further research.

In contrast, more recent studies in pre-clinical models of acute
lung injury have suggested that the inflammatory environment
in the lung can affect survival and subsequent efficacy of
intratracheally-administered MSCs in part through activation of
TRL4 signaling pathways (16). MSCs have variable effects in
different mouse models of lung injuries with efficacy potentially
related to the proteome profile of the BAL fluid in each
respective injury (17). Another recent study demonstrated that
apoptotic MSCs reduced some inflammatory endpoints in a
mouse model of Th2-mediated allergic airway inflammation
(7). These effects are not confined to lung disease models,
a series of related studies in a rat model of cecal ligation
and puncture-induced sepsis demonstrated that administration
of rat adipose-derived MSCs, rendered apoptotic by 96 h
culture in serum-free media, were more effective than healthy
MSCs in improving survival and decreasing lung, kidney
and cardiac injuries (18–21) administration of the apoptotic
MSCs decreased a number of circulating and organ-specific
pro-inflammatory, pro-apoptotic, and oxidative stress markers
while increasing anti-apoptotic and anti-oxidant responses. The
suggested mechanism(s) were that the apoptotic MSCs were
more effective at dampening immune responses to the original
injury, however, no specific pathways were delineated. These
results suggest a more complex interaction of MSC apoptosis
on efficacy in different inflammatory environments such that
the inflammatory environment itself directs MSC apoptosis.
Unfortunately, other more recent studies of MSC effects in a
wide range of pre-clinical lung injury models have generally not
included dead or apoptotic cells and thus there is opportunity for
more extensive investigation (22–25).

Surprisingly, little is known about how MSCs are killed
in different settings. In vitro studies have demonstrated the
conditions for NK cell killing of MSCs (26) and this is likely
to be an important mechanism for induction of MSC death
in vivo, although few studies have examined this in detail.
Similarly a role for Complement mediated killing has been
proposed (27, 28). Recently, a requirement for cytotoxic CD8+

T cell mediated killing (via apoptotic death) of MSCs has been
shown in GvHD (7). However, the mechanisms of MSC killing
(e.g., immune-mediated or as a result of exposure to microbial
toxins) are likely to influence the type of death induced and the
biological consequence. This might be an especially important
consideration in designing cell therapeutics for lung diseases or
patient subsets where there is a pathogenic microbial burden
(e.g., Cystic Fibrosis).

There are even less available data on the effect of apoptotic
MSCs in clinical investigations. In a notable recent example,
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FIGURE 1 | Scheme for how the necrobiology of MSCs influences therapeutic efficacy Putative mechanisms include: as live cells through paracrine mechanisms, and

through the cellular processes associated with morphological, biochemical, and molecular changes which predispose, precede, and accompany cell death. These

necrobiotic processes include the response to dying and non-necrotic MSCs, the alteration of MSC biology by autophagy, and the delivery of MSC derived

mitochondria or EVs to target cells and tissues.

safety but no efficacy was observed in a multi-center double-
blinded randomized trial of systemic bone marrow-derived
MSCs in patients with ARDS (29). In post-hoc analyses, the
unanticipated finding was that up to 85% of the MSCs were
non-viable at the time of administration. This suggests that
dead MSCs may not have clinical efficacy in ARDS although
there are a number of other factors to consider including
timing, dose, and route of MSC administration (30). In contrast,
a preliminary report of a parallel trial of bone marrow-
derived MSC-like cells in ARDS patients demonstrated efficacy
in major endpoints of survival, ventilator-free days and ICU
stay (31). Notably, the cells utilized were fully viable at the
time of administration. Therefore, viable/ live MSCs are not
interchangeable therapeutically with apoptotic/dead MSC, but
each have potential efficacy in different contexts and presumably
by different mechanisms. In combination with the growing
experience of dead/apoptotic MSCs in pre-clinical models, these
clinical observations raise important and hypothesis-generating
mechanistic ideas for further study.

MSC AUTOPHAGY AND CLINICAL
EFFICACY

It is now known that non-necrotic cell death can be induced
by diverse mechanisms and many of these are linked to
the cellular processes that eliminate damaged proteins and
organelles, termed autophagy (32, 33). Autophagy is a tightly
regulated, complex cascade that controls the efficient delivery
and fusion of damaged organelles to the autophagosome (34).
Whilst this process supports cell survival and regular cell
functioning, it is also associated with at least three forms of
cell death- apoptosis, necroptosis, and autosis. Necroptosis is
an inflammatory, caspase-independent form of cell death (33)
whereas autosis is mediated by the Na+ K+- ATPase pump and
is autophagy-gene dependent (35, 36). More broadly, autophagy
is activated by microenvironmental and intracellular signals
linked to ER stress, hypoxia and immune cell activation (37–
39). These signals, related to tissue damage, include damage
associated molecular patterns (DAMPs) and MSCs have been
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TABLE 1 | Pre-clinical lung injury studies utilizing dead or apoptotic MSCs.

Injury Model Experimental model, route,

and timing of treatment

MSC Source Outcome compared to

injury effects

Potential mechanisms of

MSC actions

Cell controls? References

Acute Lung Injury Mouse

IN LPS

IT MSC 4h after LPS

Syngeneic Mouse BM

Plastic Adherent

Improved survival

Improved histologic

inflammation and edema

Decreased BALF TNF-α,

MIP-2

Increased BALF and

serum IL-10

None specified

(soluble mediators)

Apoptotic MSC, 3T3

fibroblasts

Did not mimic effects on

survival or inflammation

(11)

Acute Lung Injury Mouse

IT LPS

IT MSC 4h after LPS (P 5–6);

106 cells/mouse

Xenogeneic Primary human

umbilical cord MSC

CD29+, 44+, 73+. CD34-, 45-,

HLAII-

osteo/adipo differentiation

Decreased mortality,

histological injury (3d), BAL

TNFa, MIP-2, IFNγ (3d), Th1

CD4T cells

Increased BAL IL-10 (3d),

CD4/CD25/Foxp3+ Treg

Non-specified soluble mediators Apoptotic MSCs (mitomycin

C treated)

Did not mimic MSC results

(12)

Asthma Mouse ovalbumin-induced acute

allergic airways inflammation

Ovalbumin sensitization days 0,

7, 14

MSC IV days 7/14 (P 4–9), 5 ×

106 cells/infusion

Challenge days 25–27;

Harvest d28

Allogeneic Mouse (FVB) BM

Sca1+, CD44+, 106+. CD11b-,

11c-, 34-, 35-, 117-

Osteo/adipo/

Chondro differentiation

Decreased histological

injury, BAL total cells

(especially Eosinophils &

Macrophages), BAL IL-4,

IL-13, splenocyte IL-4 recall

Increased BAL IL-10;

splenocyte IL-13,

IL-10 recall

None (paracrine) PFA-fixed MSC

Did not mimic most MSC

results

No effect or exacerbated

histology; no effect on BAL

except BAL IL-13;

Increased splenocyte IL-4

recall.

Decreased splenocyte

IL-10, IL-13 recall.

(13)

Sepsis Mouse cecal ligation and

puncture

IV MSC 1h prior, concomittant,

or 24 h after surgery

Syngeneic & allogeneic Mouse

BM

Plastic adherent

CD11b, 45 depleted

Improved survival and organ

function

Decreased circulating TNFα,

IL-6

Increased circulating IL-10

LPS and TNFα-stimulated MSC

stimulated macrophages

produced IL-10 through cell-cell

contact and iNOS-dependent

release of PGE2

Whole bone marrow,

heat-killed MSC,

skin fibroblasts

No effects on survival

Other endpoints

not assessed

(14)
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shown to sense DAMPs released from dying/stressed cells (40)
leading to enhanced pro-reparative and anti-inflammatory effects
(40). Thus, the reparative effects of MSCs may be primed or
altered by exposure to DAMPs or other stress signals that alter
their interactions with other cells. During cell therapy, MSCs
become exposed to such signals and autophagy is a common
cellular response to such stress. Autophagy influences MSCs’
therapeutic effects in at least two contrasting ways- to promote
survival of the MSCs, or to induce MSC death through apoptosis,
necroptosis, or autosis. The fate of the MSC is thus likely to
be dependent on quantitative differences in exposure time to
inflammation. Understanding the role of autophagy in MSCs
at sites of inflammation could therefore inform therapeutic
protocol design in the future.

The role played by autophagy as a survival mechanism
to relieve stress and prevent apoptosis has been extensively
studied (41). Under starvation conditions (serum deprivation,
hypoxia, oxygen/glucose deprivation) or in the presence of
reactive oxygen species (ROS), autophagy has been shown to
promote MSC survival in vitro (42–44). Importantly, while
sufficient levels of ROS are required to activate autophagy,
excessive ROS may lead to cell death (45). This has been
demonstrated where preconditioning of MSCs to serum
deprivation and hypoxic conditions have prolonged survival
in ischemic microenvironments through the activation of
autophagic processes (46). Moreover, mitophagy in MSCs
facilitates interaction with macrophages in conditions of
oxidative stress whilst also preventing apoptosis (47). A number
of extrinsic factors that modulate autophagy in MSCs have
been identified, for example Stromal Cell Derived Factor-1β
can promote MSC survival through enhanced autophagy (48).
Expression of hypoxia-inducible factor 1α also protects against
Oxygen-Glucose deprivation via induction of autophagy and the
PI3K/AKT/mTOR signaling pathway (43), while over-expression
of CPT1C in human MSCs enhances survival via an increase in
autophagic flux (49). In aging mice, knockdown of insulin-like
growth factor-1 enhances survival of MSCs through autophagy
and prolongs MSC survival in vivo (50). Taken together
these studies clearly show that at least in some circumstances
autophagy promotes MSC survival under stress.

In addition to factors influencing the autophagic pathway
in MSCs, autophagy may also lead to the production of
soluble factors important for MSC’s therapeutic efficacy. Vascular
endothelial growth factor (VEGF) plays a key role in MSCs
promotion of wound healing (51, 52), a recent study has
identified that increased VEGF secretion from autophagic MSCs
promoted vascularization in cutaneous wounds and improved
healing (52). The induction of autophagy in MSCs may also
alter their immunomodulatory function. Autophagic human
bone marrow-derived MSCs can regulate CD4+ T helper
cell proliferation via TGF-β1 signaling (53). Activation of
autophagy by rapamycin in a co-culture system enhanced MSC’s
ability to suppress CD4+ T helper cell proliferation, whilst
3-methyladenine (3-MA), an autophagic inhibitor, reduced
it. These data indicate a role for autophagy in MSCs’
immunomodulatory functions of the adaptive immune response,
and therefore suggest that the autophagic status of the MSCs will

influence therapeutic efficacy under inflammatory conditions.
However, the precise limits of this effect are unknown and
there are clearly redundant and parallel mechanisms operating.
For example, Chinnadurai et al. showed that while interferon
gamma (IFN-γ ) stimulation of MSCs upregulated the expression
of autophagy genes, inhibition of autophagy via 3-MA did not
affect MSCs’ immunomodulatory potential (54). Furthermore,
in some studies, autophagy was shown to have adverse effects
on MSCs’ immunomodulatory capacity. When rodent MSCs
were stimulated with tumor necrosis factor (TNF) and IFN-γ ,
autophagy reduced MSCs’ immunomodulatory effects whereas
inhibition through the knockdown of Bcn1 was beneficial
(55). It is difficult to compare studies that inhibit autophagy
when diverse inducers and inhibitors have been used, or when
different inhibitor concentrations and time points have been
studied. Nevertheless, these differences are important, autophagy
and indeed apoptosis are time dependent processes, and it
is reasonable to assume that the activity and function of the
MSCs transitioning through these processes will vary with each
disease and over time. The implication for developing therapies
is that future preclinical approaches will have to account
more comprehensively for temporal and dose effects to be
informative, but such information could well-shorten therapeutic
development times if it leads to improved understanding of
delivery route and dosage.

Autophagy can alter biological function following starvation
or inflammation (56), and in contrast to the above, can promote
autophagic cell death or autosis rather than survival. This
switch in roles for autophagy is thought to be dependent on
the strength of the signals present, time of treatment and
availability of ATP (57). At present our understanding of
the type of death induced by autophagy, tends to reflect the
greater understanding of apoptosis compared to necroptosis
and autosis (58). Nevertheless, autophagy-induced apoptosis has
been reported as an alternative fate of MSCs exposed to an
inflammatory microenvironment (59). Dang et al. demonstrated
that autophagy may cause cell death in a sepsis model of
inflammation. These data suggest that the cytokine cocktail
presented to the MSCs from the microenvironment causes
autophagy to trigger death instead of promoting cell survival.
This wasmediated via the interaction with the ROS/ERK pathway
resulting in the downregulation of Bcl-2. Inhibition of autophagy
in MSCs led to increased production of prostaglandin E2 (55)
and enhanced immunoregulation in pre-clinical models of EAE
(55) and sepsis (59). Dang et al. (55) also reported that the
induction of apoptosis reduced the therapeutic effect of MSCs,
however, it has recently been demonstrated in a GvHD model
that apoptotic MSCs are still immunosuppressive (7). Galleu
et al. recorded that apoptotic MSCs (apoMSC) could reduce
effector cell number in the lung and spleen of GvHD mice (7).
Importantly, phagocytes producing indolamine 2,3-dioxygenase
were required for the protection associated with apoMSC when
administered intraperitoneally but not intravenously (60). These
and other studies from the Hoogduijn group (5, 6) suggest that
the therapeutic effects of both live and apoMSC are dependent
on interactions with specific phagocytic cell populations. These
observations also highlight the important interaction between
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MSCs and macrophages and the contribution of innate immune
modulation to therapeutic efficacy (61). Given the contrasting
data surrounding the effects on efficacy of autophagy in MSCs
it is clear that further study is needed, especially of dose and
temporal responses. Nevertheless, it is possible to state that the
inflammatory environment plays an important role in the MSC
fate of survival or death, that autophagic processes are involved
in this fate decision, and that subsequent interaction of MSCs
with innate cells such as monocytes/macrophages influence
therapeutic efficacy. From the above studies, it seems likely that
whereas pro-survival processes are likely to be linked in part
to therapeutic effects through MSCs’ production of paracrine
factors (e.g., VEGF, etc.), necrobiological-related efficacy is more
likely to operate through the interaction between MSCs and the
innate immune cells such as monocytes/macrophages (6).

MITOCHONDRIAL TRANSFER BY MSCS
AND CLINICAL EFFICACY

Cell death, oxidative stress, and autophagy are all linked to
mitochondrial function (62), so it understandable that the
mitochondrion has a role in MSC efficacy. More surprising have
been the now well-documented reports that reprogramming of
host cells by MSCs is significantly mediated by their ability to
transfer functionally active mitochondria to somatic recipient
cells. Mitochondrial transfer has been found to play a critical
role in therapeutic effect of MSCs in the pre-clinical models
of multiple diseases including brain injury, cardiac myopathies,
muscle sepsis, and acute (ARDS) (63, 64) and chronic respiratory
disorders (asthma and COPD) (65, 66). Mitochondria are
transferred between cells via tunneling nanotubules (TNTs), cell
fusion, and can also be contained in secreted extracellular vesicles
(EV) (67). These mitochondria are functionally active and their
transfer results in the enhancement of oxidative phosphorylation
coupled with alleviation of oxidative stress in recipient cells
leading to restoration of impaired functional activity (e.g.,
surfactant secretion, phagocytosis and wound healing) and
cytoprotective effects. The consequences and mechanisms of
mitochondrial transfer have been comprehensively reviewed
previously (67–69). As mitochondrial dysfunction contributes to
pathophysiology of various diseases, strategies aiming to protect
mitochondria from injury or to increase biogenesis are being
increasingly explored as promising therapeutic opportunities.
Replacement of damaged mitochondria through donation from
MSCs is a faster and physiologically more economical route
for the recipient cell at the site of injury as compared to the
mitochondrial biogenesis and therefore, appears to be an efficient
means for disease attenuation (70).

In addition to protective effects due to improved
bioenergetics, there is evidence of the involvement
of mitochondrial transfer in cellular rejuvenation and
transcriptional reprogramming (71). Studies by Acquistapace
et al. demonstrated a key beneficial role of MSCmitochondria for
reprogramming of post-mitotic murine cardiomyocytes toward
proliferating cardiac progenitor-like cells through spontaneous
cell fusion (72).

Although the precise mechanisms regulating mitochondrial
extrusion from MSCs as well as their uptake by recipient
cells remain to be investigated, it is clear that the injury
microenvironment will have an impact on the rate and efficiency
of this process. Thus, we have recently demonstrated that
hypercapnia, a condition often associated with low tidal volume
ventilation in ARDS, induces mitochondrial dysfunction and
although the rate of mitochondrial transfer from MSCs to
recipient cells is not changed, these dysfunctional mitochondria
are not able to improve recipient cell bioenergetics and promote
capacity of the lung epithelial cells to wound closure. This is in
good agreement with the finding of Paliwal et al. demonstrating
that mitochondria from MSCs with higher mitochondrial
respiration capacities are more effective in suppression of mtROS
in stressed recipient cells (73). Li et al. have demonstrated that
pre-treatment with anti-oxidants such as N-acetyl-L-cysteine and
L-ascorbic acid 2-phosphate enhanced mitochondrial transfer
from the anti-oxidant treated population of the bone marrow
derived MSCs to the untreated population of MSCs injured by
H2O2 (74).

A key study by Mahrouf-Yorgov et al. reports that
mitochondria released from dying cells at the site of injury are
an important environmental cue that controls the cytoprotective
function of MSCs and regulates their capacity for mitochondrial
transfer (75). It was shown that upon oxidative stress, somatic
cells (cardiomyocytes and endothelial cells) release mitochondria
which are engulfed and degraded by MSCs, leading to induction
of heme oxygenase-1 (HO-1) and stimulation of autophagy and
mitochondrial biogenesis. As a result, the ability of MSCs to
donate their mitochondria to injured cells to alleviate oxidative
stress injury was enhanced (75). Reactive oxygen species and
inflammatory cytokines (e.g., TNF-α) have also been postulated
to play a role in the regulation of mitochondrial donation (67–
69, 76). Our unpublished data suggest thatmitochondrial transfer
from MSCs to lung epithelial cells is enhanced in inflammatory
environments. Taken together these data strongly suggest that
mitochondrial transfer and cell death are related and relevant to
clinical efficacy.

The processes of MSC mitochondrial transfer and
autophagy are intrinsically interdependent. Phinney et al.
have demonstrated that MSCs extrude their mitochondria in
EVs which express autophagosomal markers, suggesting that
this phenomenon is a result of incomplete autophagy (47).
Physiologically, MSCs reside in the low oxygen environment
of the bone marrow stem cell niche and the authors observed
that conventional culture of MSCs in normoxia- (21% oxygen)
induced oxidative stress, thereby promoting MSC mitophagy,
however instead of degradation, mitochondria were directed
outside of the cells (47). Ghanta et al. then demonstrated the
importance of autophagy in maintaining healthy mitochondrial
function and promoting survival in MSCs during oxidative
stress (45).

In the view of accumulating evidence that after in vivo
administration, MSCs undergo apoptosis and fragmentation and
subsequent elimination by phagocytes (6, 7, 77), it is plausible
to hypothesize that mitochondria could be released during
fragmentation and taken up by surrounding somatic cells and
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particularly macrophages. We have previously demonstrated that
mitochondrial transfer from healthy MSCs through extracellular
vesicles results in macrophage metabolic reprogramming toward
M2-like phenotype with enhanced phagocytic activity (63, 64)
however whether or not mitochondria released from dyingMSCs
retain the same properties and exert similar effects remains to
be determined.

MSC-DERIVED EXTRACELLULAR
VESICLES, AND CLINICAL EFFICACY

If there is a cell-specific therapeutic benefit from using MSCs as
opposed to any apoptotic cell, then cell-specific characteristics
and mechanisms need further exploration. Apoptotic cells
maintain some biological activities as they begin the orderly
process of disassembly and death. In particular apoptotic cells
can produce a range of EVs and apoptotic bodies that can
influence their microenvironment (78, 79). There has been
an explosion in the literature describing how exosomes and
other EVs can act as biological modulators. Healthy, viable
MSCs are well-characterized producers of a wide range of
EVs with different cargos. These can include microvesicles,
including those bearing mitochondria (see above), as well as
exosomes (66) that are now recognized as powerful mediators of
intercellular communication locally and systemically. Exosomes,
and presumably their cargo, can activate or suppress aspects of
immunity such as cytokine secretion, immune cell differentiation
and polarization, and T cell activation (47, 80–82). In addition,
processes such as angiogenesis, proliferation, oncogenesis,
and microenvironmental conditioning can all be affected by
exosomes. MSC derived exosomes (even in the absence of their
viable MSC producer) can thus have detectable therapeutic
influences in human systems (Table 2). The influences of
exosomes are largely defined by their cargo, which can include
cytosolic and membrane proteins, mRNA and non-coding
RNA including miRNA (miR), and the nature of the EV
cargo of MSCs is influenced by the extracellular environment
(Table 3). Several studies have linked treatment with MSC-
derived exosomes to improvement in models of liver, kidney,
heart, skin, lung and other diseases (90–93). The influence of
MSC-derived exosomes on lung injury is especially important
to studies of clinical efficacy given that the lung is a major site
of MSC accumulation in the early period after delivery (94,
95). MSC-derived exosomes regulate vascular remodeling and
reduce hypoxic pulmonary hypertension in rodent models. These
exosomes reduced the activation of the hypoxic transcription
factor STAT3 and the expression of the miRNA-17 superfamily
but restored miRNA-204 in lung (normally reduced in human
pulmonary hypertension) (83). In an acute respiratory distress
syndrome (ARDS) model, alveolar macrophages treated with
MSC-derived CD44+ EVs also reduced lung injury (64).
As discussed above, EVs promoted mitochondrial transfer
to the macrophages increasing their phagocytic capacity
and inducing an anti-inflammatory response. These findings
suggest that intravenously delivered MSC therapies that see
an accumulation of viable pre-apoptotic MSCs in the lung

vasculature, have the potential to produce EV with extensive
biological effects.

Perhaps the most profound influence of MSC-derived
exosomes and EVs is the regulation of innate immune responses.
Phinney et al. showed that MSC-derived exosomes with miRNA
cargo inhibited macrophage activation by modulating Toll-like
receptor signaling (47, 96). Macrophages treated with MSC-
derived exosomes activated NF-kB and changed the expression
of 50 of the 84 TLR-associated proteins evaluated, including
IL-1β, COX2, IL-10, CCL2, TNF, MyD88, TLR 1,4,5,7,8 and 9,
IRAK1, and TRAF6 (47). The breadth of biological processes
downstream of these factors is very extensive and hints at
the potential scale of effects that might be influenced by
exosomes produced in the early, pre-apoptotic, phase of MSC
therapy. In adaptive immunity (and hence of relevance to
cell therapy for autoimmune disease and transplantation), EVs
from bone marrow-derived MSCs increased production of
immunosuppressive IL-10 and the proliferation of regulatory T
cells in peripheral blood mononuclear cell cultures stimulated
with anti-CD3/CD28 beads (81). In this research, treatment with
MSC-EVs alone resulted in apoptosis of T cell populations.
Interestingly, in other studies, exosomes secreted by HIF-1α-
overexpressing donor MSCs were enriched for the Notch ligand
Jagged-1 (97). Subcutaneous injection of these exosomes in a
Matrigel plug assay induced angiogenesis (97). This builds on
earlier work showing that Jagged-1 was an important contact
dependent signal by which MSCs induced tolerogenic dendritic
cells (DC) (98). Given that DCs have an antigen acquisition
sentinel function throughout the body, and that these are key
cells in shaping adaptive immunity, exosomal cargos of Notch
ligands might prove an important modulator of immunity in
multiple cell therapies. The immunomodulatory properties of
MSC-derived subcellular particles indicate their potential as a
novel cell-free therapy for treatment of immunological disorders,
especially through interaction with antigen presenting cells (61).
This is borne out by a recent study showing differential effects
of membrane derived particles from MSCs either untreated or
pre-treated with IFN-γ. Whilst both particle types decreased
the frequency of CD14+ CD16+ inflammatory monocytes, the
particles derived from IFN-γ treated cells also promoted anti-
inflammatory PD-L1 expressing monocytes (10). This provides
a mechanistic basis for earlier work showing that IFN-γ does
not break but enhances the immunosuppressive capacities of
MSCs and MSC-like cells (26, 99, 100). In the context of
necrobiology, these data indicate that pre-apoptotic MSCs used
as therapies in inflammatory microenvironments could be
responsible for a switch toward an anti-inflammatory response
through subcellular particles through their intra-vesicular or
surface cargo (10).

The second aspect of MSC necrobiology that could affect
therapeutic efficacy is the very recent observation from tumor
biology that apoptotic cancer cells produce EVs with the
characteristics of exosomes (78, 101). Apoptotic cell-derived
extracellular vesicles (apoEVs) appear to be enriched with
snRNA and spliceosomal proteins that can alter mRNA splicing
in recipient cells (101). This finding is consistent with other
studies showing that EVs produced during apoptosis are not
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TABLE 2 | Selected studies of MSC-derived exosomes in human models.

Experimental System MSC Cargo Method of exosome

isolation

Effect Study

PBMC co-culture Bone marrow (healthy

donors)

ND Ultracentrifugation and

precipitation

Suppressed TNF-a & IL-1b but increased

anti-inflammatory factor TGF-b in vitro

(80)

PBMC co-culture Bone marrow (healthy

donors)

ND Ultracentrifugation Increased Treg/Teff ratio and IL-10

concentration in culture medium

(81)

Monocyte-derived

macrophages

Bone marrow (healthy

donors)

ND Ultracentrifugation Suppressed pro-inflammatory cytokine

production, increased M2 macrophage marker

expression, and augmented phagocytic

capacity of human monocyte derived

macrophages in non-contact cultures

(64)

Isolated human

pulmonary artery

endothelial cells

Umbilical cord ND S200 size-exclusion

chromatography, differential

centrifugation and

ultracentrifugation

Regulated STAT3-mediated signaling (83)

Human umbilical cord

vein endo- thelial cells

(HUVECs)

Bone marrow (healthy

donors)

1,927 proteins

identified

Differential centrifugation,

filtration and

ultracentrifugation

Proteomic analysis of proteins contained in

exosomes released by MSC under ischemic

like conditions. Mostly proteins such as

platelet, epidermal or fibroblast derived growth

factors, as well as proteins from nuclear

factor-kappaB (NFkB) signaling pathway

(84)

HUVEC & human

breast

carcinoma-derived cell

lines

Bone marrow (healthy

donors)

miRNA-100 Differential centrifugation,

filtration and

ultracentrifugation

Decreased expression of VEGF in breast

cancer-derived cells by modulating the

mTOR/HIF-1α signaling axis

(85)

Comparative study Bone marrow (healthy

donors)

730 proteins

identified in

microvesicles

Sucrose cushion

centrifugation &

ultracentrifugation

Proteomic analysis identified proteins involved

in cell proliferation, adhesion, migration, and

morphogenesis

(86)

TABLE 3 | Studies showing the influence of inflammatory environment on human MSC-derived exosome cargo.

Stimulation MSC Cargo Isolation/Treatment Effect compared to control References

TNF-α + IFN-γ overnight Human bone marrow

derived MSC

ICAM 1, CXCL12, and

CCL5.

11 miRNAs with direct or

indirect immunomodulatory

function

Tangential flow filtration Stimulated MSC EVs increased

anti-inflammatory response through

COX2/PGE2 pathway modulation

(87)

TNF-α + IFN-γ overnight Human bone marrow

derived MSC

ND Tangential flow filtration Improved mechanical sensitivity in rat

spinal cord injury model

(88)

TGF-β, IFN-γ, or TGF-β +

IFN-γ for 72 h

Human umbilical cord

derived MSC

Exosomes from MSC

treated with TGF-β and

IFN-γ contained more

IFN-γ, IL-10, and IDO

Centrifugation and

PEG6000

EV from MSCs treated with TGF-β

and IFN-γ induced Tregs

differentiation

(89)

simply debris but have important immune regulatory roles in
autoimmunity, infection and cancer (78, 79). Thus, apoEVs
including those with exosome characteristics are the conduit
of intercellular communication in physiologic and pathologic
contexts. In this regard, it is important to note that there has
yet to be a comprehensive description of exosomes produced by
apoptotic MSCs. We do not know the degree to which apoptotic
MSCs produce apoEVs, nor how this is affected by MSC history,
stimulation, source, or apoptotic stage. Nevertheless, it is clear
that MSC-derived subcellular particles’ contents are not static but
vary by tissue origin, MSC activity, and the cellular environment
of the MSCs (96). It remains reasonable to assume that apoptotic
MSCs produce apoEVs with potential to modify target cells.

Overall, the important implication is that MSCs (whether
viable or non-viable) delivered to a patient are likely to be
accompanied by or result in EV with diverse cargo produced
prior to or after therapeutic deployment. However, it is also worth
remembering that broader animal studies of MSCs that do not
consider exosome function, could be unwittingly measuring a
confounding effect of bovine exosomes present in the serum
constituents of culture medium. This is usually well-controlled
for in studies designed to discover exosome effects, but less
often in studies of the MSC function itself. The range of such
effects are extensive and could be influencing multiple disease
models (Table 2). Nonetheless, the beneficial effects of exosomes
derived from various sources has led to over 100 human phase I/II
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clinical trials, although to date there are very few reports of trials
involving human MSC derived exosomes (www.clinicaltrials.
gov). Those that have been registered target pancreatic cancer,
macular holes, cerebrovascular disorders and diabetes, but most
seem to be in the recruitment phase at present.

CONCLUSION

A common aspect of all the above aspects of MSC necrobiology
is the significant role played by innate immune cells to counter
the pathologic processes. Thus, efferocytosis or the processes
linked to removing apoptotic MSCs are likely to contribute to
the therapeutic benefit in studies where MSC viability is not
essential (2, 102). This is likely to extend beyond simple uptake
of apoptotic MSCs by macrophages, dendritic or other cells
(61), and extend to the range of EVs, mitochondria, and other
signals produced by dying MSCs and which profoundly alter
the tissue microenvironment and innate immune cells (8, 102).
The importance of these processes in the regular homeostatic
function of endogenous MSCs is not known. Nevertheless, in the
context of cell therapy, the efficacy of MSC can be attributed
to either live/viable or dying/dead MSCs in different disease
contexts, and these benefits are attributable to downstream effects
linked to: a) the biological activity to (or evoked by) the intended
therapeutic component (the viable MSC itself or its derivatives)
and/or b) the recipient’s response to MSCs that are in the
process of dying (Figure 1). Without this understanding, and a
greater appreciation of the complex necrobiology of MSCs, we
are unlikely to understand the mechanisms of cell therapy action

or rationally design improvements. Thus, the necrobiology of
the mesenchymal stromal cell is likely to be a fruitful area for
improving the efficacy or removing confounding influences on
cell therapy.
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