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Abstract

Though Saccharina japonica cultivation has been established for many decades in East Asian countries, the domestication process of sugar
kelp (Saccharina latissima) in the Northeast United States is still at its infancy. In this study, by using data from our breeding experience, we
will demonstrate how obstacles for accelerated genetic gain can be assessed using simulation approaches that inform resource allocation
decisions. Thus far, we have used 140 wild sporophytes that were sampled in 2018 from the northern Gulf of Maine to southern New
England. From these sporophytes, we sampled gametophytes and made and evaluated over 600 progeny sporophytes from crosses
among the gametophytes in 2019 and 2020. The biphasic life cycle of kelp gives a great advantage in selective breeding as we can poten-
tially select both on the sporophytes and gametophytes. However, several obstacles exist, such as the amount of time it takes to complete
a breeding cycle, the number of gametophytes that can be maintained in the laboratory, and whether positive selection can be conducted
on farm-tested sporophytes. Using the Gulf of Maine population characteristics for heritability and effective population size, we simulated a
founder population of 1,000 individuals and evaluated the impact of overcoming these obstacles on rate of genetic gain. Our results
showed that key factors to improve current genetic gain rely mainly on our ability to induce reproduction of the best farm-tested sporo-
phytes, and to accelerate the clonal vegetative growth of released gametophytes so that enough gametophyte biomass is ready for mak-
ing crosses by the next growing season. Overcoming these challenges could improve rates of genetic gain more than 2-fold. Future re-
search should focus on conditions favorable for inducing spring reproduction, and on increasing the amount of gametophyte tissue
available in time to make fall crosses in the same year.
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Introduction
Wild kelp forests in the ocean provide important habitat and eco-
system services. They have also been an important source of hu-
man food. Due to climate change and other anthropogenic
factors, global kelp populations have faced a drastic decline (Moy
and Christie 2012; Wernberg et al. 2019; Bricknell et al. 2021). Now
kelp farming is largely replacing wild harvests: over 32 million
metric tons of seaweed were harvested in 2020, of which 97%
came from farms (FAO 2020). The import of seaweed raw materi-
als to the United States in 2016 was more than 10,000 metric tons
(over $73 million; National Marine Fisheries Service Office of
Science and Technology 2016; Piconi et al. 2020). Uses include hu-
man food, animal feed supplements, and pharmaceutical and
cosmetic products (Kim et al. 2015, 2017, 2019; Marine Biotech
2015; Schiener et al. 2015; Yarish et al. 2017; Wang et al. 2020).
Growing kelp biomass in the ocean offers a unique opportunity to

avoid many of the challenges associated with terrestrial agricul-

ture systems, particularly the growing competition for arable

land and freshwater resources. In order to meet the demand of

our growing population by 2050, we must use the oceans respon-

sibly to build a thriving seaweed farming industry for the produc-

tion of carbon-neutral fuels, biochemicals, animal feed, and food

(Capron et al. 2020; Vijn et al. 2020).
Kelp cultivation has been established for over 60 years in

Asian countries. More recently, there is growing interest in mac-

roalgal cultivation in Europe, South America, and North America

(Buschmann et al. 2017; Grebe et al. 2019; Kim et al. 2019; Goecke

et al. 2020). Specifically, there are efforts to selectively breed kelp

for large-scale food and bioenergy production (Bjerregaard et al.

2016; Valero et al. 2017; Hwang et al. 2019; Goecke et al. 2020) as

well as increased demand for germplasm banking to support
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future cultivation (Barrento et al. 2016; Wade et al. 2020; Yang
et al. 2021). The US Department of Energy Advanced Research
Projects Agency-Energy (ARPA-E) initiated the Macroalgae
Research Inspiring Novel Energy Resources (MARINER) program
to develop new cultivation, management, and breeding technolo-
gies that enable cost-efficient seaweed farming in the large US
Exclusive Economic Zone and grow the United States into a global
leader in the production of seaweeds. Saccharina japonica breeding
strategies that have been used in the past involved selfing, which
leads to loss of genetic diversity (Hu et al. 2021). In contrast, in
this project, we take advantage of genomic tools newly developed
in Saccharina latissima and apply genomic selection (GS), with the
aim of improving breeding efficiency and predicting combining
abilities of parental gametophytes (GPs) using the sporophyte (SP)
performance. As the first breeding program for sugar kelp in the
Northeast United States, we initiated a selective breeding system
by evaluating uniclonal plots.

Genetic markers have been used in crop breeding for some
time, primarily exploiting large marker-trait associations
(Bernardo 2016). In the last decade, GS has been adapted by nu-
merous breeding programs due to its ability to predict breeding

values that are immediately used for making selections
(Meuwissen et al. 2001; Jannink et al. 2010). The use of GS in ter-
restrial agriculture and aquaculture breeding has a track record
of improving gains by �10% per generation (Gjedrem et al. 2012).
GS uses a training population with both phenotypic and geno-
typic information to build a model, which then can be used to
predict the genomic estimated breeding value (GEBV) of individu-
als that are related to the training population. As the develop-
ment of genetic markers and genotyping individuals becomes
less costly compared with phenotyping, GS allows breeders to
make selections more efficiently, especially in early years’ breed-
ing evaluations (Heffner et al. 2010; Borrenpohl et al. 2020).
Genetic markers have been used for marker assisted breeding in
seaweed (Hu et al. 2021), however, there are no reports about ap-
plying GS in sugar kelp breeding. Kelp has a biphasic life cycle
(Redmond et al. 2014; Fig. 1a), which provides unique opportuni-
ties for selective breeding since breeders could potentially exert
selection pressure on both phases within a single growing cycle
(Peteiro et al. 2016; Wade et al. 2020). The use of GS on the GP
phase will enable us to prioritize crosses and evaluate SPs that
are more likely to become high-performing varieties.

Fig. 1. a) Biphasic life cycle and breeding pipeline of sugar kelp (S. latissima) in our research project. Represented are meiospore release, flow cell sorting
to 96-well plates, propagation to sufficient biomass for crossing, spraying of crossed SPs onto seed string, and outplanting to a farm-like common
garden field experiment. b) Simulated breeding scheme with a 2-year breeding cycle, where nGP refers to either 24 or 96 GPs generated per SP;
NumCross corresponds to making and evaluating 400 versus 1,000 crosses; SelectSP corresponds to either random or phenotypically selecting top
performing SPs. The SPs were genotyped and phenotyped and GPs were genotyped. GS model (ridge regression BLUPs) was built using SPs data to
predict GEBVs of GPs, and GPs were selected based on their GEBVs. c) Simulated breeding scheme of 1-year per breeding cycle. Parameter abbreviations
are the same as in Fig. 1b.
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We initiated a sugar kelp breeding program in 2018, and our

primary breeding goal is to improve biomass-related traits in-

cluding wet weight and ash free percentage dry weight, and to re-

duce biomass ash content. With 3 years of breeding experience,

we have identified limiting factors to our breeding effort and the

investments that might be exerted to overcome those limitations

(Umanzor et al. 2021). To guide the research effort objectively, the

extent of accelerated gain from different possible investments

and interventions needs to be assessed via simulation. These

simulations will help early kelp breeding efforts utilize limited re-

search and development investment for maximal breeding effi-

ciency and genetic gain (the improvement of the population

genetic mean). Simulation studies have been a useful tool in

assisting breeders’ decision-making. They are often used to dis-

sect problems that are difficult (expensive or time consuming) to

address experimentally. Simulation models can be used to refine

crop management strategies based on prior results and experi-

ence. Examples include exploring different ways to improve ni-

trogen use efficiency for wheat (Dresbøll and Thorup-Kristensen

2014), identifying the best field experimental designs to control

for spatial variation in agriculture and forestry studies (Gezan

et al. 2010), and assessing potential genetic gains in a small young

sorghum breeding program (Muleta et al. 2019). Simulation incor-

porating GS has been applied in terrestrial plants, such as barley

(Hordeum vulgare L. Iwata and Jannink 2011) and Cryptomeria ja-

ponica (Iwata et al. 2011). Comparisons of GS vs phenotypic selec-

tion were evaluated in simulation so that breeders could

strategically allocate resources between genotyping vs phenotyp-

ing (Hickey et al. 2014), and between the sizes of populations vs

numbers of replications to be tested (Lorenz 2013). In aquacul-

ture, breeding simulation studies have also been applied to ad-

dress a variety of questions (Zenger et al. 2019), including

assessing the changes of inbreeding rates over time (Bentsen and

Olesen 2002), evaluating the effects of mating strategies on the

changes of genetic gain in 10 generations of aquaculture selec-

tion (Sonesson and Ødegård 2016), and assessing the genomic

prediction accuracy using either identical by state or identical by

descent genomic relationship matrices (Vela-Avitúa et al. 2015).

Zenger et al. (2019) reported that at least 36 simulation studies

were relevant in aquaculture breeding evaluating different

Fig. 1. Continued
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mating designs, selection strategies, family and genome sizes,
and their effects on changes of breeding program over different
generations. To the best of our knowledge, there have been no
simulation studies on breeding schemes applied to sugar kelp
and we propose the first one.

For simulation studies to be valuable guides, they must be ap-
propriately parameterized. Our simulation parameters were cho-
sen on the basis of 2 different levels of both trait heritability, as
estimated from nearshore farm plot data, and effective popula-
tion size, as estimated by using marker linkage disequilibrium
(LD) among founders. The objective of this study was to deter-
mine the impacts of overcoming these 4 obstacles on genetic gain
over 10 years of breeding effort. These obstacles are further
explained in Materials and Methods.

Materials and methods
Sugar kelp breeding program initiation
In 2018, we collected SPs from the wild throughout the Gulf of
Maine (GOM) to southern New England (SNE) in the United States
(Mao et al. 2020). Population genetic analyses on the wild samples
were performed to understand their diversity, the relationships
among them, and their population history in terms of effective
population size (Mao et al. 2020).

From the wild-sampled SPs founders, over 700 uniclonal GPs
were isolated and grown to sufficient biomass for genotyping and
for crossing to create progeny SPs. These SPs were then planted
and evaluated on nearshore kelp farms with an augmented de-
sign, where only check crosses were repeated across blocks.
Given that SNE formed a distinct subpopulation structure from
GOM (Mao et al. 2020), and we lacked phenotypic data from SNE
sites, all simulation parameters used in this study were based on
the GOM population. There were 2 checks and 9 blocks in the
2019 planting season and 3 checks and 11 blocks in the 2020
planting season. Within a cross, each SP has the same genotype,
resulting in genetically uniform 1-m line “plots” in the farm. In

our breeding work, we have measured various traits at plot and

individual blade levels (Umanzor et al. 2021). At harvest time for

the 2019 and 2020 seasons, the farm-grown SPs were phenotyped

and sampled. The mature sorus tissue from SPs were collected to

induce GPs in the laboratory for the next crossing, planting, and

harvesting cycle. In our current scheme, we use GS to predict the

breeding value of GPs, select the best ones, and prioritize crossing

the best GPs to create new SPs.
We considered the year collecting wild samples in the breed-

ing program as a burn-in period (for which time is needed to cul-

ture enough clonal biomass for breeding), and our repeated

breeding cycles start from year 1, for both the 2-year cycle and 1-

year cycle breeding schemes (Fig. 1b). A full breeding cycle starts

from farm-grown mature SPs, from which we collect spores and

generate GPs. Then the GPs are clonally propagated and crossed,

and a new generation of mature SPs is evaluated on farm

(Fig. 1b). For simplification, and given that our goal is to compare

genetic gain change due to different obstacles, we did not simu-

late overlapping breeding cycles where GPs from historical cycles

would be used in a current cycle, but focused on nonoverlapping

cycles where GPs used for crossing always come from the same

cycle (Fig. 1b).

Defining the 4 major obstacles
Thus far, we have identified 4 limiting factors (obstacles) in the

breeding program (Table 1). First, Obstacle 1 (CycleTime, Table 1)

refers to the amount of time it requires to complete a breeding

cycle. CycleTime is dependent on the growth of GPs during clonal

propagation from a single meiospore. Due to the slow growth, it

has thus far not been possible to accumulate enough GP biomass

to cross in the same calendar year that the meiospore was

obtained.
The technical advancement to overcome Obstacle 1 and com-

plete a breeding cycle in 1 year would entail some combination of

the following:

Fig. 1. Continued
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1) Methods to enhance the growth rate of the GPs so that GPs
sampled in the spring have sufficient biomass to make
crosses in the fall.

2) Methods to make crosses that require less GP biomass but
that nevertheless produce plots with adequate numbers of
SPs.

In our empirical breeding program, we worked with
CycleTime¼ 2 years. We simulated scenarios where we have a 2-
year cycle time and where we could reduce the time from 2 years
to 1 year.

Obstacle 2 (NumCross, Table 1) refers to the number of SP plots
being evaluated on a farm. This obstacle is related to limited ca-
pacity to grow GPs for crossing. Limiting the number of crosses
and associated phenotypic variance can reduce the expected se-
lection intensity and genetic gain. Overcoming Obstacle 2 would
require the ability to maintain and culture more GPs in limited
laboratory space with more cost and labor effective methods.

Currently, we are limited to making no more than 400 crosses
per year in our empirical breeding program, due to the labor in-
tensity of maintaining and growing individual GP cultures (all
year around), and seasonal capacity in the hatchery for maintain-
ing GP crosses and the resultant individuals of uniclonal juvenile
SPs for 4–6 weeks before out-planting. We simulated scenarios
assuming we could design space and labor-saving methods for
the laboratory/hatchery phase and manage higher throughput
phenotyping to evaluate NumCross¼ 1,000 plots instead of
NumCross¼ 400 plots each year.

Obstacle 3 (SelectSP, Table 1) refers to selecting SPs either ran-
domly or phenotypically. In our empirical program, we have had
minimal ability to exert positive selection on farm-tested SPs us-
ing their phenotypic data because we have not able to induce
many top-ranked SPs to become reproductive. Thus, the next
generation of GPs was essentially obtained from randomly picked
SPs (SelectSP ¼ random, Table 1). Overcoming Obstacle 3 would
entail rapid identification of top SPs, and artificial laboratory in-
duction of SPs to enter their reproductive phase with high rate of
spore release (Pang and Lüning 2004). We simulated scenarios
where all the top-ranked SPs could be artificially manipulated to
be reproductive (Select SP ¼ pheno, Table 1), hence we could per-
form phenotypic selection on these SPs rather than applying ran-
dom selection (Pang and Lüning 2004).

Finally, Obstacle 4 (nGP, Table 1) refers to the GP survival rate
per 96-well plate, which relates to the number of GPs we collect
per parental SP. We have isolated meiospores individually into
96-well plates using flow cytometry (Augyte et al. 2020). This au-
tomated spore sorting technology produces viable uniclonal iso-
lations from spores released by each individual SP. This sorting
method showed a maximum effectiveness of 76% in GP

development (Augyte et al. 2020). Investment in the flow cytome-
try method to either increase GP survival or enable the prepara-
tion of more plates, thus generating more GPs from which to
select, would overcome this 4th obstacle.

We estimated the average GP survival per plate as nGP¼ 24
from our current breeding program (Table 1). Hence 24 is our ref-
erence parameter, whereas an ideal situation where all GPs in the
plate are viable (nGP¼ 96, Table 1) was simulated. Generating
nGP¼ 96 GPs means there will be 4 times more GPs than nGP¼ 24
to select from to make crosses for SPs, enabling higher selection
intensity.

Breeding program settings of CycleTime¼ 2 years,
NumCross¼ 400 plots, SelectSP ¼ Random, and nGP¼ 24 resem-
ble our current empirical program and were considered as our
baseline. Our main goal was to determine which obstacles most
hinder genetic gain, such that overcoming them leads to the
greatest response. Hence each of these obstacles was considered
as a factor in our analysis.

Founder population effective population size
To simulate breeding schemes overcoming these obstacles, we
first needed an estimate of the effective population size of the
kelp founder population. We used marker data on 125 wild SPs,
sampled from the GOM and genotyped via DArT technology (Mao
et al. 2020) to obtain this estimation. Data cleaning was similar to
Mao et al. (2020). Markers were filtered by removing ones with
more than 10% missing data and those severely departing from
Hardy–Weinberg Equilibrium (P-value < 0.01) in more than 25% of
the collection sites. Markers with minor allele frequency <0.05
and individuals with more than 50% missing data were also re-
moved. A final set of 4,906 markers was retained and imputed us-
ing the rrBLUP package A.mat function (Endelman 2011) in R (R
Development Core Team 2018). LD between markers was esti-
mated using the genetics package (Warnes et al. 2012). The average
LD score was estimated to be 0.08, which was then used in esti-
mating the effective sample size (Ne), according to Sved (1971):

E r2ð Þ � 1
1þ 4Nec

;

where E r2ð Þ is the expected r2 for which we used the average LD
score of 0.08, and c is the recombination rate among all sites as-
sumed to be 0.5, given that most pairs of sites are on different
chromosomes. This gives an estimated Ne ¼ 60. We know that
the GOM population is strongly structured (Mao et al. 2020), which
may cause Ne to be underestimated (Lande and Barrowclough
1987). Thus, we also ran simulations with a setting of Ne ¼ 600. A
total of 1,000 SP individuals were simulated as our founders with
an effective population size of either Ne ¼ 60 or Ne ¼ 600.

Table 1. Definition of simulation obstacles and the corresponding parameters.

Obstacles Simulation parameters Definition Related factors Reference scheme parameters Changed scheme
parameters

Obstacle 1 CycleTime Breeding cycle time Slow growth of GP 2 1
Obstacle 2 NumCross Number of crosses

possibly made and
tested

Labor intensity to
maintain large
number of GP cul-
tures

400 1,000

Obstacle 3 SelectSP Selection on SP SPs do not become
reproductive

Random selecting 10% Phenotypic selecting
top 10%

Obstacle 4 nGP Number of GPs iso-
lated from each SP

GPs survival varies
through flow cy-
tometry process

24 96

M. Huang et al. | 5



Trait heritability
We used empirical data to estimate trait heritability for the simu-
lation. A mixed model, including genetic effects of SPs as random
effects, and growth line, blocks, year effects, and reference
checks as the fixed effects, was conducted to estimate the narrow
sense heritability using GOM farm SP plots data from 2019 and
2020 field seasons. The following model was used:

Yijkln ¼ lþ Ei þ Cj þ BkðEiÞ þ LlðEiÞ þ GnðCjÞ þ ei

Yijkln is the ijklnth observation, m is the mean, Ei is the ith environ-
ment (year), Cj is the jth check groups, where each check variety
is a unique group whereas all testing crosses were assigned as 1
combined group, BkðEiÞ and LlðEiÞ is the kth block and lth line
effects nested within year, respectively, GnðCjÞ is the genetic
effects for the nth individual (uniclonal SP plot) nested within jth
check group. All effects were treated as fixed except for SP genetic
effects. A relationship matrix was included using the rrBLUP mix-
ed.solve() function in R to obtain the additive variance for SPs.
Any interaction between genotype and environmental variation
from year to year (such as water temperature, light, etc.) would
be part of the error variance. Narrow sense heritability was esti-
mated using:

h2 ¼ r2
A

r2
A þ r2

E

;

where r2
A was the estimated additive variance for the SPs and r2

E

was the error variance from a mixed model. Trait heritabilities
ranged from 0.06 to 0.43 for plot-level traits and 0.59–0.82 for
blade-level traits using both years’ data. We choose heritabilities
of 0.20 and 0.50 in the simulation to cover plausible values for
the biomass trait. We set the trait genotypic variance to 1, result-
ing in error variances of 4 and 1, for the respective heritabilities.

Breeding pipeline in AlphaSimR
Breeding scheme simulations were performed using functions in
the AlphaSimR package (Gaynor et al. 2021). We simulated initial
SP founder populations of 1,000 individuals using the following
parameters (Fig. 1, b and c; Table 1): The ploidy level was set to 2
and the number of chromosomes was assumed to be 31 based on
the close congener S. japonica (Liu et al. 2012). Per chromosome, the
number of segregating sites and the number of QTL were set to
500 and 100, respectively. The positions of all sites were random
over a recombination length of 1 Morgan of each of the 31 chromo-
somes. AlphaSimR simulated downstream recombination using
the gamma model (McPeek and Speed 1995) parameterized to ap-
proximate the Kosambi mapping function. These values assume
that the trait is polygenic but are otherwise somewhat arbitrary
and chosen referring to those in Muleta et al. (2019). Historically,
we have been able to produce enough GP biomass to make 2
crosses per GP. Consequently, we assumed that same capacity in
the simulation scheme, and allowed each founder SP to generate 2
GPs, giving enough GPs to make NumCross (Table 1; Fig. 1b)
crosses for downstream SP generations without exerting selection
pressure on the founder population. The simulation program ran-
domly assigned “F” and “M” sexes to GPs generated from the SP
populations (Fig. 1b). In our simulation, among the selected GP
parents, the mating scheme is random, which means it is possible
for a female GP and male GP from the same SP to be crossed with
each other (equivalent to selfing). Since we simulated additive
gene action, occasional self should not be an issue. We chose an

additive model because we have no evidence for either heterosis
or inbreeding depression in our breeding program thus far. Ten
percentage of SPs were selected either randomly or based on phe-
notypes and then used to produce the next generation GPs. Thus,
40 (when NumCross¼ 400) or 100 SPs (when NumCross¼ 1,000)
were selected at the SP selection stage, respectively (Fig. 1, b and
c). We then assumed flow cytometry would be used to obtain GPs
from each selected SP (Augyte et al. 2020).

Phenotypes were simulated for SPs using setPheno() function in
AlphaSimR, which calculates genotypic values based on an indi-
vidual’s genotype and then adds a random error deviation. We
specified 2 different values for error variance based on the herit-
abilities of 0.2 and 0.5. The farm-evaluated SPs and their geno-
typic and phenotypic data from all previous breeding cycles were
used to train a GS model using the RRBLUP() function. Hence, the
GS training population size increased over time and was updated
each new generation by feeding in new SP phenotypic data. The
GS training size at the ith year (i> 2) is NumCross*(i� 1), and the
end training size by Year 10 is NumCross*9. All GPs coming out of
the flow cytometry process would be genotyped. The GS model
used ridge regression best linear unbiased prediction (Meuwissen
et al. 2001), and the GEBVs were obtained with the setEBV() func-
tion. GS accuracy was defined as the correlation of estimated
breeding values and the true breeding values, extracted via the
ebv() and gv() functions in AlphaSimR, respectively. Each GP can
make 2 crosses, and hence n ¼ NumCross/2 GPs of each sex
would be selected based on their GEBVs in order to generate
NumCross SP plots to evaluate on farm (Fig 1, b and c; Table 1).
Note that with this scheme, changing the number of SPs crossed
and evaluated does not change the selection intensity either dur-
ing SP or GP selection, whereas changing the number of GPs gen-
erated changes the selection intensity during the GP selection
stage. These simulation procedures were used on a full factorial
of nGP (24 vs 96) � heritability (0.2 vs 0.5) � Ne (60 vs 600) �
NumCross (400 vs 1,000) � SelectSP (random vs pheno) �
CycleTime (2 years vs 1 year) for a total of 64 simulation settings.

Estimating genetic gain, genetic variance, and GS
accuracy over 10 breeding years
Each scheme was simulated 20 times, and the average genetic
gain as well as genetic variance at each GP stage was calculated
over 10 years. Because we were mainly interested in evaluating the
trend of genetic gain from different breeding schemes, the reference
point for genetic gain could either be for GPs or SPs and we used the
GP stage. The additive genetic variation, selection accuracy, selection
intensity, and breeding cycle time can affect genetic gain:

DG ¼ rair
L

;

where DG is the genetic gain, ra is the additive genetic variation, i
is the selection intensity, r is the selection accuracy, and L is the
cycle time (Lush 1937; Eberhart 1970). The trait we simulated was
a general yield related trait with arbitrary units. We compared
effects caused by the changes of parameters on genetic mean
value (estimated via the function meanG in AlphaSimR), total ge-
netic variance (estimated via the function varG in AlphaSimR),
and GS prediction accuracy via ANOVA.

Selection intensity
Our number of GPs per SP (nGP) was either 24 or 96. At any given
generation of SPs, 10% of lines were selected either at random or
by phenotypically selecting the top performers. The selection
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intensity under random selection is 0, and selecting the top 10%
assuming a normal distribution causes the selection intensity to
be 1.75. When selecting among GPs, with a scenario of nGP¼ 24,
the proportion of FG and MG being selected is 41.6% [NumCross/
(10%*NumCross*24)]. Again assuming normality, the selection in-
tensity is 0.94. When nGP¼ 96, the proportion being selected is
10.4% [NumCross/(10%*NumCross*96)], generating a selection in-
tensity of 1.74 (again assuming normality). To validate the normal-
ity assumption, we evaluated empirical selection intensity by
calculating the standardized mean difference between the se-
lected population and the reference population. These empirical
intensities were similar to the theoretical values (data not shown).

Analysis of variance
The analysis of variance (ANOVA) was conducted to evaluate
effects of SelectSP, NumCross, CycleTime, and nGP as well as
their interaction effects on changes of genetic mean, genetic vari-
ance, and GS accuracy, respectively, over 10 years of breeding
time. The ANOVA was reported at each of the Ne and h2 levels.

Results
Simulation output
The ability to exert selection on the farm-evaluated SPs
(SelectSP), the number of years per breeding cycle (CycleTime),
and the number of GPs per SP surviving the flow cell cytometry
system (nGP) were the 3 significant contributors to the changes
of genetic mean over time (Table 1). We did not observe signifi-
cant interactions between these factors (Table 2).

Genetic mean
The changes from Fig. 2, a to b reflect the effects of overcoming
Obstacle 4 (nGP¼ 24 vs nGP¼ 96, Tables 1 and 2). This change led to a
gain increase of 35% averaged across all other factors (nGP, Table 2;
Fig. 2). Relative to the baseline, the ability to exert selection on SPs
(SelectSP, Obstacle 3) and decreasing the breeding cycle time
(CycleTime, Obstacle 1) led to gain increases of 118% and 73%, respec-
tively, averaged across all other factors. Though the effect of increas-
ing the number of plots phenotyped (NumCross, Obstacle 2) was not
statistically significant (Tables 1 and 2), numerically this change in-
creased gain by an average of 7%. We did not observe significant inter-
actions: the effects of overcoming each obstacle were additive
(Table 2), and overcoming all 4 obstacles led to the greatest gain
(nGP¼ 96, SelectSP¼phenotypic, CycleTime¼ 1year, and
NumCross¼ 1,000; Fig. 2). Heritability also played a role in affecting
the genetic gain (Table 2), where h2¼ 0.5 generated higher genetic
mean after 10years of breeding than h2¼ 0.2 (Fig. 2, a and b). This
trend was consistent regardless of the number of GPs or effective pop-
ulation size.

Genetic variance
The breeding scheme interventions simulated also affected the
genetic variance remaining after 10 years of improvement (Fig. 3).
As expected, total genetic variance decreased over time. The 4
factors (SelectSP, NumCross, CycleTime, and nGP) all had signifi-
cant effects on the changes of genetic variance over 10 years
(Supplementary Table 1; Fig. 3). Compared with the baseline, ge-
netic variance decreased 6.9% and 4.7% as a result of selecting
SPs on phenotype (SelectSP) and changing CycleTime from
2 years to 1 year, respectively, whereas it increased 4.0% by in-
creasing NumCross from 400 to 1,000 plots. Overall, changing
from nGP¼ 24 to nGP¼ 96 decreased genetic variance by 9.2%
over 10 years. There was a low level of interactions between

simulated factors (Supplementary Table 1), which can also be

seen in Supplementary Fig. 1 by the fact that lines linking simula-

tion settings with and without the interventions are approxi-

mately parallel and of similar length, indicating that changing 1

factor has basically the same effect regardless of the levels of the

other factors.

GS accuracy
An ANOVA was conducted within each combination of Ne and h2

(Supplementary Table 2). From ANOVA, SelectSP, and nGP signifi-

cantly affected GS accuracy in all scenarios (Supplementary

Table 2). With the scenario of randomly selecting SPs, GS

Table 2. ANOVA on genetic mean split by founder effective
population size (Ne) and heritability (h2).

Df Sum Sq Mean Sq F P-value

(a) Ne ¼ 60, h2 ¼ 0.5
SelectSP 1 81.7 81.7 20.5 0.000c

NumCross 1 3.8 3.8 0.9 0.334
CycleTime 1 62.2 62.2 15.6 0.000c

nGP 1 28.5 28.5 7.2 0.009b

SelectSP:NumCross 1 0.1 0.1 0.0 0.866
SelectSP:CycleTime 1 1.5 1.5 0.4 0.539
SelectSP:nGP 1 1.7 1.7 0.4 0.519
NumCross:CycleTime 1 0.2 0.2 0.1 0.809
NumCross:nGP 1 0.4 0.4 0.1 0.764
CycleTime:nGP 1 1.5 1.5 0.4 0.543
Residuals 101 402.6 4.0
(b) Ne ¼ 600, h2 ¼ 0.5
SelectSP 1 85.6 85.6 31.1 0.000c

NumCross 1 1.1 1.1 0.4 0.529
CycleTime 1 43.4 43.4 15.8 0.000c

nGP 1 15.3 15.3 5.6 0.020a

SelectSP:NumCross 1 0.5 0.5 0.2 0.676
SelectSP:CycleTime 1 1.3 1.3 0.5 0.497
SelectSP:nGP 1 1.7 1.7 0.6 0.439
NumCross:CycleTime 1 0.1 0.1 0.0 0.851
NumCross:nGP 1 0.7 0.7 0.2 0.627
CycleTime:nGP 1 0.5 0.5 0.2 0.668
Residuals 101 278.2 2.8
(c) Ne ¼ 60, h2 ¼ 0.2
SelectSP 1 35.7 35.7 15.2 0.000c

NumCross 1 5.1 5.1 2.2 0.145
CycleTime 1 36.8 36.8 15.6 0.000c

nGP 1 17.8 17.8 7.5 0.007b

SelectSP:NumCross 1 0.1 0.1 0.0 0.832
SelectSP:CycleTime 1 0.5 0.5 0.2 0.630
SelectSP:nGP 1 0.5 0.5 0.2 0.640
NumCross:CycleTime 1 0.1 0.1 0.0 0.831
NumCross:nGP 1 0.7 0.7 0.3 0.587
CycleTime:nGP 1 1.0 1.0 0.4 0.515
Residuals 101 237.6 2.4
(d) Ne ¼ 600, h2 ¼ 0.2
SelectSP 1 34.4 34.4 21.8 0.000c

NumCross 1 1.4 1.4 0.9 0.345
CycleTime 1 24.0 24.0 15.2 0.000c

nGP 1 8.1 8.1 5.1 0.026a

SelectSP:NumCross 1 0.4 0.4 0.3 0.613
SelectSP:CycleTime 1 0.5 0.5 0.3 0.587
SelectSP:nGP 1 0.6 0.6 0.4 0.546
NumCross:CycleTime 1 0.2 0.2 0.1 0.701
NumCross:nGP 1 1.1 1.1 0.7 0.401
CycleTime:nGP 1 0.2 0.2 0.1 0.704
Residuals 101 159.3 1.6

SelectSP, selection among SP based on phenotype or at random; NumCross,
common garden of 400 versus 1,000 field plots; CycleTime, 1-year versus 2-
year cycle; nGP, number of GPs obtained per parental SP of 24 or 96.

a P<0.05.
b P< 0.001.
c P<0.0001.
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Fig. 2. Genetic mean of the GP population from different breeding schemes over 10 years. The routine breeding scheme starts in year 2. Each figure
shows SelectSP: selecting the best (pheno) vs random (rand) SPs; NumCross: Evaluating 400 vs 1,000 crosses; and CycleTime: 1-year (1 yr) vs 2-year (2 yr).
Subpanels separate different founder population effective population sizes of 60 (Ne60) and 600 (Ne600) and trait heritabilities of h2¼0.5 and h2¼0.2
when a) 24 or b) 96 GPs were propagated from each parental SP. Each scheme was repeated 20 times and genetic values shown were averages. The SE
was smaller than the figure symbols and is not shown. The trait simulated is an arbitrary economic value trait with an initial variance of 1.
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accuracy was always slightly higher than when selecting the top
10% SPs (Fig. 4). NumCross and CycleTime both had significant
effects on GS accuracy except given the scenario when Ne ¼ 600
and h2 ¼ 0.5, and the scenario when Ne ¼ 60 and h2 ¼ 0.2,

respectively (Supplementary Table 2). We also observed a few sig-
nificant interactions between factors on GS accuracy (Fig. 4;
Supplementary Table 2). The GS accuracy overtime across all sce-
narios slightly increased after 10 years.

Fig. 3. Change of total genetic variance in the GP population from different breeding schemes over 10 years for a) 24 or b) 96 GPs per parental SP. The
scheme abbreviations are the same as in Fig. 2. Each scheme was repeated 20 times and genetic variance shown was the average. The SE was smaller
than the figure symbols and is not shown. The trait simulated is an arbitrary economic value trait with an initial variance of 1.
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Discussion
Simulation is a useful tool for guiding researchers in decision-
making especially for young breeding programs (Zenger et al.
2019; Muleta et al. 2019). We simulated different breeding
schemes, each overcoming a major obstacle we have encoun-
tered in 2 seasons of kelp breeding. Assessing which scheme gen-
erated the highest genetic gain will allow us to prioritize research
directions and derive the most benefit from a limited research
budget. Given that aquaculture practice is different from the cul-
tivation of land crops and animals, there are challenges associ-
ated with our proposed methods as discussed below.

The simulation revealed a robust result that when other fac-
tors remain the same, the highest genetic gain can be achieved
by exerting selection on SPs phenotypically rather than randomly
(SelectSP, overcoming Obstacle 3), and then by reducing the time
for obtaining sufficient GP biomass such that a 1-year cycle is en-
abled compared with our current 2-year cycle (CycleTime, over-
coming Obstacle 1). Increasing the number of viable GPs we obtain
per parental SP (nGP, overcoming Obstacle 4) also delivered signifi-
cant gain, while somewhat surprisingly, phenotyping more SP
plots (NumCross, overcoming Obstacle 2) did not. These conclu-
sions were not affected by the founder population effective popu-
lation size or the trait heritability. Thus, the clear direction to
prioritize breeding enhancement is to improve our ability to in-
duce SP spore release and to modify GP culture to accelerate
growth. In addition, we should experiment with the amount of
GP biomass needed to make sufficient SP progeny. We may not
need a full 1-m length of plot for evaluation.

It can be challenging to induce top performing SPs to release
spores (SelectSP, Obstacle 3). Ideally, we aim to select crosses in
the top 10% for performance and then artificially induce sporula-
tion in the laboratory. This has proved successful on a small scale
if desirable SPs are identified within a day of harvest. Yet com-
pared with the large number of SPs plots we currently have, over-
coming Obstacle 3 requires greater investment in labor to identify
and separate candidate SPs and investment in additional culture
space to accommodate the induction process. Practically, we
have also observed that not all SPs could generate GPs in the lab-
oratory, which could be due to sterility related genes, laboratory
environmental conditions, or both. Hence, understanding the
mechanisms causing sterile kelp would be beneficial in address-
ing this obstacle too.

Our second-best option is to accelerate GP growth by overcom-
ing Obstacle 1 (CycleTime), which could also be the hardest task.
In brief, it takes 4–8 weeks to induce immature SPs to full matu-
rity and release meiospores under artificial conditions in the lab-
oratory (Pang and Lüning 2004; Flavin et al. 2013; Redmond et al.
2014). Once meiospores are released, flow-cytometry techniques
can be implemented to isolate single-cell GPs into 96-well plates.
A second isolation is performed approximately 2–4 months later
when GPs develop into tufts large enough (>100 mm), to be sexed
and moved to individual Petri dishes for regular periodic filament
fragmentation. Once sufficient uniclonal biomass is achieved
(�10 mg to cover 1 m plots), which can take up to another 4
months, crosses are made by mixing female and male GPs at a
2:1 ratio (Umanzor et al. 2021; Fig. 1). Outplanting at sea occurs 4–
6 weeks following SP attachment onto the seed string (Flavin et al.
2013; Redmond et al. 2014). Overall, this process of uniclonal GP
isolation, growth and crossing is effective but typically requires
12 months, in contrast to the 6 months available between optimal
kelp harvesting (end of May to early June) to crossing and out-
planting (November to December).

Generally, GP growth is limited by the natural biological pro-
gramming of cell division and a propensity to self-shade in its
puff-ball growth form. One may argue that the kelp breeding cy-
cle time is determined by this limitation and shortening the cycle
time might not be feasible. From our observation, however, some
GPs grow faster than others and selecting for GP growth-related
traits could be incorporated in the breeding program. There are
several possible means of accelerating GP growth including opti-
mizing lighting, nutrient, carbon dioxide, and temperature
regimes, as well as novel biomass fragmentation protocols. It
might also be possible to optimize GP biomass development by
transferring them earlier to plates with bigger wells (i.e. from 96-
to 24-well plates) that would allow better light penetration. To
test if a 1-year cycle time is feasible in our current breeding pro-
gram, we have also experimented with using a minimum amount
of biomass to make crosses and generate at least a single SP
blade. The function of this blade would not be for evaluation of
SP performance, but for recombining the best GPs in the hope of
getting improved recombinants. This approach would generate
phenotypic data on the individual SP blade but not on biomass
per meter of line, which is a plot-level trait. Hence this procedure
would not be a full representation of the 1-year per cycle scheme
we simulated here.

Another possibility that is used in forage breeding (Resende
et al. 2013) would be to evaluate segregating plots, in our case cre-
ated from crossing multiple female GPs from 1 SP with multiple
male GPs from another SP. The between-plot variance for such
mixed plots would be less than that for the uniform SPs plots.
However, maintaining multiple individual GPs only until they
can be sexed and cocultured together would reduce labor. Such
mixed plots would generate sufficient biomass more quickly to
facilitate 1-year breeding cycles.

Overcoming Obstacle 2 (nGP) by increasing the number of GPs
per parental SP can potentially be done easily. A simple approach
would be to increase the number of plates automatically sorted
by flow cytometry per parental SP, which would increase the
number of GPs in the GS step, allowing higher selection intensity.
Nonetheless, this would result in increasing the number of cul-
tures to maintain in the laboratory, which leads to more labor
and cost. The use of flow cytometry sorting expedites the initial
isolation process, but the parameters that determine the survival
of spores are not well understood. The condition of sorus tissue
prior to spore release and sorting likely influences spore viability.
Percentage viability varied across samples presumably because
of differences in sorus tissue condition and handling prior to sort-
ing (Augyte et al. 2020). An issue that should be investigated
is whether the selection pressure caused by flow cytometry
mortality has pleiotropic effects that might negatively affect SP
growth or reproduction. If not, the mortality should generate its
own natural selection response that will eventually mitigate this
obstacle.

Increasing the number of plots (from 400 to 1,000, NumCross)
could be accomplished without new research, but would be
costly since it would require more GP grow-out space and labor.
This change generated only a small increase in the rate of genetic
gain. An important benefit to increasing the number of SPs being
phenotyped, however, was that it maintained genetic diversity
and slowed down the decrease of genetic variance (Figs. 3 and 4).
The proportion of GPs selected out of the SPs was the same re-
gardless of testing 400 or 1,000 plots, hence increasing the num-
ber of plots did not change the selection differential. It did,
however, affect the training population size of GS models when
selecting new generations of GPs. Larger training population size
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usually contributes to increased GS accuracy (Poland et al. 2012;
Huang et al. 2016). In this case, the increased phenotypic data led
to an improved genomic prediction model and its ability to distin-
guish among-family vs within-family effects. That ability can

decrease the coselection of relatives leading to greater mainte-
nance of genetic variation (Jannink et al. 2010). Interestingly, ev-
ery intervention that led to greater genetic gain also led to greater
loss of genetic variance for all changes in practice (Selection on

Fig. 4. Change of genomic prediction accuracy in the GP population from different breeding schemes over 10 years for a) 24 or b) 96 GPs per parental SP.
The scheme abbreviations are the same as in Fig. 2. Each scheme was repeated 20 times and genetic variance shown was the average. The SE was
smaller than the figure symbols and is not shown.
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SP, Cycle Time, nGP per parental SP), except increasing the num-
ber of phenotyped plots (NumCross) which both increased gain
and decreased variance lost (Table 2; Supplementary Fig. 1). We
also observed in some cases that the principal effect of increasing
the number of plots was to cause greater variance to be retained,
without increasing the gain from selection substantially (in
Supplementary Fig. 1 the gray lines were close to vertical). Hence,
it seems likely that this intervention would benefit our breeding
program over the long term.

While in this discussion we have treated heritability as fixed,
that is not strictly true. Heritability might be increased if we
could improve our planting technique to ensure that plots are
more uniformly covered by SPs, so that we obtain successful and
uniform growth of SPs in the field. Not surprisingly, higher herita-
bility leads to greater final gain (Figs. 2 and 3). The decreasing
trend of genetic variance led to a relationship where higher final
genetic gain coincided with lower genetic variance. It is important
to maintain the diversity while we improve the progeny perfor-
mance (Heffner et al. 2009; Lin et al. 2016). It is worth noting that
environmental effects, such as water temperature, light, etc.,
play an important role in kelp growth. In our case, we included 2
years of data from a single farm location. As we move forward,
data from more years and multiple locations will become avail-
able and should be added to update the simulation model to gen-
erate practical research suggestions.

Overall, selection causes variance decreases both because of
the Bulmer effect and because high fitness ancestors contribute
disproportionately to descendants. In our simulations, genetic
variance dropped substantially (Fig. 3; Supplementary Fig. 1).
This drop is often observed in simulations that assume additive
gene action (e.g. Muir 2007; Jannink 2010). With the 1-year per cy-
cle scheme, the population went through 2 times as many selec-
tion events as with the 2-year scheme, leading to a greater
decrease in genetic variation over the 10 years (Fig. 3;
Supplementary Table 1). For all combinations of other factors,
there was a higher final genetic variance when nGP was 24 than
when it was 96. The increased selection intensity from this inter-
vention caused a greater variance decrease than for any other in-
tervention. The only intervention that caused increased final
genetic variance was evaluating more SP plots per year
(NumCross¼ 1,000 vs 400; Supplementary Fig. 1). In this case, in-
creasing the number of plots caused increased effective popula-
tion size and thus greater maintenance of variance. These effects
are also depicted in Supplementary Fig. 1. This increase of the
number of SP plots being evaluated also caused an increase of ge-
nomic prediction accuracy, which has also been reported to
maintain genetic variance (Fig. 4; Supplementary Table 2;
Jannink et al. 2010). Reducing the CycleTime from 2 years to 1 year
also increased GS accuracy (Fig. 4; Supplementary Table 2).
Applying random selection scheme at the SP stage also always
generated slightly higher GS accuracy for GPs than selecting SPs
phenotypically (Fig. 4). This effect was likely due to randomly se-
lected SPs retaining greater variation than phenotypically se-
lected SPs. The GS accuracy at the GP stage steadily increased
over breeding cycles. The increased training population size is
likely the main reason since each generation added plots to the
training population.

In summary, our short-term gain improvement would be
achieved if we could improve our ability to induce spores to gen-
erate GPs from top selected SP plots on farm, reduce the amount
of time it takes for GPs to be ready for crossing, and increase the
number GPs generated per SP. These means we could exert a pos-
itive selection on SPs and reduce the breeding cycle time. Form a

long-term perspective, however, it is beneficial to increase the
number of plots being tested on farm, which helps maintain the
genetic diversity. The creation of new variation such as through
collecting wild samples should also be an ongoing effort in the
program. Overall, the robustness of these simulation findings
should give us confidence in the research directions they suggest.
We believe that these priorities will help accelerate genetic gain
in breeding programs and therefore increase the value of kelp
farming in the United States and globally.

Data availability
Supplementary Table 1 is available as a zip file. Founder geno-
typic data and trait heritabilitis for kelp, simulation codes in R
are available on github: https://github.com/MaoHuang2020/
SimulationKelp/tree/master/For_G3. All data necessary for con-
firming the conclusions of the manuscript are present within the
article, figures, and tables.

Supplemental material is available at G3 online.
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