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Background and Objectives: Focal cortical dysplasia (FCD) is a type of malformations
of cortical development and one of the leading causes of drug-resistant epilepsy.
Postoperative results improve the diagnosis of lesions on structural MRIs. Advances
in quantitative algorithms have increased the identification of FCD lesions. However, due
to significant differences in size, shape, and location of the lesion in different patients
and a big deal of time for the objective diagnosis of lesion as well as the dependence of
individual interpretation, sensitive approaches are required to address the challenge of
lesion diagnosis. In this research, a FCD computer-aided diagnostic system to improve
existing methods is presented.

Methods: Magnetic resonance imaging (MRI) data were collected from 58 participants
(30 with histologically confirmed FCD type II and 28 without a record of any neurological
prognosis). Morphological and intensity-based features were calculated for each cortical
surface and inserted into an artificial neural network. Statistical examinations evaluated
classifier efficiency.

Results: Neural network evaluation metrics—sensitivity, specificity, and accuracy—
were 96.7, 100, and 98.6%, respectively. Furthermore, the accuracy of the classifier for
the detection of the lobe and hemisphere of the brain, where the FCD lesion is located,
was 84.2 and 77.3%, respectively.

Conclusion: Analyzing surface-based features by automated machine learning can give
a quantitative and objective diagnosis of FCD lesions in presurgical assessment and
improve postsurgical outcomes.

Keywords: epilepsy, focal cortical dysplasia, image processing, machine learning, computer-aided diagnosis

INTRODUCTION

Focal cortical dysplasia (FCD) is inherently epileptogenic and can be an essential reason behind
refractory epilepsy (Fauser et al., 2015). FCD, described initially by Taylor et al. (1971), was first
considered a rare kind of cortical development malformations. Using the advent of contemporary
imaging techniques and histopathological inspections, the rate of FCD in the epileptic population

Frontiers in Human Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 608285

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2021.608285
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnhum.2021.608285
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2021.608285&domain=pdf&date_stamp=2021-02-19
https://www.frontiersin.org/articles/10.3389/fnhum.2021.608285/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-608285 February 17, 2021 Time: 13:30 # 2

Ganji et al. Epilepsy, Focal Cortical Dysplasia, Image Processing, Machine Learning

seemed to be higher than initially expected, but despite the
advancement of these methods, diagnosing small and subtle
lesions is still challenging (Becker, 2006; Harvey et al., 2008), and
the results of examining images of these lesions are often normal
[“magnetic resonance imaging (MRI)-negative”] (Ahmed et al.,
2015). Furthermore, FCD is not a uniform disorder and carries
a wide variety of sufferers with clinical and radiological reports
from minor epileptic seizures in adolescence with dubious
symptoms of a lesion on MRI to more severe epileptic seizures
in childhood with apparent MRI signs (Krsek et al., 2009; Lerner
et al., 2009). For patients with FCD, epilepsy surgery may be a
treatment option. The total removal of FCD lesions results in 50–
75% improvement in patients (Cossu et al., 2008; Krsek et al.,
2009; Chen et al., 2014; Choi et al., 2018). Therefore, the diagnosis
of these lesions is critical in preoperative MRI because the
postoperative outcome in patients with positive MRI improves
significantly (Berg et al., 2003; Bien et al., 2009). Moreover, FCD
is the most typical pathology among patients with MRI-negative
epilepsy (Wang et al., 2013a). FCD histology is dependent on the
lamination changes (type I), dysplastic neurons, and balloon cells
(type II) (Blu et al., 2011). The MRI features of FCD include focal
cortical thickening, decreased cortical T1 intensity, increased T2
signal, and gray–white matter blurring (Colombo et al., 2009,
2012; Leach et al., 2014). In T1-weighted scans, cortical thickness
malformations, blurring of gray matter–white matter (GM–
WM) boundary, and abnormal sulcus structure are FCD lesion
features, and in T2/fluid-attenuated inversion recovery (FLAIR)
images, signal hyperintensity is seen in FCD and transmantle
sign lesions, particularly in FCD IIb (Barkovich et al., 1997;
Wang et al., 2013b). MR images of patients with FCD show in
60% of the cases gray matter thickness increasing, 74% GM–
WM interface blurring, 63% white matter signal hyperintensity,
19% structural atrophy, and 34% other signal changes due to
the transmantle sign (Colombo et al., 2003; Lerner et al., 2009).
Sometimes, these features occur together and make the lesion
more visible. A combination of cortical thickness increasing,
GM–WM junction blurring, and transmantle sign was seen
in 64% of patients with FCD II (Mellerio et al., 2012). The
challenge in many patients is to determine the exact location
of the lesion tissue. Some FCDs are detected in conventional
neuroimaging, and the identification of other types which
are quite subtle requires advanced imaging and computational
techniques (Rosenow and Lüders, 2001; Harvey et al., 2015).
Moreover, the visual interpretation of MRI is very subjective and
depends on the radiologist’s skills (Kassubek et al., 2002; Wilke
et al., 2003; Colliot et al., 2006). Therefore, there is a pressing need
to explore objective methods which can help accurately identify
FCD in MRI. Quantitative postprocessing approaches were
designed to solve some of the visual detection issues of FCDs with
MRI (Kassubek et al., 2002). Many studies have examined the
morphometric features of MRI in patients with FCD. Martin et al.
(2017) compared four voxel-based morphometric methods. They
examined four VBM methods: three T1 image-based methods
(gray matter volume, gray matter concentration, and white–gray
matter junction map) and one FLAIR-based method to evaluate
its ability to detect FCD lesions with positive MRI and negative
MRI. Wong-Kisiel et al. (2018) used morphometric analysis

program (MAP) as a complement to visual MRI analysis in the
diagnosis of FCD. Gill et al. (2017) proposed an automatic FCD
lesion detection algorithm using surface-based and intensity-
based features in T1, FLAIR, and FLAIR/T1 images. We designed
and implemented a computer-aided diagnostic system to identify
FCD lesions, assuming that morphometric and machine learning
methods can accurately detect and locate FCD lesions. Firstly,
we acquired structural images (T1 and T2-FLAIR sequences),
performed image preprocessing (cortical reconstruction), and
extracted surface features (morphological and intensity-based)
from each Desikan–Killiany atlas (Desikan et al., 2006) region
(34 in each hemisphere). Then, by performing machine learning
models to image classification and selecting the artificial neural
network as the appropriate algorithm, this method was used to
detect normal images from FCD lesions as well as lesion location.

MATERIALS AND METHODS

Ethics
This study involving human participants were reviewed and
approved by the Research Ethics Committee of the School of
Medicine, Mashhad University of Medical Sciences. Since we
used pre-prepared data, there is no need for consent statement
(Ethics code: IR.MUMS.fm.REC.1396.506).

Participants
Thirty individuals with verified FCD type II were involved
in the present research. To determine specificity, we also
included a control group of 28 adults without a record of
any neurological prognosis from the ADNI (adni.loni.ucla.edu)
database. All individuals were right-handed. The patients and
control demographics and lesion characteristics are summarized
in Table 1. As shown in Table 1, 20 patients had positive MRI
and 10 patients had negative MRI. This means that in positive
MRI, the lesions can be identified visually (although hard), but
in negative MRI, the lesions are not visually detectable. In this
study, lesions were detected in MRI-negative cases using PET
imaging modality.

MR Imaging
We used two different scanners with two magnetic fields: 1.5 and
3 T. According to Jin et al. (2018), the type of scanners does not

TABLE 1 | The demographic information of patients and controls.

Total patients = 30

MRI-
negative = 10

MRI-
positive = 20

Normal
database = 28

M/F 5/5 10/10 13/15

Age at onset
(years)

15.4 (0.18–30) 13.3 (0.5–27) –

Age at MRI
scan (years)

25.9 (1–46) 21.6 (1–38) 30.1 (5–46)

MRI scanners Philips Philips Siemens
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affect the classification performance in FCD patients. Regarding
the difference of magnetic fields, according to the study of
Mellerio et al. (2014) which evaluated the difference between two
scanners 1.5 and 3 T, it was observed that an excellent spatial
resolution for three-dimensional (3D) T1 sequences of 1.5 T
images is also available, due to the limited difference between
two magnetic fields for the detection of cortical features. In
this study, the focus was on the cortical features (thickness,
blurring, and curvature). For the control subjects from the
ADNI database, 21 subject images were scanned on a Siemens
(Munich, Germany) 3.0 T scanner: 3D T1-MPRAGE sequence
[repetition time (TR)= 2,300 ms, echo time (TE)= 2.98 ms, slice
thickness = 1 mm, no gap] and 3D T2-FLAIR (TR = 4,800 ms,
TE = 343 ms, slice thickness = 1 mm, no gap), and seven
subjects underwent scanning using the Siemens 1.5 T scanner:
3D T1-MPRAGE sequence (TR = 2,300 ms, TE = 3.05 ms, slice
thickness= 1.2 mm, no gap) and 3D T2-FLAIR (TR= 6,000 ms,
TE= 418 ms, slice thickness= 0.9 mm, no gap).

The patients’ MRI datasets have been obtained with Achieva R©

1.5 T magnet (Philips Healthcare; Best, Netherlands): 3D volume
fast field echo (FFE) T1-weighted sequence (TR = 7.3 ms,
TE= 3.3 ms, slice thickness= 0.9 mm, no gap) and 3D T2-FLAIR
(TR = 140 ms, TE = 11 ms, slice thickness = 0.9 mm, 0.6 mm
interslice gap).

Method Selection
In this study, which is an extract from a dissertation (Mashhad
University of Medical Sciences, 2019), we used the best
method for each part of the process and analysis: (1) In
the preprocessing and skull stripping stage, we compared the
three methods of automatic skull removal with manual skull
removal (gold standard) and selected the best method. (2) For
the image processing and segmentation section, we compared
three automatic methods with the manual segmentation (gold
standard) performed by three experienced radiologists (a very
hard and time-consuming task), and for the essential tissue
segmentation for FCD lesion detection, i.e., WM and GM, the
FreeSurfer software was selected as a better and more efficient
method, and after processing, all segments were visually checked
by a radiologist. (3) For the selection of the classification
method, after training, three widely used classifiers, namely
the decision tree, support vector machine, and artificial neural
network, were employed, and after evaluating the results,
the best one was selected which was the artificial neural
network. Regarding the decision tree and SVM classifications,
the images were examined using different K-folds, and in
each K, the machine trained 30 times, and the average results
were considered. For the artificial neural network method, the
classifier was trained 30 times, and the average of evaluations was
obtained. Finally, we report the best results in this article. The
evaluation results of the other methods are awaiting acceptance
in another article.

Cortical Reconstruction
The FreeSurfer software (version 6.0; Athinoula A.
Martinos Center for Biomedical Imaging at Massachusetts
General Hospital, Boston, MA, United States) (Dale, 1999;

Dale et al., 1999; Fischl and Dale, 2000) was used to apply
cortical reconstruction by the recon-all pipeline (Fischl et al.,
1999). The steps of this reconstruction included the following:
(1) the transfer of raw image data voxels to isotropic space,
(2) image normalization for bias field correction, (3) skull
removal, (4) the stages of automatic subcortical segmentation,
(5) white matter segmentation, and (6) tessellation of the
gray matter–white matter interface. In addition to the
mentioned steps, another stage was performed to improve
the pial surfaces using FLAIR images and different contrasts
in these images.

Manual Lesion Segmentation
Two experienced neurologists segmented FCD lesions using
the ITK-SNAP software [version 3.6.0; Penn Image Computing
and Science Laboratory (PICSL) and Scientific Computing and
Imaging Institute (SCI), United States]. Thus, lesion tissue was
labeled as 1 and healthy tissue as 0. Figure 1 shows examples
of segmented lesions. Manual lesion segmentation was used as
the ground truth for the performance analysis and to validate the
classification results in lesion localization.

FIGURE 1 | Examples of three patients with a labeled lesion. The first column
on the left indicated the presurgical three-dimensional T1-weighted (T1w)
images which were utilized as input for the processing. The next column
revealed T2-weighted fluid-attenuated inversion recovery (FLAIR) images on
the same slice.
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Feature Extraction
We extracted morphological and intensity-based features.
According to the Desikan–Killiany atlas, the cerebral cortex
was parcellated into 34 regions (ROIs) per hemisphere. In
general, for each ROI, the average cortical thickness, Gaussian
curvature, mean curvature, intrinsic curvature index, and folding
index; statistical indices including mean, min, max, range,
and standard deviation; and SNR for intensity contrast were
extracted. Table 2 shows the morphological features extracted
from the left hemisphere of a normal MRI.

Morphological Features
The cortical thickness will be computed as the distance from the
WM surface (WM–GM boundary) to the nearest possible point
over the pial surface (GM–CSF boundary) (Dale et al., 1999; Han
et al., 2006). The Gaussian curvature, the mean curvature, and
the new features of this study including the intrinsic curvature
index and the folding index, which are the geometric indices of
the principal cortical surface curvature (Van Essen and Drury,
1997; Pienaar et al., 2008; Ronan et al., 2011), were calculated
as follows (in these calculations, k1 and k2 are the principal
curvatures at points 1 and 2 on the cortical surface): mean

curvature = 1
2 (k1 + k2), Gaussian curvature = k1.k2, intrinsic

curvature index is computed as |k1k2|, and folding index = |k1|
(|k1|−| k2|) (Jin et al., 2018).

Intensity-Based Features
The intensity contrast is calculated as the ratio of GM signal
intensity to WM signal, where the GM signal intensity,
obtained at 30% of the cortical thickness above the GM–WM
boundary and WM signal intensity, is 1 mm below the GM–
WM boundary (Salat et al., 2009). Lesions with GM–WM
boundary blurring compared with the healthy cortex appear to
have low-intensity contrast of the GM–WM (Blumcke et al.,
2017). In summary, 408 morphometric and 408 intensity-based
measurements covering the entire brain per participant were
used for subsequent analyses. All features were normalized using
z-score (McLeod, 2019).

Statistical Analysis
Machine Learning Classification
The images are classified for two purposes: First, the diagnosis of
lesions versus nonlesional tissue was performed using the ANN
classification. The second was the detection of the lesion area. To

TABLE 2 | Morphological features extracted from the left hemisphere of normal MR image, code H_0416.

StructName ThickAvg ThickStd MeanCurv GausCurv FoldInd CurvInd

bankssts 2.845 0.461 0.098 0.032 10 1.6

caudalanteriorcingulate 1.934 0.842 0.137 0.042 13 1

caudalmiddlefrontal 2.563 0.457 0.116 0.04 39 4.3

cuneus 2.142 0.414 0.128 0.036 45 4.7

entorhinal 2.507 1.146 0.147 0.05 7 1

fusiform 2.586 0.818 0.137 0.046 79 7.9

inferiorparietal 2.546 0.537 0.136 0.044 98 10.1

inferiortemporal 2.564 0.866 0.147 0.047 84 7.7

isthmuscingulate 2.332 0.871 0.118 0.035 18 1.7

lateraloccipital 2.362 0.447 0.128 0.034 104 10.1

lateralorbitofrontal 2.699 0.69 0.143 0.056 63 7.3

lingual 2.217 0.515 0.138 0.045 71 7.8

medialorbitofrontal 2.336 0.891 0.147 0.062 58 5.9

middletemporal 2.715 0.892 0.134 0.042 62 6.2

parahippocampal 1.939 0.621 0.096 0.021 6 0.8

paracentral 2.617 0.5 0.108 0.045 39 4.9

parsorbitalis 2.938 0.507 0.174 0.056 20 2

pericalcarine 1.969 0.442 0.125 0.03 22 2.8

posteriorcingulate 2.254 0.831 0.128 0.038 21 1.7

precentral 2.627 0.539 0.117 0.05 167 17.4

precuneus 2.481 0.499 0.132 0.044 74 8.3

rostralanteriorcingulate 2.28 0.972 0.149 0.08 55 3.5

rostralmiddlefrontal 2.59 0.543 0.147 0.055 125 15.5

superiorfrontal 2.732 0.567 0.137 0.057 271 24.6

superiorparietal 2.358 0.458 0.118 0.031 83 8.1

superiortemporal 2.505 0.721 0.114 0.037 75 8.3

supramarginal 2.634 0.518 0.139 0.047 82 8.6

frontalpole 3.232 0.701 0.175 0.08 12 1.2

temporalpole 3.674 0.876 0.155 0.073 14 1.6

transversetemporal 2.579 0.354 0.113 0.049 13 1.8

insula 3.005 0.883 0.144 0.07 58 10.5
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do this, the automated classification was performed in two steps.
We applied ANN to detect (i) the lesional lobe of the brain and
(ii) the lesional hemisphere of the brain.

ANN classification
Automatic FCD lesion diagnosis was performed utilizing an
artificial neural network classifier carried out in MATLAB R2014
(MathWorks, Natick, MA, United States). The ANN classifier
was trained with extracted features. We used the feedforward
neural network to train information. It had input, hidden, and
output layers. In this network, the information move only from
one direction to the next. The flow of information is done by
input nodes (neurons), and if there are hidden layers, they pass
through and enter the output nodes (Haykin, 1994). Each node
took a differently weighted combination of features. Then, the
outputs were combined to determine that the features of a vertex
are similar to a healthy (output value is zero) or lesional tissue
(output value is one) of the cortex; 70% of the obtained data
for training is dedicated. The rest was divided into two equal
proportions as validation and test. Each subject in the training
dataset was assigned a value of 0 (healthy cortex) or 1 (lesional
cortex). Training and performance evaluations were performed
with 30 iterations.

Lesion localization
We decided to determine the location of the lesion in two steps:
first, the lesional hemisphere in two classes—right hemisphere
(RH) and left hemispheres (LH); and second, the lesional lobe in
four classes: frontal, temporal, parietal, and occipital.

Evaluation of Surface-Based Features
The classification performance was assessed using statistical
parameters of sensitivity, specificity, and accuracy to identify
the patients from the control. The accuracy and sensitivity
parameters were also used to evaluate the location of the lesion.
The overall procedure is shown in Figure 2.

RESULTS

Demographics
Thirty clients with a radiological sign of FCD type II (10 and
20 patients with negative and positive MRI, respectively) and 28
healthy controls were involved. Due to radiological reports, lesion
focus was present on the left hemisphere in 10 patients and on
the right hemisphere in 20 other patients. The lesion location
was labeled by an experienced neurologist: frontal lobe (n = 11),
temporal lobe (n= 6), parietal lobe (n= 6), occipital lobe (n= 2),
and multilobar (n = 5). The multilobar lesions are all located in
the right hemisphere.

Evaluation of the ANN Algorithm for the
Classification of FCD Lesion and Healthy
Subjects
Image classification with ANN includes three stages: training,
testing, and validation. To perform these steps, we considered
48 images, consisting of 20 images of patients with positive MRI

and 28 controls; 70% of these images were used for training, 15%
for testing, and 15% for validation. The results show the three
parameters of sensitivity, specificity, and accuracy. The mean
values of these three metrics after 30 iterations were 96.7, 100, and
98.6%, respectively. Ten patients with negative MRI were used
for the final validation of the classification system. After applying
the ANN classification to 48 images in both normal and lesion
classes, the feature vector of these patients in the lesion class was
included in the classification system; consequently, the results
showed 91.3% classification accuracy. The mean and standard
deviation of the classifier performance are shown in Table 3
after 30 iterations.

The Assessment of Classifier for the
Detection of Lesion Location
The ANN algorithm was first designed to identify the lesional
hemisphere: the LH and the RH. Also, it was designed to detect
lesional lobe into four classes: frontal, temporal, parietal, and
occipital lobes. The classification accuracy in the diagnosis of
the lesion area was 84.2% for lesional hemisphere and 77.3% for
the lesional lobe.

DISCUSSION

Focal cortical dysplasia is among the most important factors
behind drug-resistant epilepsy, which is treatable by surgery. The
entire resection and excision of dysplastic and extra epileptogenic
tissue are believed to be an essential factor in treating this lesion.
However, the detection of lesions is still a challenge despite the
most enhanced imaging methods. Interpreting images is a time-
consuming and individual-dependent process which increases
the possibility of incorrect diagnosis of the lesion. Therefore, a
computer-aided diagnosis tool is needed to accurately identify
lesions and restrict the region of surgery to the lesion tissue.
In recent years, researches on FCD computer-aided diagnostic
systems were significantly increased to assist neurologists. The
present study aimed to employ quantitative surface features of
MR images and machine learning techniques for the automatic
identification of FCD lesions and the involved areas. Although
this idea was stated in several studies in the past, there are
some innovations in the present study. First, to improve the
segmentation of brain images in the FreeSurfer software, the
FLAIR images were applied. Second, the new two features, the
fold index and the curve index, were employed, which have not
been used before. The third most important which is to localize
the lesions was performed in two stages: lesional hemispheres and
lesional lobes, which will lead to a significant reduction in the
time of FCD lesion identification.

A new computer-aided diagnostic system of FCD lesions was
investigated to increase lesion detection accuracy. The designed
system was capable of detecting FCD lesion as well as the
lesion area. Moreover, it enabled quantitative and objective
assessment of lesions against individual clinical diagnosis. The
ANN classifier performance was evaluated using conventional
statistical methods and quantitative analysis. The present study
included 58 MRI data in neural network classifier training. In
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FIGURE 2 | Overall procedure.

MRI-positive cases, the sensitivity, specificity, and accuracy of the
classifier were 96.7, 100, and 98.6%, respectively. Previous studies
have used various morphometric methods to identify FCD lesions
in MRI-positive cases. In the study of Wong-Kisiel et al. (2018),
the MRIs of patients with FCD were evaluated to determine
the role of MAP postprocessing in brain lesion detection. Using
abnormal GM extension (MAP-E) and WM and GM junction
blurring in 39 patients, the sensitivity and specificity were 64 and

96% for MAP-E and 74 and 94% for MAP-J, respectively. In the
study by Ahmed et al. (2015) using a surface-based method, 86%
MRI-positive patients with confirmed FCD were correctly and
automatically identified.

Besides, about 33% of clients in our research were MRI-
negative by primary visual examination. After classifier training
using FCD type II lesions with positive MRI, the classification
test results with negative MRI showed high accuracy (91.3%).
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TABLE 3 | Mean and standard deviation of sensitivity, specificity, and accuracy
parameters in the ANN classifier.

MRI Statistic Sensitivity Specificity Accuracy

MRI-positive Mean 96.7% 100% 98.6%

Std* 7.9 0 3.2

MRI-negative Mean 91.3% – 91.3%

Std 1.9 – 1.9

*Std, standard deviation.

TABLE 4 | Comparison of classification results in this study with other studies.

Classifier Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

SVM (El Azami et al., 2016) 77 – –

Decision tree (Harvey et al., 2015) 83 92 –

ANN (Besson et al., 2008) 89 – –

ANN (Adler et al., 2017) 73 – –

ANN (Jin et al., 2018) 73.7 90 –

ANN (this study) 96.7 100 98.6

In addition to MRI-positive patients, in the study of Ahmed
et al. (2015), patients with negative MRI were evaluated and
58% of FCD lesions were correctly identified. In the study of
El Tahry et al. (2020) and Haykin (1994), 21 patients with
FCD and negative MRI were evaluated by postprocessing MAP.
The MAP results led to the detection of six FCD lesions
(29%). Therefore, our data showed that using MRI-positive
patients in training, which have initially normal MRI, have a
diagnostic benefit for lesions. Mo et al. (2019) used features
such as morphology, intensity, and function and designed an
objective and intelligent diagnosis of FCD lesions in presurgery
evaluations. The difference between their study and our study is
the use of multimodal surface features. In addition to MR images,
they also used PET images. The accuracy of the classification
based on multimodal features was 75% for detecting FCD
II lesions.

In evaluating the lesion’s location, the accuracy of the classifier
for the detection of the lesional hemisphere and lesional lobe
was 84.2 and 77.3%, respectively. In past works related to the
localization of the lesion, Hong et al. (2014) employed another
surface-based approach and reported high sensitivity (74%) in the
intelligent classification of FCD type II lesions. No lesions were
identified in the control group indicating excellent specificity.
Adler et al. (2017) studied surface-based morphometry and
neural network methods and noted a successful diagnosis rate
of 73% in 22 patients which had a radiological analysis of FCD;
however, the specificity had not been examined. Feng et al. (2020)
defined a mean cortical thickness map for MRIs in FCD patients.
They compared the location of the lesions in patients with the
control group and three out of four lesion areas were detected.
However, their method is not effective for lesions situated in
the temporal lobe.

For the automatic identification of FCD lesions and
brain regions involved, using surface features including the
morphology and intensity-based features as well as quantitative

methods of machine learning, a computer-aided diagnostic
system for FCD lesions was presented. In MRI-positive cases,
our methods showed a high sensitivity of 96.7% in patients
with FCD type II and also had excellent specificity (100%) and
reliable accuracy (98.6%). This method had also high accuracy to
detect lesion location in the brain (84.2% in hemisphere diagnosis
and 77.3% in lobe diagnosis), but similar studies have not been
performed for comparison. Also, in MRI-negative cases, the
results showed 91.3% accuracy.

Various classification methods were proposed in studies to
detect FCD lesions. The results obtained from similar studies and
the results of this research are shown in Table 4.

In general, our results suggest that a completely automated
machine learning method can provide a major FCD diagnosis
outcome in presurgical assessment for pharmacoresistant
patients. The clinical application of these results can be found in
the fact that the main goal of neurologists is accurate surgery of
FCD lesions, and as has been mentioned, the visual detection of
epileptogenic focal is a difficult and time-consuming task. In an
automatic lesion detection system using MR images, noninvasive
methods can be used to assist neuroradiologists, and the costs
incurred for using other methods by many patients, such as PET
imaging, can be reduced.

CONCLUSION

We tried to prove the importance of surface-based MRI
morphometry by machine learning using a group of patients
with type II FCD. This technique can be a valuable tool to boost
patients’ preoperative analysis with drug-resistant epilepsy. The
limitation of our study was insufficient data. As a suggestion for
future studies by the increasing amount of data, the results will be
improved to detect the lesion area, and other methods may also
be used to identify the lesion area involved.
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