
1Scientific Reports | 6:35098 | DOI: 10.1038/srep35098

www.nature.com/scientificreports

Graphlet-based Characterization of 
Directed Networks
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We are flooded with large-scale, dynamic, directed, networked data. Analyses requiring exact 
comparisons between networks are computationally intractable, so new methodologies are sought. 
To analyse directed networks, we extend graphlets (small induced sub-graphs) and their degrees 
to directed data. Using these directed graphlets, we generalise state-of-the-art network distance 
measures (RGF, GDDA and GCD) to directed networks and show their superiority for comparing directed 
networks. Also, we extend the canonical correlation analysis framework that enables uncovering 
the relationships between the wiring patterns around nodes in a directed network and their expert 
annotations. On directed World Trade Networks (WTNs), our methodology allows uncovering the core-
broker-periphery structure of the WTN, predicting the economic attributes of a country, such as its 
gross domestic product, from its wiring patterns in the WTN for up-to ten years in the future. It does 
so by enabling us to track the dynamics of a country’s positioning in the WTN over years. On directed 
metabolic networks, our framework yields insights into preservation of enzyme function from the 
network wiring patterns rather than from sequence data. Overall, our methodology enables advanced 
analyses of directed networked data from any area of science, allowing domain-specific interpretation 
of a directed network’s topology.

Deciphering the wiring patterns (also called topology) of large-scale, dynamic, directed, networked data com-
ing from all domains of sciences is fundamental for understanding and predicting their functioning, emergent 
properties and controllability1,2. Topological analyses of networks are universal and provide insights in all areas of 
science that use network theory, including social science3, politics4, biology5 and medicine6.

In economics, yearly trade relationships between countries are captured in the world trade network (WTN), in 
which nodes represent countries and in which there is a directed edge from country u to country v if u exported 
some commodities (i.e., marketable items) to v in the considered year. In the literature, topological analyses of 
these directed networks focused on characterizing their organization. Garlaschelli and Loffredo7 were the first 
ones to hypothesise the modular organization of WTN, due to its similarities with scale-free networks8. They 
showed that similar to scale free topology, WTN is characterized by a sharp power-law distribution of directed 
edges (e.g., many countries are involved in a few trades but only few countries are involved in large numbers of 
trades) and that trade relationships are disassortative (e.g., countries with many trade partners are connected to 
countries with few partners and vice-versa). This modular organization of WTN was refined by Kali and Reyes9, 
who characterized the core-periphery organization10 of trades using in-degree centrality: in the WTN, some 
countries are at the densely connected core (the central nodes in the WTN), forming rich-clubs of trading coun-
tries, while others (the non-central ones) are at the sparsely connected periphery. The core-periphery organi-
zation was later observed by using various statistics such as in-degree and betweenness centralities11, random 
walkers and k-shell decomposition12. It was also shown to be affected by trade globalization and regionalization11. 
These studies also highlighted the link between the positioning of a country in the WTN and its economy. For 
example, Garlaschelli and Loffredo7 proposed to predict the gross domestic product (GDP) of a country by a 
derivative of its number of trading partners (i.e., node degree).

In systems biology, metabolism is the set of all life-sustaining chemical reactions in a cell. These reactions, in 
which enzymes catalyse the transformation of substrates (input metabolites) into products (output metabolites), 
can be represented by metabolite-centred and by enzyme-centred metabolic networks. In metabolite-centred 
metabolic networks, two metabolites (nodes), u and v, are connected by a directed edge from u to v if there is an 
enzyme that catalyse a reaction having u as one of its substrates and v as one of its products. In enzyme-centred 
metabolic networks, two enzymes (nodes), u and v, are connected by a directed edge from u to v if some of the 
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products of u are substrates of v. The topology of metabolic networks has been the focus of many studies (e.g., 
the review of Lacroix et al.13). In these studies, a popular network statistic is network motifs14, which are defined 
as small partial sub-graphs that are over-represented in a network with respect to a given null model (partial 
sub-graph means that when selecting a sub-set of nodes from the large network, we can select any edges between 
them).

Similar to WTN, many studies focused on characterizing the organization of metabolic networks. Zhu and 
Qin15 observed that metabolic networks have scale free topology with highly modular organization, coming from 
their power law distributions of in- and out-degrees. Recently, Shellman et al.16 showed that this modular organ-
ization is related to the cellular organization: while the distributions of 3-node motifs in metabolic networks are 
similar across species, they are unique across organelles (i.e., different cellular components). Furthermore, the 
topological similarities between the metabolic networks of different species are shown to approximately recon-
struct phylogenetic classification of species17,18, which suggests a link between the divergence times between 
species and the dissimilarities between their metabolic networks. However, this observation must be toned down 
by the fact that metabolic networks are reconstructed from homology19,20. Recently, Pearcy et al.21 related the 
similarities between the metabolic networks of 383 bacterial species, as measured by the similarity of their motif 
spectra, with their phenotypic variability (e.g., aquatic or terrestrial species, aerobic or anaerobic environment), 
which suggests that adaptation to environment during evolution may have shaped the topology of metabolic 
networks. Finally, motifs and their spectra were used to relate the positioning of enzymes and metabolites in 
metabolic networks and their biological functions. Shellman et al.16 showed that some motifs are characteristic 
to specific metabolic functions of enzymes, and going further, Ganter et al.22 proposed a hidden markov model23 
based framework for predicting metabolic functions from motif spectra.

Because exact comparison between complex networks has long been known to be computationally intractable24,  
the topological analyses of complex networks use simple heuristics, commonly called network statistics, such 
as the in- and out-degree distributions, to approximately say whether the structures of networks are similar25. 
Recently, the concept of node roles, which associate nodes with well defined topological features, has been pro-
posed for analysing networked data. For example, in control theory, the set of driver nodes that can control and 
move the networks into specific states, has been identified and shown to be of low degree1. In the same vein, Yan 
et al.26 classify nodes in network as indispensable, neutral or dispensable, if their removal from the networks 
results in increasing, similar, or decreasing number of driver nodes in the resulting networks, respectively. In 
directed protein-protein interaction networks, indispensable proteins are shown to be the primary targets of 
disease-causing mutations, and this observation was used to predict novel cancer-driver genes. However, the 
limited number of controllability-based roles limits their interpretability. As seen above, nodes in metabolic net-
works can be characterized by their motif spectra14. These motif-based roles are used to relate the positioning of 
enzymes in metabolic networks with their biological functions16,22. However, motifs and their spectra have limited 
usability27, as they are dependant on the choice of a null model, which is generally unknown for real-world data.

For analysing undirected networks, Yaveroğlu et al.28 proposed a framework in which node roles are mod-
elled by graphlets29. Graphlets are defined as small induced subgraphs of a large network that appear at any 
frequency; an induced sub-graph means that once you pick the nodes in the large network, you must pick all the 
edges between them to form the sub-graph. Within graphlets, symmetry groups of nodes called automorphism 
orbits are used to characterize different topological positions that a node can participate in. Orbits are used to 
generalize the notion of node degree: the graphlet degrees of a node are the numbers of times a node is found at 
each orbit position30. Graphlets with up-to five nodes and their degrees characterize 73 different node roles, and 
their interpretability is independent of a null model. In the node role framework, the dependencies between node 
roles (i.e., the correlations between the counts of graphlet orbits over all nodes in a network) are encoded in a 
symmetric matrix called the graphlet correlation matrix (GCM), which is shown to finely describe the topology 
of undirected networks28. GCMs have also been compared within the network statistics called graphlet correla-
tion distance (GCD), which has been shown to be the most accurate network statistic for classifying undirected 
networks. Finally, canonical correlation analysis (CCA)31 allows translating node roles in network into domain 
specific languages. In economics, CCA is used to relate the graphlet-based roles of countries in the undirected 
world trade network with their economic attributes28. In systems biology, this framework is used to uncover 
biological functions that are performed through similar patterns of protein-interactions across yeast and human 
(topologically orthologous biological functions)32.

However, graphlets, and by extension, the whole node role framework, are only defined for undirected net-
works. Some real-world data are inherently directed and cannot be represented by undirected networks without 
information loss. For example, a trade between two countries is directed, from the exporting country towards the 
importing country, and these two situations are not equivalent; the trade represents an income for the exporting 
country, while it represents an expense for the importing country. When world trades are modelled as undirected 
networks, directionality is lost and the two situations are treated equally.

To better analyse directed data and to avoid information loss from modelling directed data with undirected 
networks, we extend the node role framework to directed networks. First, we define directed graphlets, and 
extend existing graphlet-based statistics to directed networks. Among them, we show that the directed graphlet 
correlation distance is superior for clustering directed networks. Second, we use our directed graphlets to extend 
the node role framework to directed networks, and demonstrate its superior descriptive and predictive power on 
real-world data in two domains, economics and biology.

New Methodology: Node Role Descriptors for Directed Networks
To adapt the node role framework to directed networks, we first generalize graphlets to directed ones as follows. 
We define directed graphlets as small induced sub-graphs of a larger directed network, without anti-parallel 
directed edges (i.e., if a graphlets contains a directed edge from node u to node v, it cannot contain the opposite 
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directed edge from node v to node u). Within directed graphlets, because of symmetries (automorphisms), some 
nodes have identical wiring patterns and hence belong to the same automorphism orbit (orbit for brevity; formally 
defined in the Supplement). The 40 two-to-four node directed graphlets are presented in Fig. 1 (panel a) and are 
denoted from G0 to G39; their 129 orbits are denoted from 0 to 128. Real-world directed networks may contain 
anti-parallel directed edges, which we take into account in our counting strategy by inducing directed graphlets 
for each anti-parallel directed edge separately (Fig. 1, panel c). Analogous to the graphlet degree vector33, a node 
in a directed network is described by its Directed Graphlet Degree Vector (DGDV), which is a 129-dimensional 
vector encoding the two- to four-node graphlet degrees of the node in the networks; e.g., the ith coordinate of the 
DGDV of node n, denoted by DGDVn[i] is the number of times a directed graphlet touches node n at orbit i. In 
our implementation, directed graphlets and their degrees are counted using a complete enumeration algorithm; 
for a given node, counting all directed graphlet degree for up-to k node directed graphlets requires visiting the 
k−​1 neighbourhood of the node, which is done in O(dk−1) time where d is the maximum degree of a node. Thus, 
for counting all directed graphlet degrees in a network with n nodes, the time complexity is O(ndk−1), which is the 
same as the complexity of counting undirected graphlet degrees28. Memory wise, we need to store the network 
(O(n2)) and the counts of the z graphlet degrees for each node (z =​ 129 when considering all 2- to 4-node direct 
graphlets), so the space complexity is O(n2 +​ nz).

Directed graphlet-based statistics.  Directed graphlets are like Lego pieces that assemble with each other 
to build large networks; any directed network can be constructed by combining different directed graphlets at 
different directed-orbits (an example is given in Fig. 1, panel b). We exploit this observation to summarize the 
complex structures of networks and to compare them, by generalizing three graphlet-based network statistics to 
directed networks: the Relative Graphlet Frequency Distribution Distance29, the Graphlet Degree Distribution 
Agreement30 and the Graphlet Correlation Distance28.

Figure 1.  Illustration of directed graphlets. (a) The 40 two- to four-node directed graphlets G0, …​, G39. In 
each graphlet, node belonging to the same automorphism orbit are of the same colour. The 128 automorphism 
orbits are labelled from 0 to 127. (b) Illustration of how directed graphlets assemble together to form complex 
networks. The whole network can be created in three steps. First, we start with one graphlet G14 (nodes a,b,c and 
d, in black). Then, we add a graphlet G2 (in red) by adding two new nodes, e and f, as heads of directed edges 
from node b. Finally, we add a graphlet G4 (in blue) by adding a new node, g, as the head of a directed edge from 
node d and as the tail of a directed edge towards node c. Note that during this process, many new graphlets are 
created, e.g., graphlet G3 (in green) between nodes b, c and g. (c) Illustration of our anti-parallel directed edge 
counting strategy. The two anti-parallel directed edges in the input network (in blue and in magenta) account 
for one graphlet G21 (when considering the magenta directed edge) and one graphlet G25 (when considering the 
blue directed edge), among all other induced graphlets.
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Directed Relative Graphlet Frequency Distribution Distance (DRGF) compares two networks according to their 
relative distributions of directed graphlet frequencies. Let Ni(G) be the number of directed graphlets of type i in 
network G. We use the total number of 3- to 4-node directed graphlets in G, = ∑ =T G N G( ) ( )i i1

39 , to normalize 
Ni(G): =N G( )i

N G
T G

log ( )
log ( )

i  if Ni(G) ≠​ 0 and zero otherwise. Given two networks, G and H, the DRGF distance 
between these networks is defined as: = ∑ −=DRGF G H N G N H( , ) ( ) ( )i i i1

39 .
Directed Graphlet Degree Distribution Agreement (DGDDA) compares two networks according to their distri-

butions of directed graphlet degrees. Let dG
j be the distribution of the jth automorphism orbit in network G, where 

d k( )G
j  is the number of nodes in G that touch orbit j exactly k times. We scale dG
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2 , where the resulting value is 
between 0 and 1, 1 meaning that the jth directed graphlet degree distributions are identical, 0 that they are 
dissimilar. Finally, the directed graphlet degree distribution agreement between two networks is defined as the 
arithmetic mean of all agreements over the 129 automorphism orbits: = ∑ =DGDDA G H( , ) D G H( , )

129
i

i
0

129
.

Analogous to the case of undirected graphlets, the statistics of different orbits on directed graphlets are not 
independent of each other. The reason behind this is the fact that smaller graphlets are induced sub-graphs of 
larger graphlets. We report 23 such non-redundant dependencies in Supplementary Table 1. Within a network, 
we capture the dependencies between directed orbits within its Directed Graphlet Correlation Matrix (DGCM), 
which we construct as follow. We construct a matrix whose rows are the directed graphlet degree vectors over 
all nodes of the network. We calculate the Spearman’s correlation34 between each two pairs of columns in the 
resulting matrix, i.e., correlations between the orbits in the network. We present these correlations in a 129 ×​ 129 
dimensional Directed Graphlet Correlation Matrix (DGCM-129), which is symmetric and contains Spearman’s 
correlation values in [−​1, 1] range. In addition to in-depth examination of network topology that can be qualita-
tively interpreted (see the Results section), we exploit the differences in DGCMs to compare directed networks. 
The Directed Graphlet Correlation Distance (DGCD) measures the distance between networks as the Euclidean 
distance between their DGCMs. Its superiority over other directed network distances is demonstrated in section 
“Evaluation of the methodology”. We consider two versions of DGCD: DGCD-129, which uses the 129 two- to 
four-node directed graphlet orbits, and DGCD-13, which uses only the 13 two- to three-node directed graphlet 
orbits.

Directed graphlets can also be used to measure the similarity between the positioning of nodes in directed 
networks; the Directed Graphlet Degree Vector Similarity (DGDVS) measures the similarity between the position-
ing of two nodes by the similarity of their directed graphlet degree vectors. The similarity between the ith directed 
graphlet degrees of nodes u and v is computed as: = ×

+ − +

+
D u v w( , )i i

log DGDV i log DGDV i
log max DGDV i DGDV i
( [ ] 1) ( [ ] 1)

( ( [ ], [ ] ) 2)
u v

u v
, where wi is 

an orbit-specific weight that reduces the influence of dependent orbits (see Supplementary Material for the defi-
nition of wi). DGDVS is calculated as: = − ∑

∑
=

=
DGDVS u v( , ) 1 D u v

w

( , )i i

i i

0
128

0
128

.

Directed node role framework.  To bridge the gap between node roles (the wiring patterns around nodes 
that are captured by their directed graphlet degree) in a network and their (real-valued) domain specific annota-
tions, we adapt the canonical correlation analysis (CCA) methodologies from Yaveroğlu et al.28 and from Davis 
et al.32 to uncover the linear relationships between them.

In our CCA framework, the node roles are encoded in a n ×​ z node role matrix, R, and the domain specific 
annotations in a n ×​ f attribute matrix, A. For both matrices, each row (called a variable vector) represents one of 
the n nodes of the network (for both matrices, the same row index represents the node). In the node role matrix, 
values in a variable vector (a row) are the z =​ 129 directed graphlet degrees of the node in the network, while in 
the attribute matrix, they correspond to the f annotations of the node.

Given n pairs of variable vectors from R ×​ A for n nodes as an input, the CCA outputs two weight vectors, 
called a canonical variate, so that the weighted sum of R is maximally correlated with the weighted sum of A. 
The correlation between the two weighted sums is called their canonical correlation. After finding the first set 
of weights, CCA iterates min {z, f} times to find more weight vectors, such that the resulting canonical variates 
are not correlated with any of the previous canonical variates. The weight matrices WR and WA, for R and A, 
respectively, are constructed by combining all of the identified weight vectors. We refer the interested reader to 
Weenink35 for the mathematical aspects of CCA.

For a given canonical variate, the contribution of a variable (e.g., of a given directed graphlet degree) is meas-
ured by its loading, which is the Pearson’s correlation36 between the values of the variable and of the linear com-
bination of variables that it participates in. For each canonical variate, the variables having the largest (positive 
or negative) loadings are the most related to each others, which allows uncovering the strongest relationships 
between node roles and annotations.

Finally, the association matrix, which is constructed as × × +W S WR A , where S is the diagonal matrix of 
canonical correlations that weights the variates according to their correlation strength and where +WA  is the 
Moore-Penrose pseudoinverse37 of WA, is a multidimensional regression that allows predicting the domain spe-
cific annotations of a node from its directed graphlet degrees in the network.
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Evaluation of the Methodology
We compare the performance of our novel directed graphlet-based network distances (DGCD-129, DGCD-13, 
DRGF and DGDDA) used for clustering networks coming from six directed network models (ER, SFBA-Sink, 
SFBA-Source, GEO, GEO-GD and SF-GD), which we define as follows.

•	 Directed Erdös-Rènyi random model, ER, represents uniformly distributed random interactions38. A directed 
ER network is generated by fixing the number of nodes in the network, and then by randomly adding directed 
edges between uniformly chosen pairs of nodes.

•	 Scale free Barabàsi-Albert random model, also called preferential attachment, generate networks based on the 
“rich-gets-richer” principle8. We use the directed preferential attachment model39 to generate two distinct 
scale free topologies. In the first one, SFBA-Sink, we favour adding directed edges towards nodes having 
already large numbers of incoming edges, creating densely connected sink nodes. In the second one, SFBA-
Source, we favour adding directed edges outgoing from nodes having already large numbers of outgoing 
edges, creating densely connected source nodes.

•	 Directed scale-free random model with gene duplication and divergence, SF-GD, is a scale-free model which 
mimics the gene duplication and the gene divergence processes from biology40. Starting from a small seed 
network, a node in the network is selected at random and a new node is created together with the connec-
tions to/from nodes that the “parent” node has (duplication step). A directed edge, whose directionality is 
randomly chosen, is added between the new node and his parent with probability p. Then, each directed edge 
that the new node “inherited” from its parent node is deleted with probability q (divergence step). This proce-
dure is repeated until the desired number of nodes is achieved. Probabilities p and q are tuned to achieve the 
desired number of directed edges.

•	 Directed geometric random model, GEO, represents the proximity relationship between uniformly ran-
domly distributed points in a d-dimensional metric space41. We generate GEO networks by putting points in 
3-dimensional Euclidean unit cube uniformly at random that correspond to nodes of the networks and two 
nodes are connected by a directed edge, whose directionality is randomly chosen, if the Euclidean distance 
between the corresponding points in space is smaller than a specified distance threshold, r, which is chosen 
to achieve the desired number of directed edges.

•	 Directed geometric random model with gene duplication, GEO-GD, is a geometric model that mimics the gene 
duplication and divergence processes in biology42. Starting from a small number of nodes randomly distrib-
uted in a metric space, a new node is introduced as a copy of a randomly selected node in the network (dupli-
cation step); the new node is moved randomly from its parent node in the metric space (divergence step), at a 
random distance smaller or equal to 2 ×​ r (where r is the distance threshold used to generate GEO networks). 
This process is repeated until the desired number of nodes is achieved, and then directed edges between nodes 
are created following the rules of the directed geometric network model.

We extend the methodology of Yaveroğlu et al.43. We generate 10 networks for each model and for each of the 
following three numbers of nodes and two directed edge densities that mimic the sizes and densities of real-world 
networks: 500, 1000 and 2000 nodes, and 0.5% and 1% directed edge densities. Hence, the total number of syn-
thetic networks that we consider is 10 ×​ 6 ×​ 3 ×​ 2 =​ 360. We formally evaluate the performance of our directed 
graphlet-based network distances for grouping networks from these models together and compare them to the 
performances of other commonly used directed network distance measures: the in- and out-degree distribution 
distances (note that we only present results of in-degree distribution distance, as it produces almost identical 
results as its out-degree counterpart) and directed spectral distance44. We assess how well a distance measure 
groups networks of the same type by using the standard Precision-Recall and ROC curves45: for small increments 
of parameter ε ≥​ 0, if the distance between two networks is smaller than ε, then the pair of networks is declared 
to be similar (belong to the same cluster). For each ε, four values are computed: the true positives (TP), which are 
the numbers of correctly clustered pairs (i.e., that group together networks from the same model), the true nega-
tives (TN), which are the numbers of correctly non-clustered pairs (i.e., that do not group together networks from 
different models), the false positives (FP), which are the numbers of incorrectly clustered pairs (i.e., that group 
together networks networks from different models), the false negatives (FN), which are the numbers of incorrectly 
non-clustered pairs (i.e., that do not group together networks from the same model). In Precision-Recall curves, 
for each ε, the precision ( =

+
PREC TP

TP FP
) is plotted against the recall, also-called true-positive rate, 

( =
+

REC TP
TP FN

) and the quality of the grouping by a given distance measure is measured with the area under the 
Precision-Recall curve (AUPR), which is the average precision of the distance measure. In ROC curves, for each 
ε, the true-positive rate is plotted against the false-positive rate ( =

+
FPR FP

FP TN
) and the quality of the grouping 

by a given distance measure is measured with the area under the ROC curve (AUC), which is the probability that 
a randomly chosen pair of networks coming from the same model will have a distance smaller than a randomly 
chosen pair of networks coming from different models.

AUPRs and AUCs show that DGCD-13 is the most accurate among all tested measures (Fig. 2, panel a), 
which is also illustrated by its superior Precision-Recall curve (Fig. 2, panel b). The superiority of DGCD-13 over 
DGCD-129 may come from the large number of dependencies between three-nodes and four-nodes directed 
graphlet degrees (listed in the Supplementary Material), which may blur the (dis)similarities between the DGCMs 
used by DGCD-129. Since the closest objects are the first to start forming clusters, we are interested in distance 
measures that optimize the number of correctly clustered pairs of networks that are at the shortest distances 
and thus, that are retrieved first by the distance measure46. Both DGCD-13 and DGCD-129 show superiority 
in early retrieval over all measures (beginnings of the curves in Fig. 2, panel b). Furthermore, we confirm that 
such results could not have been achieved by undirected network measures by comparing the performances of 
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directed distance measures to the ones of their undirected counterparts (when applied on the same networks but 
that are made undirected by removing the directionality of the edges). As expected, undirected network distances 
perform poorly, as evidenced by smaller AUCs and AUPRs (Fig. 2, panel a) and Precision-Recall curves (Fig. 2, 
panel c). Using directed graphlets allows for improving the average precision (AUPR) of classifying random 
networks by ≈​55 percent, from AUPR =​ 0.545 when using the best undirected distance measure (GCD-15), to 
AUPR =​ 0.845 when using the best directed distance measure (DGCD-13).

Since real networks are incomplete and noisy47,48, we evaluate the clustering quality of the above distance 
measures in the presence of noise. To simulate noise, we randomly rewire up to 90% of the directed edges of 
model networks, in increments of 10%. To account for the variability of randomizations, for each percentage 
of noise we repeat the randomisation process 30 times and report minimum, average and maximum AUPR for 
clustering networks from the same model. We follow the same procedure to simulate missing data by randomly 
removing up to 90% of the directed edges from model networks, in increments of 10%. These tests demonstrate 
robustness to noise and missing data and the superiority of DGCD over other measures on this sample of different 
network topologies, sizes and densities (Fig. 2, panel d,e).

We further validate our methodology by assessing its ability to correctly group real-world metabolic networks. 
We reconstruct the directed metabolic networks of all Eukaryotes (299 species) using the metabolic reaction data 
from KEGG database49 (collected in December 2014). For each species, we model its metabolic reactions as an 

Figure 2.  Quality of clustering of the 360 model networks using directed or undirected distance measures 
(colour coded in panel a). (a) For directed and undirected distance measures, the area under the ROC curves 
(AUC) and the area under the precision-recall curve (AUPR) achieved by a distance measure. (b) Precision-
Recall curves achieved by the six directed distance measures. (c) Precision-Recall curves achieved by the six 
undirected distance measures. (d) For directed distance measures, AUPR for different percentages of noise 
(randomly rewired directed edges in 10% increments, horizontal axis) in model networks. (e) For directed 
distance measures, AUPR for different percentages of incompleteness (randomly removed directed edges in 
10% increments, horizontal axis) in model networks.
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enzyme-enzyme network in which two enzyme-coding genes (nodes) are connected by a directed edge if the 
first enzyme catalyses a reaction whose product is a substrate for a reaction catalysed by the second enzyme. We 
obtain the taxonomic classification of species from KEGG database, which classifies Eukaryotic species according 
to (from the most generic to the most specific) their Kingdom, Sub-phylum and Class. We use the six directed 
distance measures to compare our 299 directed metabolic networks and use Precision-Recall and ROC curve 
analyses to measure their agreement with their taxonomic classification. Since the metabolic reactions encoded 
in metabolic networks are mostly reconstructed from sequence homology relationships, we expect that the sim-
ilarity between the topologies of our directed metabolic networks will relate to the evolutionary relationships 
between the corresponding species, validating our methodology. Indeed, as detailed in Supplementary Fig. 3, 
DGCD-129 and DGCD-13 achieve the highest agreements with the taxonomic classification of species. For 
example, DGCD-13 of directed metabolic networks agree with their Class classification with AUC of 0.945, vali-
dating the performance of the methodology.

Application to Real-World Networks
Economics: world trade network.  Using trade data from the United Nations Commodity Trade Statistics 
(UN Comtrade) database (collected in August 2014, from http://comtrade.un.org/), we generate 52 WTNs, one 
for each year between 1962 and 2013. To filter-out insignificant trades, we only consider the largest trades account-
ing for 90% of the total trade amount of a given year. While filterings based on the statistical significance of the 
trades50,51 could be used within our framework, we do not use it because such methods rely on a null model, which 
is unknown for WTN. In the context of subgraph based analysis, such as ours, using a poorly-fitting null model 
has been argued to lead to invalid conclusions27. We obtain the economic indicators of country wealth from PENN 
World Table (PENN, version 7.1, downloaded in July 2014 from https://pwt.sas.upenn.edu/) and International 
Monetary Fund (IMF) World Economic Outlook Database (WEO, downloaded in July 2014 from http://www.imf.
org/). For simplicity, we focus on the following nine economic indicators of countries: population size, employed 
population size, gross domestic product (GDP), GDP per capita (i.e., GDP of a country divided by its population 
size), debt, debt per capita (i.e., debt of a country divided by its population size), import expenses, export incomes 
and capital stock. Because of the limited availability of economic indicators, we do our analyses linking a country’s 
wiring patterns in the WTN to its economic indicators on the subset of 32 WTNs from 1980 to 2011.

Uncovering the directed core-broker-periphery structure of WTN.  Undirected WTN is believed to possess a 
core-periphery organization10, which is a binary classification of nodes according to their global positioning 
in the network: core nodes interact with each others and also with some peripheral nodes, while peripheral 
nodes tend to only interact with core nodes. This binary model was later refined into the core-broker-periphery 
model for the undirected WTN28, which describes the positioning of nodes locally, as measured by their graphlet 
degrees. By considering different local neighbourhoods, nodes can simultaneously be involved in densely con-
nected trade patterns (core nodes), in sparsely connected patterns (peripheral nodes), or in particular positions 
that enable them to mediate the trade between core and peripheral regions of the WTN (broker nodes). Rather 
than simply classifying nodes as either core, broker, or peripheral, using graphlet degrees allows quantifying 
the involvement of a node in all of these roles. We use the descriptive power of the directed graphlet correlation 
matrices (DGCMs) to assess whether the directed WTN also has a core-broker-periphery structure.

Each of graphlets G18 to G25 (Fig. 1, panel a) contains all three positions; the core is represented by the triangle’s 
nodes (e.g., orbits 49, 50 and 51 on graphlet G18), the periphery is represented by the node hanging from the tri-
angle (e.g., orbit 52 on graphlet G18), and the broker by the node from the core that is connected to the peripheral 
node (e.g., orbit 51 on graphlet G18). We use these eight graphlets to assess if our directed WTN also possess the 
core-broker-periphery organization. To this aim, we focus on the DGCMs that are obtained when considering 
three sets of orbits: the eight peripheral orbits (orbits 52, 56, 60, 64, 68, 72, 76 and 80); the eight broker orbits 
(orbits 51, 55, 59, 63, 67, 71, 75 and 79); and the 16 core orbits that are not brokers (orbits 49, 50, 53, 54, 57, 58, 61, 
62, 65, 66, 69, 70, 73, 74, 77 and 78). These orbits are illustrated in Fig. 3, panel a.

In our WTNs of each year, as presented in Fig. 3 (panels b, c and d), the broker orbits strongly correlate with 
the core orbits, showing that core trading countries are very likely to be involved in trade brokerage. On the oppo-
site, the peripheral orbits are not correlated with core orbits and slightly anti-correlated with brokerage orbits, 
showing that in the WTN there is a clear distinction between core/broker and peripheral countries. Thus, similar 
to the undirected case, our directed WTNs are characterized by a core-broker-periphery structure. Moreover, we 
observe that peripheral countries form two subsets: the peripheral countries that import from the broker countries 
(orbits 52, 60, 68 and 76) and peripheral countries that export to the broker countries (orbits 56, 64, 72 and 80).  
The strong correlation within these two sets and the low correlation between them show that the peripheral 
countries tend to specialize as either peripheral importer or as peripheral exporter, but not both. This observa-
tion is only made possible by our new directed graphlet-based analysis and has eluded us thus far in undirected 
and directed studies. Over time, the correlations between the peripheral roles and the core/broker roles slightly 
increases, showing that peripheral countries are getting more integrated into the WTNs, which is likely to be an 
effect of globalization. However, while the correlation within the two sets of peripheral orbits get stronger over 
time, the correlations between them get weaker, which shows that peripheral countries became more specialised 
towards either import or export. Finally, the directed core-broker-periphery structure of WTNs does not appear 
in random networks (e.g., see the DGCM of a directed Erdös-Rènyi random network in Fig. 3 panel e).

Predictive power of directed wiring patterns.  We assess the ability of predicting the economic indicators of coun-
tries from their wiring patterns in the directed WTN for up-to ten years into the future using our canonical 
correlation analysis (CCA) framework. To predict the economic attributes y years into the future, we construct 
the node role matrix, R, and the economic attribute matrix, A, as follows. In R, a row corresponds to a node in the 

http://comtrade.un.org/
https://pwt.sas.upenn.edu/
http://www.imf.org/
http://www.imf.org/
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WTN and it contains the 129 directed graphlet degrees of the country in the WTN of a given year, while in A the 
same row contains the nine economic indicators of that country y years into the future (e.g., when predicting 5 
years in the future, a row in R contains the wiring patterns of, say, USA in the WTN of 2000, while the same row 
in A contains the economic indicators of USA in 2005).

We use a 10-fold cross-validation approach by randomly dividing the dataset into a learning set (90 percent of 
the data) and a validation set (the remaining 10 percent of the data); we obtain an association matrix transforming 
the directed graphlet degrees of a country into predicted economic indicators by applying our CCA framework on 
the learning set, and then we use the validation set to assess the predictive power of the association matrix, which 
we measure by the Pearson’s correlations between predicted and observed economic indicator values. This ran-
dom process is repeated ten times and we report the average of the obtained Pearson’s correlations. As presented 

Figure 3.  The directed Core-Broker-Periphery organization of WTN, with specialized peripheral importers 
and exporters. (a) The peripheral importer, peripheral exporter, broker and core orbits that we use to build the 
presented DGCMs. In the graphlets, bi-directional edges (in grey) mean that any directionality is allowed. The 
next panels present the corresponding DGCMs for WTN of 1962 (panel b), WTN of 1980 (panel c), WTN of 
2013 (panel d) and for a directed Erdös-Rènyi random network (panel e).
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in Fig. 4 (panel a), capital stock, import expenses, export incomes, and GDP are all consistently well-predicted 
from trade patterns up to ten years in the future. In contrast, debt and population-based economic indicators 
(population size, employment, GDP per capita, debt and debt per capita) are not well predicted, showing that 
these indicators do not depend only on trade patterns, but also on other geopolitical factors. Surprisingly, debt 
is best predicted from the wiring patterns of the same year, and then the prediction quality decreases as the pre-
diction horizon increases, which suggests a short term effect of the trade pattern of a country on its debt level. 
In contrast, the prediction qualities of population and employment increase with the prediction horizon, which 
suggest a long term effect of the trade patterns on these indicators.

In the second step, we compare the quality of the obtained predictions to the ones that are obtained when 
WTNs are made undirected (by removing directionality of the edges) and when node roles are captured by undi-
rected graphlet degrees. As presented in Fig. 4 (panel b), using directed node roles improves prediction quality of 
all economic indicators, justifying the introduction of directed node roles methodology. On average, when pre-
dicting an economic indicator of a country from its wiring pattern in the WTN, using directed graphlets instead 
of undirected ones improves prediction quality by 9.9 percent.

Figure 4.  Analysis of directed world trade. (a) Predictive power of directed graphlets. Economic attributes 
are predicted for up-to ten years in the future from the wiring patterns of countries in the WTN, using the 
predictors that are learnt from canonical correlation analysis; we used 10-fold cross validation and the quality 
of the predictions is measured by the average of the Pearson’s correlations between the predicted and the real 
economic attributes of the countries over ten random experiments. (b) Comparison of the predictive power of 
directed and undirected graphlets. The predictive powers are computed as in panel a. (c,d) The first and second 
canonical variates between economic attributes (on the left) and direct-graphlet orbits (on the right), computed 
using all countries and all years from 1980 to 2011 simultaneously; the middle bar is colour-coded value of 
correlation (loading), from −​1 (in red) to +​1 (in green). (e,f) Brokerage and peripheral scores of Brazil (BRA), 
Russia (RUS), India (IND), Turkey (TUR) and Indonesia (IDN).
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Among the many economic descriptors, GDP is of foremost importance, as it directly characterizes economic 
crises (e.g., the definition of global downturns52). Using all the available data (i.e., without the cross-validation 
approach), orbit 71 correlates the most strongly with GDP, having Pearson’s correlation of 0.88. Using all directed 
orbits allows reaching Pearson’s correlation of 0.97! These results, providing a strong evidence of the link between 
the GDP and a country’s wiring in the world trade network, cannot be obtained by simpler, non-graphlet-based, 
measures of node wiring such as in- and out-degrees, or in- and out-edge closeness centralities that were previ-
ously used for analysing directed world trade networks11. In- and out-degrees correlate with GDP with Pearson’s 
correlations of 0.71 and 0.72 respectively, and in- and out-edge closeness centralities with Pearson’s correlations 
of 0.39 and 0.40 respectively.

These demonstrate that our directed graphlet-based framework finds more refined topological features than 
previously used methods7,11,28, resulting in the best predictions of the economic attributes, such as GDP of a coun-
try, from its trade wiring patterns in the WTN. Thus, our framework enables prediction of how the changes in the 
trade policies of a country may affect its economy. However, despite the strong correlation between our predicted 
GDPs and the observed GDPs of the countries, our predictions are still not accurate enough for predicting the 
exact GDP values (e.g., see Supplementary Fig. 2). To further improve the quality of our predictions, additional 
non-trade related knowledge may be needed (e.g., external debt relations, bank exchanges or geopolitical situa-
tions). Such knowledge can be incorporated directly into our CCA framework by extending the node role matrix, R,  
with additional features, or by using data integration techniques, which are used in systems biology for fusing 
molecular data produced by various omics studies53.

Economic interpretations of directed wiring patterns.  We use the canonical variates (i.e., the linear combina-
tions of graphlet degrees and their corresponding linear combinations of economic indicators) to bridge the gap 
between the trade patterns of the countries in the WTN and their economic attributes.

The first canonical variate, presented in Fig. 4 (panel c), is statistically significant, with canonical correlation 
of 0.987 and p-value ≈​0. It highlights eight positions in the WTN enabling a country to be a middle-man in trade 
between non-trading countries (a broker position): orbits 55, 63, 71 and 79 correspond to countries mediating 
the trade between peripheral countries exporting to trade-linked countries, and orbits 51, 59, 67 and 75 corre-
spond to countries mediating the trade between peripheral countries importing from trade-linked countries. In 
all these cases, the countries that are frequently seen in these broker positions in WTN have high GDPs and low 
debts by making profits from the transactions or added values by importing cheap raw materials and exporting 
expensive finished products, as highlighted by high export incomes and low import expenses. Also, there is a 
weak anti-correlation for the countries that are in peripheral positions (orbits 72, 80, 64, 56, 68, 76, 60 and 52; we 
only display orbits 52 and 60 in Fig. 4 because of space limitations), indicating that these peripheral countries tend 
to have low GDP, low export incomes, large debt and large import expenses.

The second canonical variate, presented in Fig. 4 (panel d), which is also statistically significant with canonical 
correlation of 0.95 and p-value ≈​0, sheds light onto an unexpected aspect of the core-broker-periphery organ-
isation of the WTN: countries that are in the core of the world trade (with large counts of orbits 53, 61, 77 and 
69), but that do not intensively trade with peripheral countries (small counts orbits 30 and 37) tend to have debt. 
This observation has completely eluded us in previous directed and undirected studies of WTN, in which being 
a core trading country has always been considered as a sign of economic wealth. Our analysis suggests that in 
order to improve its economic wealth, a country should not only try to increase its trade relationships with the 
core-trading countries, but also should maximize its brokerage by trading with peripheral countries.

Tracking world trade dynamics.  We demonstrated that the economy of a country is strongly related to its posi-
tioning in the WTN, highlighting favourable (broker) and dis-favourable (peripheral and core non-broker) trade 
positions. To quantify the strength of the brokerage position of a country in the WTN of each year, we extend the 
approach of Yaveroğlu et al.28 and define the brokerage score of the country in a particular year as the weighted 
linear combination of broker graphlet degrees (i.e., orbits 51, 55, 59, 63, 67, 71, 75 and 79) using the coefficients 
obtained from the first canonical variate:

= . × + . × + . ×
+ . × + . × + . ×
+ . × + . × (1)

Brokerage u DGDV DGDV DGDV
DGDV DGDV DGDV
DGDV DGDV

( ) 0 903 [51] 0 907 [55] 0 907 [59]
0 901 [63] 0 897 [67] 0 916 [71]
0 904 [75] 0 912 [79]

u u u

u u u

u u

Similarly, we quantify how peripheral a country is in the WTN of a particular year (by using orbits 52, 56, 60, 64, 
68, 72, 76 and 80):

= . × + . × + . ×
+ . × + . × + . ×
+ . × + . × (2)

Peripherality u DGDV DGDV DGDV
DGDV DGDV DGDV
DGDV DGDV

( ) 0 286 [52] 0 279 [56] 0 284 [60]
0 275 [64] 0 279 [68] 0 272 [72]
0 281 [76] 0 274 [80]

u u u

u u u

u u

These brokerage and peripheral scores enable us to track the changes in the position of a country in the WTN 
over years. We analyse if the changes in brokerage and peripheral scores of a country over years coincide with 
economic crises and other events impacting the economy of the country.

Indeed, we reconfirm previous observations obtained by undirected graphlet based analysis of WTN28. The 
first example is the loss of colonies of Great Britain (GBR), which was rivalling the USA as the world’s leading 
broker of trades before decolonisation, that pushed it away from the world stage. The decline of trade brokerage 
position of Great Britain temporarily stabilized in 1973 when the Conservative Prime Minister, Edward Heath, 
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led it into the European Union (EU). However, the downward trend induced by the dissolution of the colonial 
superpower has continued54. In contrast, the reunification of Germany (DEU) in 1991 transformed it to being 
the central economy of Europe55. Our scores also enable us to track the evolution of the emerging economies 
(Supplementary Fig. 1, panel b and c). The peripheral score of China drops after integrating Hong-Kong in 1984, 
which was the hub of trade between China and the rest of the world. China stopped being a peripheral trad-
ing country in 1995, after the adoption of the current foreign trade law in 1994, favouring international trade. 
Starting in 1995, China progressively became a broker in trade, and surpassed America in 2009, possibly bene-
fiting from the fall of America’s trade due to the global financial crisis. To refine the above presented brokerage 
score, we exploit the observation that in the WTN, peripheral countries are specialized towards export or import, 
and define import-specific and export-specific variants of the brokerage score according to the directionality 
of the trade between the broker role and the peripheral role (the formulas are presented in the Supplementary 
Material). Import- and export-specific variants of brokerage scores show that China’s dominance as a broker in 
trade in the WTN is strongly driven by its export power, which is expected and hence validates our methodology 
(Supplementary Fig. 1, panels c and d).

In addition, the success of China as an emerging economy can be placed in parallel with other potential 
emerging economies, of Brazil (BRA), Russia (RUS), India (IND), Turkey (TUR) and Indonesia (IDN). All these 
countries have increased their brokerage scores in the last decade, albeit not as much as China. However, they 
remain largely peripheral in the WTN (Fig. 4, panel e and f). Moreover, import- and export-specific broker-
age scores (Supplementary Fig. 1, panel e and f) show that while these potentially emerging economies have 
increased their export-brokerage scores (with Russia and India equalling or surpassing Great Britain), their 
import-brokerage scores remain far behind, which may prevent them from benefiting by buying (importing) 
commodities at low prices from peripheral exporting countries. Altogether, their peripherality in the WTN and 
their lack of import-brokerage power may explain why these countries do not meet the economists’ expectations 
(see http://www.businessinsider.com/why-china-was-the-only-bric-to-succeed-2013-10?IR=​T).

Biology: metabolic networks.  Linking wiring to function in metabolic networks.  In the cell, genes are 
transcribed into RNAs, which are translated into proteins, and these proteins interact with each other and with 
other molecules to perform their biological functions. Metabolic reactions are all chemical reactions that are 
needed to sustain the activity of the cell. These reactions are made possible (catalysed) by enzymes (specific pro-
teins) and are represented as metabolic networks in which enzyme coding genes (nodes) are connected to each 
other with directed edges corresponding to the chains of chemical reactions that the enzymes participate in. As 
we already showed at the end of section “Evaluation of the methodology”, similarity between the wiring patterns 
in metabolic networks of different species relates to their phylogenetic classification and could thus be used to 
refine our understanding of evolution.

Another key objective in biology is to understand the functions of genes. Because wet-lab experiments 
are costly, computational biology aims at predicting functions of the genes based on the similarity between 
their sequences, or on the similarity between the wiring patterns of the corresponding proteins in undirected 
protein-protein interaction networks33. While properly predicting and assessing enzyme-coding genes’ functions 
from their wiring patterns in metabolic networks is out of the scope of this study, we investigate if directed 
graphlets could be used for such purpose.

To that aim, we cluster together human enzyme-coding genes according to the similarity of their wiring pat-
terns in the human metabolic network and assess if the obtained clusters group together enzymes that have similar 
biological functions. We use the publicly available ascendant hierarchical classifier Chavl56 to group together 
enzyme-coding genes from their directed graphlet degree vector similarity (see section “Directed graphlet-based 
statistics”). Unlike other common clustering methods, Chavl also proposes cuts of the classification tree based on 
likelihood linkage analysis56. On our data, Chavl produces two clusterings, a more generic one that groups 
together human genes into four clusters and a more specific one that groups human genes into 19 clusters. We use 
Gene Ontology (GO)57 to annotate genes with GO terms representing the biological processes (BP) they partici-
pate in, their molecular functions (MF) and the cellular components (CC) in which they are localized. We down-
loaded experimentally confirmed GO annotations of the genes from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/
DATA/gene2go.gz) in March 2015, which we standardized to the fifth level of the ontology58–60. In our experiment, 
we say that genes in a cluster share a biological function if the cluster is significantly enriched in a given GO term. 
We compute the probability of a GO term enrichment using the standard model of sampling without replace-
ment61: = − ∑ −

−=
− ( )( ) ( )p K
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0
1 , where N is the size of the cluster (only annotated genes from the 

cluster are taken into account), X is the number of genes in the cluster that are annotated with the GO term in 
question, M is the number of all genes in the network that are annotated with any GO term, and K is the number 
of genes in the network that are annotated with the GO term in question. A cluster is significantly enriched in a 
given GO term if the corresponding p-value is smaller than or equal to 0.05. As presented in Fig. 5 (panel a), all 
clusters in our two clusterings are significantly enriched in GO terms. This confirms that enzymes involved in 
similar node roles in metabolic networks also perform similar biological functions, and this property could be 
used for transferring biological annotations from well-studied enzyme-coding genes to less well-studied ones.

Uncovering topologically orthologous functions.  Recently, Davis et al.32 showed that in protein-protein interac-
tion networks, not only proteins having similar function are similarly wired in the network, but also that these 
function-related wiring patterns can be evolutionarily conserved across the networks of different species. They 
termed biological functions performed through evolutionarily conserved wiring patterns of their proteins as 
topologically orthologous. Uncovering topologically orthologous functions allows for transferring of biological 
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annotations across networks of different species. We use our CCA framework to investigate if such topologically 
orthologous functions can be found in the metabolic networks of human and of four commonly used model 
organisms: baker’s yeast (Saccharomyces cerevisiae), fruit fly (Drosophila melanogaster), thale cress (Arabidopsis 
thaliana) and mouse (Mus musculus).

For each species, we create its node role matrix, R, and its GO annotation matrix, A, in the following way. For 
both matrices, the same row index represents the same enzyme-coding gene. In the node role matrix, R, values 
in a variable vector are the 129 directed graphlet degrees of the enzyme in the corresponding metabolic network, 
while in the GO annotation matrix, A, they are the Gene Ontology annotations of the corresponding gene (each 
column correspond to a specific GO term, and the entry is set to 1 if the gene is annotated with the term and 0 
otherwise). We considered separately the GO terms describing biological processes, BP, molecular functions, 
MF, and cellular components, CC, so each species has three different GO annotation matrices. We uncover top-
ologically orthologous biological functions in two steps. In the first step, we apply our CCA framework between 
the node role matrix and biological annotation matrix of each species separately and use the corresponding 
association matrix (which predict the biological annotations of a gene from the directed graphlet degrees of the 
corresponding enzyme in the metabolic network) to uncover biological functions that are statistically signifi-
cantly predicted from topology (statistical significance is computed according to 1,000 randomized experiments 
in which rows in the node role matrix are randomly shuffled; a biological function is significantly predicted if it’s 
p-value, after Benjamini Hochberg correction, is lower than 0.05). In the second step, biological functions that are 
statistically significantly predicted in the two species and that have predictions based on similar combinations of 
directed graphlet degrees, are considered as topologically orthologous.

As presented in Fig. 5 (panel b), human and mouse have the largest number of biological functions that are 
topologically orthologous. This is expected since human and mouse are the closest species among the five consid-
ered ones. A further validation is that we show that DNA metabolic process, which is one of the essential process 
for all living organisms, is topologically orthologous across all the considered species (appearing as topologically 
orthologous in eight out of the ten pairs of species); its significantly associated node roles (orbits) are presented in 
Fig. 5 (panel c). Our topologically orthologous biological functions may be used to refine the inter-species based 
function predictions. However, a deeper investigation on the meaning of the uncovered relationships between 
node roles and biological functions is a subject of future research.

Other domains.  Directed network data are abundant in many other domains, e.g. brain networks, e-mail 
communication networks, citation networks, world wide web networks, and internet peer-to-peer networks, to 
name a few. Research on uncovering their organizational principles and function will continue. Applying our new 
directed graphlet-based methods, or devising new methods for their analyses62,63 are a subject of future research.

In this study, we use our directed graphlets to propose three new alignment-free network similarity measures 
(DGCD, DRGF and DGDDA), which directly compare directed networks without searching for their aligned 
regions. Finding the aligned regions between networks is done by alignment-based methods64, which compute 

Figure 5.  Analysis of metabolic networks. (a) GO term enrichment of the two node role based clusters of 
human enzymes. For each of the two clustering, the GO terms enrichment of each cluster is presented as a pair 
x:y, where x is the number of enzymes in the cluster and y is the number of enriched GO terms. (b) The number 
of topologically orthologous GO terms per species pairs. (c) The significant orbits (in red) for DNA metabolic 
process annotated enzymes; orbit numbers are presented next to the nodes in red (there are many orbits because 
our methodology treats different edge directions in separate graphlets).
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the node-to-node correspondences (called alignments) between the networks. Since some of the aligners for 
undirected networks use graphlets and graphlet degrees to guide their node mapping processes, our directed 
graphlets could also be used to define novel aligners for directed networks.

Concluding Remarks
By generalising the graphlet-based node role framework to directed graphlets, we have enabled advanced descrip-
tive and predictive analyses of directed networked data that could not have been achieved by using undirected 
graphlets or other directed network statistics. We have shown that correlations between directed graphlet based 
node roles, which we capture in the directed graphlet correlation matrices, can be used to sensitively and robustly 
group networks from the same model and separate those from different models. Analysing WTNs over years, 
our framework allows us to: (1) uncover the directed core-broker-periphery organisation of the world trade, in 
which peripheral countries are specialized in either import or export roles; (2) predict the economic attributes of 
countries from their positioning in the WTN better than by using traditional directed descriptors or undirected 
graphlets that may inform regulators about benefits of trade agreements and predict success of an emerging 
economy; (3) identify relationships between the roles of countries in the WTN and their economic attributes; (4) 
finely track the dynamics of the WTN, yielding insights into dominating in trade as brokers of import or export. 
Our methodology is general and works in other domains. We observe that enzymes involved in similar patterns 
of metabolic reactions in the metabolic network of human are also involved in similar biological functions, and 
we identify conserved biological functions performed by enzymes that are similarly wired in metabolic reactions 
across species. Hence, our directed graphlet based node role framework is universal and promises to deliver 
insights in the other domains of data science.
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