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Abstract

Essential thrombocytosis (ET) is a chronic myeloproliferative disorder with an unregulated

surplus of platelets. Complications of ET include stroke, heart attack, and formation of blood

clots. Although platelet-enhancing mutations have been identified in ET cohorts, genetic

networks causally implicated in thrombotic risk remain unestablished. In this study, we aim

to identify novel ET-related miRNA-mRNA regulatory networks through comparisons of

transcriptomes between healthy controls and ET patients. Four network discovery algo-

rithms have been employed, including (a) Pearson correlation network, (b) sparse super-

vised canonical correlation analysis (sSCCA), (c) sparse partial correlation network analysis

(SPACE), and, (d) (sparse) Bayesian network analysis–all through a combined data-driven

and knowledge-based analysis. The result predicts a close relationship between an 8-

miRNA set (miR-9, miR-490-5p, miR-490-3p, miR-182, miR-34a, miR-196b, miR-34b*,

miR-181a-2*) and a 9-mRNA set (CAV2, LAPTM4B, TIMP1, PKIG, WASF1, MMP1,

ERVH-4, NME4, HSD17B12). The majority of the identified variables have been linked to

hematologic functions by a number of studies. Furthermore, it is observed that the selected

mRNAs are highly relevant to ET disease, and provide an initial framework for dissecting

both platelet-enhancing and functional consequences of dysregulated platelet production.

1. Introduction

Platelets are anucleate blood cells generated from bone marrow megakaryocytes, and play an

important role in haemostasis and thrombosis. Thrombocytosis is a disorder of platelet over-

production in the blood. It is classified as essential/primary thrombocytosis (ET) or reactive/

secondary thrombocytosis (RT) by the causes. Essential thrombocytosis is a chronic myelopro-

liferative disorder with an unregulated surplus of platelets attributed to a malfunction in the

body’s feedback system. Complications of ET include stroke, heart attack, and formation of

blood clots. Mutations involving JAK2, CALR, and c-MPL are identified in the majority of ET

cohorts, although genetic risk substratification associated with thrombotic (or hemorrhagic)

predisposition remains unknown [1].

Recent data have demonstrated that both megakaryocytes and platelets retain an abundant

and diverse array of mRNAs and microRNAs (miRNAs) [2]. miRNAs are a class of non-cod-

ing 21- to 24-bp species that primarily regulate protein translation by post-transcriptional
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targeting of 3’—UTRs [3], which subsequently regulates mRNA translation activity or stability

[4]. Emerging evidence has implicated miRNAs in the control of megakaryocytopoiesis [5]

and in progenitor fate during the megakaryocyte-erythroid transition. Distinct miRNA expres-

sion patterns have been described in differentiated hematopoietic cells [6] and in subsets of

patients with myeloproliferative neoplasms [7, 8]. The miRNAs have effects on protein synthe-

sis through regulating mRNA destabilization or translational repression [4]; indeed although

quiescent platelets display minimal translational activity, maximally-activated platelets retain

the capacity for protein synthesis, with implications for modulating arthritis-associated

inflammation [9] or the production of platelet progeny in vivo [10].

Many computational methods have been developed to study interactions between miRNA

and mRNA, which are largely based on two types of methods: one is computation-based

method that uses the sequence complementarities of miRNA and its mRNA targets to build in
silicon interaction databases, including MiRBase [11], TargetScan [12, 13] and so on; the second

is experimental data-based method that examines expression profiles of miRNAs and mRNAs

for negative correlations. For example, GenMiR++ [14, 15] and HOCTAR [16] predicts the

interaction between miRNA and mRNA by integrating the expression profiling and sequence-

based recognition software. Several other methods that are based solely on expression profile

have also been published. Jayaswal et al. [17] developed a two-stage procedure that first clusters

each expression data for miRNA and mRNA and then identify significant miRNA-mRNA rela-

tionship using t-test. Li et al. [18] proposed a method to find a set of differentially expressed

miRNAs and mRNAs via Partial Least Squares Regression. It is very challenging to build causal

relationship using observational data. Le et al. [19] designed an algorithm to uncover the causal

regulatory relationship between miRNAs and mRNAs, using expression profiles of miRNAs

and mRNAs without taking into consideration the previous target information. It is based on

Intervention calculus when the Directed Acrylic Graph (DAG) is absent (IDA) [20]. While all

the above methods focus on uncovering interaction between individual miRNA and mRNA,

there is a growing body of literature showing that multiple miRNAs are coordinated by forming

cohesive groups to collectively regulate one or more mRNAs [21]. The complex regulatory net-

work formed between a group of miRNAs and a group of mRNAs acts as a vital force in cater-

ing similar functioning miRNAs and mRNAs together, and may provide better understandings

on the underlying miRNA-mRNA regulatory modules (MMRMs) [22].

In this study, we explore the potential miRNA/mRNA regulatory networks associated to

essential thrombocytosis based on a 43-member cohort (13 ET patients and 30 controls),

through a combination of data-driven and knowledge-based analyses. Three classes of correla-

tion network analyses methods, namely, the Pearson correlation network, the sparse canonical

correlation network, and the sparse partial correlation network have been implemented,

compared and integrated to obtain a more reliable and robust miRNA-mRNA pathway. This

pathway was subsequently examined for its biological functionalities through an Ingenuity

Pathway Analysis. Additionally, we have applied a sparse Bayesian Network analysis, the A�

Lasso, to compare with the three Frequentist network analysis methods.

2. Methods

2.1 Patient recruitment, sample processing and data description

Subject recruitment (along with normal healthy controls) was completed by written consent

through a study approved by the Stony Brook IRB (Institutional Review Board) Committee on

Research Involving Human Subjects (approval period 1999 –present). Enrollment proceeded

over a 3-year period and was restricted to adults (>21 years of age) meeting clinical and labo-

ratory criteria for essential thrombocytosis as previously described (38). Patients were
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randomly enrolled from the larger pool of patients referred for evaluation of thrombocytosis,

and the primary ineligibility criteria were failure to provide consent; subject data are from the

initial recruitment with no reentry to date. ET is rare in minors and no minors were included in

this study. Subject gender distribution (9 females, 4 males) was designed to parallel the relative

female preponderance of the disease; healthy controls identified from the ethnically diverse pop-

ulation of Long Island, NY were not matched with thrombocytosis cohorts, but were gender-

equivalen (i.e. 15 females, 15 males). Methods for platelet isolation, sample processing, and sam-

ple quality control using highly-enriched peripheral blood platelets have been previously

described [2, 23–25]. The miRNA data were obtained from sample hybridization to the Agilent

G4470C human miRNA gene chip that incorporates 866 human and 89 viral miRNAs (miR-

Base database Version 12.0) and have been deposited into the public GEO database (GEO acces-

sion number GSE39046) [25]. The mRNA data were obtained from a custom 432-member

oligonucleotide gene chip specifically designed to characterize human platelet-restricted gene

expression data [24], and are publicly available (GEO accession number GSE12295).

In the remaining part of this section, we first introduce the Frequentist network analysis

methods used in this study. Subsequently we present the integrated analysis combining the

results from these different methods.

2.2 Sparse supervised canonical correlation analysis

Introduced by Hotelling in 1936 [26], (the first) canonical correlation between two variable

sets looks for the weighted combination of all variables within each variable set such that the

correlation of the two combinations is maximized. The weighted combinations are called

canonical variables or components. Considering an n � pmatrix X and an n � qmatrix Y. With-

out loss of generality, we assume p< q. Canonical correlation analysis (CCA) [26] seeks co-

efficient vectors u and v, such that the correlation between the linear combinations ω = u0X
and ξ = v0Y is maximized, i.e.

max
u;v

Corrðo; xÞ ¼ max
u;v

u0SXYvffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0SXXu

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
v0SYYv

p

where SXX, SYY, and SXY are the variance for X, Y, and the covariance for X and Y, respec-

tively. It is attained by the canonical variate pairs

o ¼ u0X ¼ e0SXX
� 1

2X; x ¼ v0Y ¼ f 0SYY
� 1

2Y

with e and f from the singular value decomposition (SVD) of the matrix K given by K ¼
SXX

� 1
2SXYSYY

� 1
2 ¼ eDf 0 [27].

In canonical correlation analysis, all variables are included in the linear combinations, yet

for genetic data obtained via microarray studies or other high throughput methods, the num-

ber of variables usually surpasses tens of thousands, far exceeding the number of study sub-

jects. Thus the fitted linear combinations may not be easily interpreted and the application of

standard algorithms may fail. These problems can be solved by introducing sparse loadings in

the canonical components, i.e. the sparse canonical correlation analysis (SCCA) proposed in

2007 [27]. The idea of SCCA is consistent with the belief that only a modest set of genes are

truly associated with a given trait of interest.

Based on the foundation of SCCA, Witten and Tibshirani [28] further presented “sparse

supervised canonical correlation analysis (sSCCA)”, targeting on finding the sparse linear

combinations of the two variable sets that are correlated with each other and also associated

with the trait of interest. Still considering an n � pmatrix X and an n � qmatrix Y, and
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assuming that the columns of X and Y have been standardized with mean 0 and standard devi-

ation 1. Suppose in addition we have a categorical outcome vector z 2 Rn. The estimates of

canonical vectors are defined as

maxu;vu
TXTYv ; subject to

kuk2
� 1; kvk2

� 1; P1ðuÞ ¼ kuk1 � cu; P2ðvÞ ¼ kvk1 � cv; ð1Þ

uj ¼ 08 j =2Qu; vj ¼ 08 j =2Qv;

where P1 and P2 are convex penalty functions; cu and cv are assumed to be 1 � cu �
ffiffiffipp and

1 � cv �
ffiffiffiqp ; Qu and Qv are the sets of variables with highest univariate association with the

outcome z in X and Y, respectively; the threshold for variables to be included in Qu and Qv can

either be fixed or defined as tuning parameters. The vectors u and v are obtained using an iter-

ative algorithm with soft-thresholding. We have performed this sSCCA method on our genetic

data set to investigate whether the expression of miRNA would have a significant effect on that

of genes and vice versa.

2.3 Sparse partial correlation analysis

Given p continuous random variables {Xi, i = 1,2,. . ., p}` from n samples, we can denote the set

of measurements/data as

X ¼ ðX1;X2; . . . . . . ;XPÞ
T
2 Rn�p

Here the rows of the matrix represent the samples and the columns the variables. Within each

column (variable), the data are centered to the column mean. For any two random variables Xi
and Xj, we denote the set of all other variables as X−(i,j), that is,

X� ði;jÞ ¼ X n fXi;Xjg ¼ fXk; 1 � k 6¼ i; j � pg

where Xi and Xj 2 Rn are the ith and jth columns of X, and X� ði;jÞ 2 R
n�ðp� 2Þ is the matrix ob-

tained from X by deleting its ith and jth columns. Without loss of generality, we assume that i< j.
The Sparse partial Correlation Analysis (SPACE) is a modern method for estimating the

partial correlation coefficient also relates to the least square regression problem [29]. This

method starts with constructing p linear regression models

Xi ¼ X� ðiÞb
ðiÞ
þ εi ¼

P
k6¼ib

ðiÞ
k Xk þ εi; i ¼ 1; 2; . . . ; p ð2Þ

where εi are i.i.d. disturbance terms, the least square estimate of the regression coefficient vec-

tor is calculated as

b̂ðiÞ ¼ ðb̂
ðiÞ
1 ; b̂

ðiÞ
2 ; . . . ; b̂

ðiÞ
i� 1; b̂

ðiÞ
iþ1; . . . ; b̂ðiÞp Þ ¼ arg min

b2Rp� 1
kXi � X� ðiÞbk

2

¼ ðXT
� ðiÞX� ðiÞÞ

� 1XT
� ðiÞXi; for i ¼ 1; 2; . . . ; p

The sample partial correlation coefficient is then estimated as r̂ij ¼ signðb̂
ðiÞ
j Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

b̂
ðiÞ
j b̂

ðjÞ
i

q

.

2.4 Sparse Bayesian network analysis

The fundamental structure among a series of random variables is depicted by their joint

probability distribution. Probabilistic graphical models are used to describe the conditional
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independence or dependence structure implied by the joint distribution with a graph-induced

decomposition of the joint density function. A Bayesian Network (BN), a branch of probabilis-

tic graphical model, is a probabilistic graphical model defined over a DAG G with a set of p =

|V| nodes V = {v1, � � �, v2}. In such a graph or network, a node is a random variable, and an edge

between two nodes indicates certain stochastic association. The probability model associated

withG in a Bayesian network factorizes as pðX1; � � � ;XpÞ ¼
Qp

j¼1
pðXjjPaðXjÞÞ, where p(Xj|Pa(Xj))

is the conditional probability distribution for Xj given its parents Pa(Xj) with directed edges from

each node in Pa(Xj) to Xj inG. For Gaussian random variables, conditional independence of X

and Y given Z is equivalent to a zero partial correlation: ρXY� Z = 0. This provides certain insight

into the relationship between the Bayesian network and the partial correlation network in that, the

partial correlation, by controlling all other variables except the two targeting variables, should in

general be more conservative than the Bayesian network.

A recently published paper [30] presented an algorithm entitled A� lasso, for learning a

Sparse Bayesian Network structure for continuous variables in a high-dimensional space.

Compared to the common two-stage inference methods, A� lasso is a single stage method

that recovers the optimal sparse Bayesian network structure by solving a single optimization

problem with A� search algorithm that uses lasso in its scoring system. The A�lasso method

assumes continuous random variables and uses a linear regression model for the conditional

probability distribution of each node Xj = Pa(Xj) � βj + �, where bj ¼ fb
0

jksfor Xk 2 PaðXjÞg is

the vector of unknown parameters to be estimated from data and � is the noise distributed as

N(0, 1). The BN’s structure and parameters are obtained by minimizing the negative log likeli-

hood of data with sparsity enforcing L1 penalty as follows:

min
b1 ;���;bp

Pp
j¼1
kxj � x

0

� jbjk
2

2
þ l
Pp

j¼1
kbjk1 s:t:G 2 DAG; ð3Þ

where X−j represents all columns of X excluding xj, assuming all other variables are candidate

parents of node vj.
This lasso optimization problem can be solved efficiently with the shooting algorithm [31]

if the acyclicity constraint is ignored, which is the most challenge part of the BN inference pro-

cedure. A heuristic scheme of A� lasso is proposed to prune search space when learning the

Bayesian network structure by exploring a scoring algorithm based on lasso score generated by

the shooting algorithm f(Qs) = g(Qs) + h(Qs) [31]. Here Qs is the set of variables for which the

ordering has been determined. And g(Qs) is the accumulated cost for reaching the Qs state:

gðQsÞ ¼
P

vj2Qs
LassoScoreðvjj

QQs
<vj
hðQsÞÞ ð4Þ

Here h(Qs) is the estimated cost of reaching the goal stat from the current state

gðQsÞ ¼
P

vj2VnQs
LassoScoreðvjjV n vjÞ ð5Þ

Furthermore, the Lasso Score is defined as

LassoScoreðvjjV n vjÞ ¼ minbj
kxj � x

0

� jbjk
2

2
þ l
Pp

j¼1
kbjk1 ð6Þ

On top of the heuristic scheme, A� lasso further reduces the search space by limiting the

size of intermediate search path via a size-limited priority queue that orders the promising

intermediate search paths via the above scoring scheme. The combined strategy gives the A�

lasso great advantage in efficiency over the common DP algorithms, which makes it scalable

for high-dimension data, such as the miRNA and mRNA interaction problem in our study.
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2.5 A novel joint network analysis pipeline

We proposed a novel pipeline for extracting miRNA and mRNA interaction network by com-

bining the sSCCA and the SPACE methods. Our pipeline is designed for small/moderate sam-

ple size with large number of miRNAs and mRNAs. In order to extract meaningful insights

from small/moderate datasets, the pipeline selects most relevant miRNAs and mRNAs that has

the largest canonical correlation via sSCCA and then identifies links between these selected

miRNAs and mRNAs through the SPACE method, where the latter would compute the pair-

wise partial correlation coefficient conditioned on other features.

There are four steps in the pipeline (Fig 1). First, the differentially expressed (DE) miRNAs

and mRNAs are selected via either limma [32] or SAM [33], which are commonly used meth-

ods for DE detection. Second, a subset of miRNAs and mRNAs are selected by performing the

sSCCA method on the pooled DE miRNAs and mRNAs. In the third step, the pair-wise partial

correlations are calculated by performing SPACE on the pooled DE miRNAs and mRNAs.

Lastly, only the links that connects the selected miRNAs and mRNAs by sSCCA are kept and

added to the sSCCA result.

Fig 1. Pipeline of extracting the data-based miRNA and mRNA interaction networks through the joint sparse supervised canonical correlation network analysis

(sSCCA) and sparse partial correlation network analysis (SPACE).

https://doi.org/10.1371/journal.pone.0191932.g001
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3. Results

3.1 Data structure and processing

Our study integrated platelet mRNA/miRNA expression data from two distinct data sets: (1)

mRNA expression data were obtained using a 432-member platelet-specific oligonucleotide

custom array as previously described [24], and (2) miRNA expression data were obtained

from sample hybridization to the Agilent G4470C human miRNA gene chip that incorporates

866 human and 89 viral miRNAs (miRBase database Version 12.0) [25]. Both mRNA and

miRNA expression levels have been collected on 13 patients with essential thrombocytosis

(ET) disease and 30 control subjects (S1 Table). Subject recruitment (along with normal

healthy controls) was completed by written consent through a study approved by the Stony

Brook IRB (Institutional Review Board) Committee on Research Involving Human Subjects

(CORIHS), and was restricted to adults (>21 years of age) meeting clinical and laboratory cri-

teria for essential thrombocytosis as previously described (38). Subject gender distribution (9

females, 4 males) paralleled the relative female preponderance of the disease; healthy controls

were matched by gender (i.e. 15 females, 15 males).

Among 43 samples, there are 7 (3 ET, 4 NO) samples that have two technical replicates. The

values of these samples are reset by the mean value of the sample replicates. The original

miRNA data set was filtered in two steps: The first step is to filter out miRNAs with less than

30% non-absent cells in both groups. Next, miRNAs with more than 40% missing values in the

sample sets were also dropped out. For the mRNA data, the proportion of missing expression

data in the sample set for each mRNA was calculated and those with 50% or more absent data

have been excluded. In addition, potential outliers were checked and filtered with a criterion

of 3 standard deviations from the mean expression value. In both data sets, quantile normaliza-

tion was applied to correct the between-array variation [34]. There are 93 out of 432 genes that

have missing values in at least one sample. In general, it leads to selection biases if the missing

values are simply discarded or the corresponding genes are removed; We decided to impute

the missing values using the k-nearest neighbors algorithm [35] implemented in the impute R

package, which takes into the consideration the correlation structure of the data.

After data filtering and processing, there are totally 327 platelet-specific mRNAs and 396

miRNAs left. To identify highly DE miRNAs and mRNAs, Linear models for microarray data

(limma) [36] was applied to the expression data and design matrix. After fitting the linear

model, the standard errors are moderated using a simple empirical Bayes model using eBayes

function in limma package. Then top DE miRNAs and mRNAs are selected based on the

adjusted p-value for the coefficient/contrast of interests. A total of 61 miRNAs and 19 mRNAs

were selected at the significant level 0.01 adjusted by the Benjamini-Hochberg (BH) method.

3.2 Individual and combined network analysis results

With the 61 selected miRNAs as one variable set, the 19 mRNAs as the other, and the vector of

subject disease status as a binary outcome vector, we applied four network analysis methods

(Pearson correlation, sSCCA, SPACE and the Bayesian A� lasso) to the differentially expressed

(DE) data sets (miRNA and mRNA).

On the Pearson correlation analysis, the pair-wise Pearson correlation coefficient is calcu-

lated using the “psych” R package, and 3164 non-zero coefficients are identified at the signifi-

cant level 0.01 adjusted by the BH method. It covers all links from the results of SPACE and A�

lasso, which indicates that the Pearson correlation may generate much more false positives

than the other methods. Therefore, we have decided to focus on the results of the other three

methods.
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On the sSCCA method, the miRNA and mRNA subsets were selected with the penalty of

0.3 (default value in R package SPACE) on vector u and 0.5 on vector v. As discussed previ-

ously, vector u restricts the number of selected miRNA, while vector v does the same to the

mRNA. In the result, 8 miRNAs stand out with 9 corresponding mRNAs. Fig 2 visualizes the

weights in the loadings of the first canonical correlation coefficient of selected miRNAs and

mRNAs. The actual values are tabulated in supplementary S2 Table.

SPACE is a penalized method, which has one tuning parameter that controls the L1 penalty

on Lasso regression. The value is set as 0.5765849 as calculated by the following equation.

L1 ¼
Fð1 � a

2�p2Þ
ffiffiffi
n
p ð7Þ

Here n is the sample size (43), p is the number of features (80), and α is a constant (1).

Fig 3 illustrates the SPACE interaction network emphasizing the interactions between miR-

NAs and mRNAs. Those miRNAs and mRNAs that have direct links with each other are

labeled. The network is connected and there is no isolated node. Within-group links accounts

for most of the edges of the network, suggesting that interaction within group is more com-

mon than that between groups. There are only 14 (14/165) direct links between miRNAs and

mRNAs.

On the result from the A� lasso algorithm, there are two critical parameters. One is the L1

penalty on Lasso regression. We chose 0.2 (recommended value) as the L1 value. The other

parameter is the queue size that limits the search depth. In order to obtain a near optimal

structure, 3,000 is chosen for this option. Since all mRNAs have direct links with miRNAs, the

Fig 2. Bipartite plot of the sSCCA result. Red or green node represents positive or negative weight in vector u and v. The node size represents the absolute value of

weight.

https://doi.org/10.1371/journal.pone.0191932.g002
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names are not listed in the figure (S1 Fig), A� lasso shows the same pattern as the SPACE

result, namely, within group interaction is more common than between group interaction.

A� lasso identified 306 links that covers 192 out of 250 links from SPACE result, which is

consistent with our expectation that SPACE should be more conservative than A� lasso consid-

ering the methodological differences. Since it is very hard to interpret a network with too

many links and nodes, we integrate the SPACE and A� lasso result with result from sSCCA by

only keeping the selected miRNAs, mRNAs and the corresponding links from SPACE and A�

lasso method (Fig 4) respectively. Fig 4 compares the integrated results using SPACE and A�

Lasso method with sSCCA. The interaction within the selected mRNAs are strikingly consis-

tent both on links and the value signs except A� Lasso has more links. Two miRNA and

mRNA interactions are overlapped. One is the link between has-miR-182 and WASF1. The

other is the link between has-mir-34a and MMP1 gene (miRNA).

To render the results more comprehensive, the expression value of those selected miRNAs

and mRNAs are tabulated in S3 and S4 Tables. All selected miRNAs and mRNAs are differen-

tially expressed with very small adjusted p-values (all less than 0.0001).

Fig 3. Bipartite plot of the SPACE result. Red circles represent miRNAs that have direct connection with the mRNAs, while the red squares denote the mRNAs that

have direct link with the miRNAs. In addition, red and green lines represent positive or negative partial correlations between the pairs.

https://doi.org/10.1371/journal.pone.0191932.g003
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4. Discussion

In this paper, we proposed a new integrative approach that extracts miRNA and mRNA inter-

action network by combining the sSCCA and the SPACE methods. Compared to the widely

used methods (see S5 Table for detail comparison), such as HOCTAR and GenMiR++, our

pipeline is designed for small/moderate sample size with large number of miRNAs and

mRNAs and only focuses on the most relevant and sparse networks.

Our joint network analyses using miRNA and mRNA expression data have predicted a

close relationship between 8 miRNAs (including miR-9, miR-490-5p, miR-490-3p, miR-182,

miR-34a, miR-196b, miR-34b�, miR-181a-2�) and a 9-mRNA set (including CAV2, LAPTM4B,

TIMP1, PKIG, WASF1, MMP1, ERVH-4, NME4, HSD17B12), collectively implicating distinct

miRNA/mRNA subsets in an integrated network regulating the essential thrombocythemia

(vide infra). The ET phenotype encompasses two distinct biological pathways, specifically (1) a

regulatory network that controls excess platelet production either by effecting megakaryocyte

proliferation or proplatelet formation, and (2) a presumably disconnected network that affects

platelet functional activity leading to thrombotic or hemorrhagic risk known to accompany ET

[37]. Despite these dichotomous functions, molecular defects causally implicated in platelet-

associated bleeding or thrombosis remain largely unknown, sharply contrasting with genetic

regulation of hematopoietic proliferation/differentiation signals known to accompany terminal

megakaryocytopoiesis and platelet production. Application of our miRNA/mRNA network to

platelet functional responses provides a logical framework for subsequent delineation of clinical

thrombohemorrhagic outcomes in defined ET cohorts.

Notably, the network(s) identified by SPACE and A� lasso methods have significant over-

lap, serving to validate our conclusions by applying distinct approaches to yield comparable

results. Two overlapped links (miR-182-WASF1 andmiR-34a-MMP1) are worthy targets for

biological validation since all four mRNAs/miRNAs have been previously implicated in the ET

phenotype. Indeed,miR-34a andmiR-182 identified by sparse SCCA have been previously

described as demonstrating aberrant expression in polycythemia vera (PV) granulocytes [8];

Fig 4. Integrated network analysis results. (A) is the integrated result between sSCCA and SPACE. (B) is the integrated result between sSCCA and A� Lasso method.

The arrow is added back on figure (B). The red represents positive values (either weight or correlation coefficient) and green means negative values.

https://doi.org/10.1371/journal.pone.0191932.g004
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furthermore, bothmiR-34a andmiR-182 are among the most significant differentially-

expressed miRNA members among a cohort of thrombocytosis subjects [25]. ThemiR 34 fam-

ily members (miR 34a and miR 34b/c) contain p53 binding sites, andmiR 34a is widely studied

as a tumor suppressor gene and as a potential therapeutic target in human cancer [38]. No

prior evidence has demonstrated thatmiR34a regulatesMMP1 (matrix metalloproteinase 1) as

demonstrated by our data [38]. Indeed, bothMMP1 and its inhibitor TIMP1 (tissue inhibitor

of metalloproteinases 1) are members of a well-characterized class of proteinases involved in

tumor invasiveness and cancer metastases [39]. Furthermore, TIMP1 has been predicted as a

putativemiR-34a target using the target prediction tools TargetScan [40], designed to identify

regulatory targets using conserved complementary [12]. Members of the matrix metalloprotei-

nase family have been implicated in the migration and invasion of leukemia cell (MMP-2)

[41], and previously shown to mediate megakaryocyte transendothelial migration and propla-

telet formation (MMP-9) [42].MMP1 has also been studied in the context of inflammation in

several studies [43–46], thereby providing an additional link to the known function(s) of plate-

lets in adaptive immunity [37].

In addition toMMP1/TIMP1, various other transcripts within the 9-member mRNA list

have critical roles in platelet biology and function. Indeed, both CAV2 (caveolin 2) and

WASF1 (WAS protein family, member 1) have fundamentally important functions in main-

taining cytoskeletal function and viability of membrane/lipid rafts, key regulators of the plate-

let activation response. Moreover, the WAS protein family has been shown to be related to

nucleosome and chromatin assembly, performing an important role in gene transcription that

may regulate megakaryocytopoiesis and/or proplatelet formation [47]. A recent study in class

prediction models of ET included a member from this family (WASF3) as one of the biomark-

ers segregating ET from reactive thrombocytosis and healthy controls [24], thereby extending

the role of the WAS family of proteins in key regulatory functions of megakaryocytopoiesis

and/or platelet activation. Finally, HSD17B12 (hydroxysteroid (17-β) dehydrogenase 12)

which catalyzes the penultimate step in testosterone synthesis, has been previously identified

as a functionally-active dehydrogenase in ET platelets, serving as a putative link to gender-reg-

ulated differences in platelet function [23].

We also used the Ingenuity Pathway Analysis (IPA) software to further characterize the con-

firmed associations between 8-miRNAs and 9-mRNAs. IPA predicts thatmiR-9 andmiR-196b
have interaction with NME4 (NME/NM23 nucleoside diphosphate kinase 4) which links to sev-

eral fundamentally important pathways regulating nucleotide synthesis expected to be active

during enhanced megakaryoctyopoiesis (i.e. salvage pathways of pyrimidine ribonucleotides;

pyrimidine ribonucleotides de novo biosynthesis; pyrimidine ribonucleotides interconversion;

pyrimidine deoxyribonucleotides de novo biosynthesis 1). It also linksmiR-34a/miR-34b� with

WASF1 and relates these two links to multiple pathways critical for platelet function (including

actin cytoskeleton signaling; actin nucleation by ARP-WASP complex; epithelial adherens junc-

tion signaling; Rac signaling; regulation of actin-based motility by Rho; RhoA Signaling;

RhoGDI Signaling; and signaling by Rho family GTPases). These pathways are relevant not

only to megakaryocyte development and proplatelet formation, but also have fundamental rele-

vance to platelet activation and signaling linked to cardio/cerebrovascular thrombotic diseases.
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