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Synaptic function and experience-dependent plasticity across multiple synapses are

dependent on the types of neurons interacting as well as the intricate mechanisms

that operate at the molecular level of the synapse. To understand the complexity of

information processing at synaptic networks will rely in part on effective computational

models. Such models should also evaluate disruptions to synaptic function by multiple

mechanisms. By co-development of algorithms alongside hardware, real time analysis

metrics can be co-prioritized along with biological complexity. The hippocampus is

implicated in autism spectrum disorders (ASD) and within this region glutamatergic

neurons constitute 90% of the neurons integral to the functioning of neuronal networks.

Here we generate a computational model referred to as ASD interrogator (ASDint)

and corresponding hardware to enable in silicon analysis of multiple ASD mechanisms

affecting glutamatergic neuron synapses. The hardware architecture Synaptic Neuronal

Circuit, SyNC, is a novel GPU accelerator or neural net, that extends discovery by acting

as a biologically relevant realistic neuron synapse in real time. Co-developed ASDint

and SyNC expand spiking neural network models of plasticity to comparative analysis

of retrograde messengers. The SyNC model is realized in an ASIC architecture, which

enables the ability to compute increasingly complex scenarios without sacrificing area

efficiency of the model. Here we apply the ASDint model to analyse neuronal circuitry

dysfunctions associated with autism spectral disorder (ASD) synaptopathies and their

effects on the synaptic learning parameter and demonstrate SyNC on an ideal ASDint

scenario. Our work highlights the value of secondary pathways in regard to evaluating

complex ASD synaptopathy mechanisms. By comparing the degree of variation in the

synaptic learning parameter to the response obtained from simulations of the ideal
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scenario we determine the potency and time of the effect of a particular evaluated

mechanism. Hence simulations of such scenarios in even a small neuronal network now

allows us to identify relative impacts of changed parameters and their effect on synaptic

function. Based on this, we can estimate the minimum fraction of a neuron exhibiting a

particular dysfunction scenario required to lead to complete failure of a neural network

to coordinate pre-synaptic and post-synaptic outputs.

Keywords: synaptic plasticity, software, hardware, synaptopathy, ASIC, computational neuroscience, accelerator

1. INTRODUCTION

The exceptional computational power of the brain in memory
and learning is accomplished by conversion of an electrical
signal into the interneuronal transmission of chemical
neurotransmitter information at synapses (Hebb, 1949;
Burns and Augustine, 1995; Südhof and Malenka, 2008).
As the complexity of synapses continues to evolve, so must the

evolution of computational and hardware tools to evaluate such
models. The events are non-spontaneous and dependent on input

intensity and frequency and the measured electrophysiological
response is an action potential that brings into play the complex
physiology of neuron dendritic, cell body, axonal hillock, and

axonal compartments. The largest contribution of information
passing in neural circuits occurs at synapses (Di Maio, 2008)
and is regulated by a diversity of synaptic plasticity mechanisms
(Citri and Malenka, 2008; Choquet and Triller, 2013) that
must operate over timescales (Abbott and Regehr, 2004). In
1949, Hebb described activity-dependent synaptic modulation
(Hebb, 1949) that forms the basis of current models of neuronal
plasticity. Long-term changes impact learning and memory and
short-term changes support synaptic computations (Tetzlaff
et al., 2012). This can be described in terms of spike timing
dependent plasticity (STDP) that relates changes in synaptic
strength, or synaptic weights, to the timing of pre- and post-
synaptic spikes, a key mechanism in memory formation. When
linked to synaptic stability it can be used to describe flexible or
stable memories (Park et al., 2017) and complex topologies of
neural networks (Borges et al., 2017; Lameu et al., 2021). Less
investigated in regard to learning and memory is the relative
impact of altered biological mechanisms on synaptic strength,
owing to lack of generalized computational models as well as
scalable hardware architectures that can process such complexity.

As the main information transfer between neurons,
neurotransmitter release is a highly regulated yet probabilistic
process (Benfenati, 2007; Regehr, 2012). Indeed in short term
plasticity to modify neuronal circuits, synapses are viewed as
active filters of information, not just conveyers, reducing noise
and enhancing relevant information (Klyachko and Stevens,
2006). An important mechanism to dynamically fine tune the
probability of neurotransmitter release is through local feedback
regulation (Branco and Staras, 2009; Minneci et al., 2012).
Intermediate initial release dynamics behave as band pass filters.
These events and others allow adaptive regulation to changes in
network activity and enables neurons to respond to prolonged
alterations. How relative changes to this homeostatic mechanism

arising from synaptopathies affect synaptic plasticity has not
been previously examined. Here we consider the glutamatergic
synapse, that is a low pass filter type. Glutamatergic neurons
encompass most of the synapses in the central nervous system
(CNS) and are relevant to cognitive decline (Volk et al., 2015).
We generate a neuron model that is adapted to study the
implications to synaptic strength and efficiency when stochastic
variations occur in underlying mechanisms and that can also be
implemented into hardware.

Spiking Neural Networks (SNNs) are used to model synapses
to reflect action potential spikes and a large number of
SNN software and hardware models have been proposed for
mimicking neurological behavior. The software based SNN
neural analysis methods that have been developed include
NEURON (Hines and Carnevale, 1997), Brain (Goodman and
Brette, 2009), NeMo (Fidjeland et al., 2009), PyNN (Davison
et al., 2008), and more. Although providing biological accuracy,
these software based simulations encounter extraordinarily high
computational costs for subsequent hardware development while
performing numerical simulations. Hence modern computers
fail to obtain real-time performance when scaled to simulate
large neural networks. As a case in point, a 1 s simulation of a
network composed of 8 million neurons that includes 4 billion
integrate-and-fire synapses when analyzed on the Gene rack
supercomputer using 2,048 processors, takes ∼80 min. By co-
development of software and hardware implementation jointly,
considerations of compactness, power-efficiency, and ease of
implementation of circuits can be optimized. In this regard,
circuits involving feedback mechanisms are desired and has led
to analog circuit designs of SNNs. The relative efficiency of
an analog vs. digital implementation varies dependent on the
required signal-to-noise ratio. In neural dynamics challenging
temporal features are present, such as high and nonuniform pulse
latency and activity dependent synaptic plasticity that results
in long-lasting long-term potentiation (LTP) processing. This
creates a need for capacitors of value >0.1 F, that imposes
physical constraints. This challenge is significant and nullifies
much of the advantage offered by analog circuits in terms of
a smaller number of transistors. Analog circuits also suffer
from transistor mismatch, process variation and model size
limitations owing to a process termed gate fan-out that relates
the number of gate inputs to a single original logic gate. Another
challenge is in reliable analog memory, that has not yet been
robustly achieved in regard to storage of significant processing
values. This includes synaptic weight whose subtle variations
have significant importance to the accuracy of the entire system.
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Hence, owing to essential needs in user capabilities, including
resource management and real-time speed, we employ a digital
solution for large-scale simulation of neural networks. Our
approach emulates neuron spiking with minimum possible error
and also importantly without sacrificing speed of processivity of
the digital system implemented as hardware.

A number of synaptic models have been developed for
digital implementation including the Time Machine approach,
SpinNaker (Furber et al., 2014), Neurogrid (Benjamin et al.,
2014), and BrainScales (Pfeil et al., 2013), among others.
BrainScales is a wafer-scale neuromorphic system, in which
each wafer contains 48 reticles with eight High-Count Analog
Neural Network (HiCANN) dice. Each suchHiCANNdie has the
capability to emulate 512 adaptive exponential neuron models.
SpiNNaker is a one-million-core supercomputer, developed
exclusively for massively-parallel real-time simulation of large-
scale neural networks, making it one of the largest digital
neuromorphic platforms to date. Neurogrid is a real-time system
consisting of over one million quadratic integrate-and-fire
neurons, in which neuron and synapse dynamics are emulated
using analog circuits and communications are performed by
digital means, for simulation of over a billion synapses. However,
since these models have been developed with the intention
of utilization in Spiking Neural Network (SNN) architectures,
they only approximate the effect of the numerous parameters
in a neuron.

In current large scale neuromorphic platforms that rely on
SNN architectures, the exclusive abstraction of intracellular
dynamics of a neuron that ignores other biologically modulated
parameters is severely restricted in applications to understand
and modulate plasticity. Our jointly developed software and
hardware solutions are designed instead to be able to retain
computational speed while also simulating the effect of a
broader range of individual biologically relevant parameters
in the neuronal synapse and its networks relevant to normal
function and synaptopathies. Glutamate is known to be the
main excitatory neurotransmitter in the CNS and accounts for
90% of the total neurotransmitter usage in the CNS. Glutamate
provides us with the most fundamental form of a neuron and is
ideal for extension to other models. In developing the hardware
architecture Synaptic Neuronal Circuit, SyNC, we focus on the
design of the excitatory glutamatergic neuron communication
network. Synaptic plasticity and multiple brain functions rely on
glutamate that is the most abundant excitatory neurotransmitter
in the brain. Glutamate and glutamatergic neurotransmission
dysfunction is central to ASD (reviewed in Rojas, 2014) and to
broader impacts on neurodegeneration (Lewerenz and Maher,
2015) as well as psychiatric disorders (Li et al., 2018). To
capture the speed of the network we use a retrograde messenger
mediated plasticity (RMMP) model as opposed to a glial cell-
mediated model (Postnov et al., 2007). In the RMMP bipartite
neuron system there are no intermediary dynamics considered
in the synaptic cleft and hence the synaptic current from
the pre-synaptic region is the same as the synaptic current
entering the post-synaptic region. We consider the dynamics
of retrograde messengers that travel across the synapse via
diffusion to be the feedback initiator in our model. These

considerations allow us to expand biological detail in a digital
framework to address multiple pre- and post-synaptic interacting
molecular mechanisms found in synaptopathies and to cross-
evaluate dysfunction by a rapid multi-classification comparison.
Expanded detail includes receptor inhibitors and activators,
including allosteric regulation, as well as receptor type ratios,
synaptic cell adhesion molecules, and calcium signaling and
organelle stores.

In our model, we consider Hebbian plasticity parameter 1

which records the activity at pre-synaptic and post-synaptic
boutons and evaluates the gain in synaptic potential in the form
of synaptic weight. While many different mechanisms have been
suggested in the literature to explain LTP, we have approached
it from a rather simplistic model such that it can be adapted
for utility in other models as well. To our knowledge this is the
first work to co-develop and implement a diverse and highly
adaptable design of a neuron in detail in software and hardware
and we demonstrate its effectiveness in complex and scaled
neuronal networks applied to Autism SpectrumDisorders (ASD)
(Figure 1). We mapped and synthesized our SyNC hardware
designs in 45 nm technology. Our simulation results show that
differential forms of these equations reproduce the expected
characteristics of the pre-synaptic region of a neuron, while
conveniently transformed into discretized form. Application of
ASDint over the SyNC core demonstrates an ability to effectively
reproduce phenotypes for each synaptopathy. Synthesis results
show that using a posit operation core gives us PPA performance
that is slightly better than the IEEE 754 double precision while
having higher accuracy than the IEEE single precision operation
core. This outcome affirms the use of posit as a valid replacement
of floats. In relation to biological discovery, the SyNC platform
for the first time, allows us to examine complex individual and
combined impacts of synaptopathies on synaptic plasticity in
real time.

2. BACKGROUND

2.1. System Description
2.1.1. The Dynamic Synapse as a Lipid-Derived

Retrograde Signaling Model
How to best incorporate the interplay between synapse dynamics
that is generated by multiple underlying interacting mechanisms
(Choquet and Triller, 2013) and which defines plasticity remains
a challenge. In Figure 2, we describe the key elements in our
proposed synaptic dynamics model. Two primary components
in our software for synapse dynamics are retrograde signaling
and post-synaptic receptor type. Retrograde signaling (Brenman
and Bredt, 1997; Regehr et al., 2009) systems integrate the
post-synaptic response with regulation of pre-synaptic output
generating rapid changes in synaptic strength. Although diverse
chemical messengers exist, retrograde models share many
basic steps. Firstly, the production and release of retrograde
messengers from post-synaptic cells are regulated by post-
synaptic calcium, and triggered by post-synaptic metabotropic
receptors and second messenger. Secondly, the entirety of the
concentration of retrograde messenger produced at the post-
synaptic region is assumed to be transmitted to the pre-synaptic
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FIGURE 1 | Co-development of SyNC with neural algorithms to relay ASD complexity. The goal of this study was to advance algorithms of neuronal synapse modeling

in the context of a complex neural disorder, such as ASD, while obtaining high (1 GHz) optimal frequency in hardware. The diagram outlines general considerations in

codevelopment. mGluR, metabatropic glutamate Receptor; NMDAR, N-methyl-D-aspartate Receptor.

receptors with no losses in transmission or within the synaptic
cavity. While such an assumption might feel out of place,
we consider that such losses if they happen initially would
eventually saturate to a point in which no loss occurs. The
retrograde messenger acts on the pre-synaptic target to modulate
the plasticity parameter and activity spike strength in the pre-
synaptic region.

The duration and latency of a retrograde signal is controlled
by parameters of uptake and degradation of the molecules at a
cellular level. As a result, the nonlinear relationship between the
release of a retrograde signal and the magnitude and duration of
the retrograde signal available to activate pre-synaptic receptors
must be considered in the ultimate effect on synaptic strength.
A final consideration is the extent to which the release of the
retrograde messenger can be sustained. Many cells contain few
vesicles and dense core secretory granules in their dendrites,
which suggest that it would be possible to deplete the release
of conventional neurotransmitters, peptides, and growth factors.
The low density of vesicles suggests that the dendritic release may
be much more prone to depletion. The ability to recover from
depletion would then depend crucially on endocytosis and vesicle
and granule refilling. Alternately, some lipid-derived messengers
are produced on demand (Piomelli, 2003; Chevaleyre et al., 2006),
and as a result the release of these messengers may be sustained.
To describe the regulated release of neurotransmitter at the

synapse, we consider the lipophilic (lipid-derived) retrograde
signaling model (Chevaleyre et al., 2006). The output of our
model for observing effects of plasticity is calcium dynamics
in the pre-synaptic region and therefore we can determine
the impact of all the processes in the model that impact that
parameter. Plasticity is achieved in the system by increasing
the latency of calcium signals, which in turn can lower the
peak calcium levels. Activation of Gq-coupled receptors such
as mGluR1 in the post-synaptic region can promote release of
inhibitory factors in the pre-synaptic region by increasing the
production of retrograde messenger 2-AG that in turn reduces
calcium levels.

2.1.2. Synaptic Gate Dynamics and Glutamatergic

Receptors
Amongst the six main neurotransmitters in the human body,
the main excitatory neurotransmitter in the brain is glutamate,
which activates several postsynaptic receptors. Two primary
types of receptors encountered in a glutamatergic neuron
are ionotropic Glutamate Receptors (iGluR) and metabotropic
Glutamate Receptors (mGluR). The mGluRs bind glutamate
within a large extracellular domain and transmit signals through
the receptor protein to intracellular secondary messenger signals.
The receptors primarily involved in this process are the group I
mGluRs: mGluR1 and mGluR5. Ionotropic glutamate receptors
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FIGURE 2 | Illustrated mechanics of the neuron system model. The pre-synaptic and post-synaptic region dynamics are described for the model. The synaptic cleft

acts as a lossless channel, and is not involved in any dynamic processes involving neuronal communication. Proteins expressed in yellow are involved in the

interactions between the locally transcribed mRNA and the synaptic gate receptors as indicated by dotted arrows. Proteins represented in pink are bridge proteins

involved in inter-receptor dynamics. The parameters involved in synaptic activity are linked by solid arrows. The roles of the proteins in synaptic activity diagrammed

here are described in the text in regard to ASD mechanisms we have considered.

(iGluRs) are faster responding and the two major types of
iGluRs: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) and N-methyl D-aspartate (NMDA) have central roles
in hippocampal synaptic plasticity. Both are ligand-gated ion
channels and have unique properties that subserve different
phases of synaptic plasticity. Glutamate released from the pre-
synaptic neuron opens AMPA receptors to depolarize the post-
synaptic cell. Each AMPA receptor has four sites to which an
agonist (such as glutamate) can bind, one for each subunit.
The channel opens when two sites become occupied, and
current increases with subsequent binding. The AMPA receptor’s
permeability to calcium, and other cations such as sodium
and potassium, is governed by the presence of the GluA2
subunit in the AMPARs. The presence of GluA2 renders the
channel impermeable to calcium and is proposed to guard
against excitotoxicity.

2.1.3. Calcium-Mediated Synaptic Events Including

Organelle Stores
Calcium mediated synaptic events have been proposed to
sustain temporary holding of information as in working
memory (Mongillo et al., 2008) and is considered in our
model. To enable the flow of synaptic current through the
post-synaptic receptors, mGluR1-type receptors coupled to
the G protein (Gq) are activated. Together calcium and Gq
activate phospholipase C beta (PLC), which cleaves the lipid
phosphatidylinositol bisphosphate (PIP2) into diacylglycerol
(DAG) and inositol trisphosphate (IP3). DAG is converted
into the endocannabinoid 2-arachidonoylglycerol (2-AG). The
rate-limiting and Ca2+-sensitive step in 2-AG production
is the formation DAG. IP3 and DAG are free to diffuse
through the cell cytoplasm and their impacts can be described

computationally. In our model we consider the role of
mitochondria and the endoplasmic reticulum (ER) in calcium
dynamics. Mitochondria are important for numerous roles
related to synaptic transmission and neurodegeneration (Lee
et al., 2018) including calcium regulation in neurons (Gunter and
Gunter, 1994; Gunter et al., 2004) along with the ER (Karagas and
Venkatachalam, 2019). Calciummobilization frommitochondria
is controlled by neurotransmitter release (Rizzuto et al., 2003) as
well as more complex proposed buffering roles (Matthews and
Dietrich, 2015).

When IP3 binds to an IP3 receptor (IPR) on the ERmembrane
it causes the release of Ca2+ from the ER. Five pathways have
been considered in the modulation of Ca2+ influx, which we
describe in a pair of dynamic equations. Thus, we efficiently
incorporate abstractions of several terms in our model (Figure 2)
to describe these dynamics. Ca2+ taken up into (Juni), or
released from (Jmito) mitochondria, and that bound to (Jon),
or released from (Joff), Ca2+ buffers are considered to create a
constant Ca2+ flow that does not vary with instigation of cell
membrane receptors. 2-AG then regulates pre-synaptic pathways
to affect synaptic transmission by decreasing the probability of
neurotransmitter release from the pre-synaptic terminal. In the
model, the common cell structures act as an impedance and the
calcium buffers in the cytoplasm provide capacitance and are not
a part of the signaling circuit, hence acting as a channel to drain
higher frequencies away.

2.2. Application of Anti-symmetric Hebbian
Plasticity
Synaptic strength is influenced by pre- and post-synaptic activity
in activity-dependent synaptic plasticity processes such as long-
term potentiation LTP and LTD (Lee et al., 2013). Hebbian
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plasticity is used to define these features in synaptic plasticity
(Hebb, 1949). The N-methyl-D-aspartate receptors (NMDARs)
are calcium permeable and when activated, allow an influx of
calcium needed for the induction of LTP. However, NMDARs
require both pre-synaptic transmitter release and post-synaptic
depolarization for activation. Enhancement in the amplitude of
action potential takes place when both the pre-synaptic and post-
synaptic regions are active, resulting in potentiation of synaptic
output potential. However, when either region is selectively
active, the amplitude of action potential is attenuated, resulting
in depression of synaptic output potential. These two processes
together constitute the synaptic plasticity mechanism and hence
act as substrates for fundamental brain function. LTP is a process
involving such persistent enhancement of synaptic gain resulting
in a long-lasting increase in synaptic transmission gain between
the neurons. It is an important process in the context of synaptic
plasticity. LTP recording is widely considered to be the cellular
model for storage of information in the brain. LTD is an opposite
process that modulates and controls the effect of LTP in the
brain. Full opening of the NMDAR channel and the consequent
influx of calcium requires both the binding of glutamate to
the receptor and post-synaptic depolarization. The induction of
potentiation is dependent on activation of NMDARs and a rise
in post-synaptic calcium. The NMDAR dependence provides a
ready explanation for the associativity and asymmetry of Hebbian
learning rule. The binding of glutamate follows the release of
a transmitter by the pre-synaptic spike, and the post-synaptic
depolarization is provided by the post-synaptic spike. Thus,
neither the release of glutamate alone nor the post-synaptic
spike alone will result in the opening of the receptor. Both must
occur at the same time. In the frog optic tectum (Zhang et al.,
1998) and in cultured hippocampal cells (Bi and Poo, 1998), no
potentiation was observed when the pre-synaptic spike preceded
the post-synaptic spike by more than 20 ms and no depression
was observed when the pre-synaptic spike followed the post-
synaptic spike by more than 20ms. LTD is induced at a lower
concentration of calcium than required for induction of LTP,
however the parameters of the timing window for depression
are not fully predicted by the expected calcium concentration
alone. In layer V/VI of the neocortex of the developing frog
optic tectum (Zhang et al., 1998) and cultured hippocampal
cells (Bi and Poo, 1998), the depression, like the potentiation,
depended on the activation of NMDARs, but the depression
found in layer II/III pyramidal cells of the somatosensory cortex
did not. It is observed for layer II/III pyramidal cells that the
interval for depression is considerably larger than the interval
for potentiation. All of these learning rules are asymmetric, in
that positive actions have different effects than negative delays.
Tsodyks and Markram (1997) proposed an anti-symmetric form
of Hebbian plasticity where the time interval of potentiation and
depression are comparably similar. This is the form of plasticity
we have used in our system.

2.3. Modeling Neuronal Damage Scenarios
Associated With Autism Spectrum Disorder
ASDs form a group of diverse neurodevelopmental conditions
defined by two core symptoms: social deficits that include
communication and interaction impairments; and stereotypical,

repetitive, and restricted behaviors. One of the main features of
ASD is the high level of heterogeneity resulting in complexity
both when considering symptoms and causative factors. It is
in fact possible that every single disorder within the group has
its unique mechanisms and consequences, with environmental
and genetic factors playing roles in the etiology of ASD. In
that regard, computational models will be imperative to help
compare and categorize ASD effects on synaptic function.
We consider multiple ASD mechanisms. It is in fact possible
that every single disorder within the group has its unique
mechanisms and consequences, with environmental and genetic
factors playing roles in the etiology of ASD.We consider multiple
ASD mechanisms in mathematical descriptions that incorporate
various regions of the synapse (Figure 3).

2.3.1. Fragile X Syndrome
For our model, we consider the role of Fragile X protein, FMRP,
in mRNA translation regulation and binding, which is decisive
in determining the quality of synaptic communication between
the pre-synaptic and post-synaptic regions (Davis and Broadie,
2017). It has been recently demonstrated that alterations in
signaling, expression, and function of group I mGluRs are related
to neurodevelopmental disorders (Wang et al., 2018). Group I
mGluRs comprising mGluR1 and mGluR5 have been proposed
as key regulators of syndromic and non-syndromic forms of ASD,
making them possible therapeutic targets. There are two distinct
groups of mGluRs. Some groups of mGluR couple with Gq
proteins and are involved in excitatory neural communication,
like mGluR1 and mGluR5. The rest of the mGluR groups
are involved in non-excitatory neural communication without
assistance from Gq proteins. mGluR5 signaling was shown to
be affected in opposing directions in both Fragile X Syndrome
(FXS) and Tuberous Sclerosis Complex (TSC). We observe the
response of these variations onto secondary mediator dynamics
in our model, which is directly related to mGluR5 dynamics.
Activation of group 1 mGluR mediates the release of Ca2+

in the postsynaptic region through the activation of kinases
such as mTOR and ERK. These kinases are involved in the
modulation of Homer 1a protein generation in the nucleus,
which in turn modulates the mGluR5 receptor dynamics through
its companion protein Homer 1 b/c. FMRP in this mechanism
plays the role of a inhibitor responsible for attenuating the
production of Homer 1a. However, in the absence of FMRP,
there is an abnormal increase in mGluR5 receptor dynamics. The
consequent excessive mGluR-LTD constitutes the aberrations
observed in FXS.

FXS is the most common monogenic form of inherited
intellectual disability. In a majority of the cases observed, the
cause of hampered FMRP dynamics is the expansion of the CGG
trinucleotide, repeating in the five untranslated region of the
Fragile X FMR1 gene. When the repetition of CGG is as high as
more than 1,000 times, this segment of the FMR1 gene undergoes
methylation, effectively silencing gene activity and consequently,
the generation of FMRP protein. FMRP suppresses mGluR5
receptor dynamics in the post-synaptic region and absence of
FMRP leads to exaggerated synthesis of proteins required for
mGluR dependent LTP, thereby enhancing its magnitude.
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FIGURE 3 | Representation of affected components and modulators in the model for each considered ASD scenario. The five scenarios here are described in detail in

the text. Orange boxes represent the modulating variables and red boxes represent the components being affected by those variables. Blue circles represent

mathematical variables describing certain phenomenon in those pathways.

2.3.2. Tuberous Sclerosis Syndrome
Another inherited intellectual disability associated with ASD
is Tuberous Sclerosis Syndrome (TSC). The syndrome is
caused by heterozygous mutations in genes of the TSC1/2
complex involved in mTOR mediated signaling that couples
cell surface receptors to protein synthesis (Kelly et al., 2018).
Several studies of mouse models of TSC in mouse models
have exhibited reduction in decreased mGluR5-mediated LTD
caused by impaired protein synthesis. Consistently, treatment
with an allosteric mGluR5 agonist was able to restore mGluR5-
mediated LTD (Auerbach et al., 2011). Both positive and
negative allosteric modulation of mGluR5 have been proposed
as a therapeutic intervention in neurodevelopmental disorders.
Negative allosteric modulators (NAMs) of mGluR5 have been
shown to alleviate long-termmemory deficits, excessive repetitive
behaviors, motor stereotypes and social interaction abnormalities
in various models of autism (Silverman et al., 2012; Tian et al.,
2015). The mGluR5 positive allosteric modulator (PAM) was
reported to ameliorate deficits in learning and memory and
chemically induced hippocampal LTD in Tsc2+/mice.

2.3.3. NMDAR and the Partial Agonist D-Cycloserine
The NMDAR is a glutamate channel protein and ion receptor
at the synapse. The implication of NMDARs in the etiology
of ASD has been supported by both clinical and non-clinical
studies. Clinical studies have identified genetic variants in the
GRIN2A and GRIN2B genes encoding the GluN2A and GluN2B
subunits of the NMDAR, respectively. It is highly plausible that
differences in subunit composition affect functional properties
of NMDARs and/or NMDAR-dependent plasticity. A role for
NMDARs in ASD is supported by the fact that social withdrawal
and repetitive behavior in individuals with ASD can be alleviated

by the NMDAR co-agonist D-cycloserine. By contrast, NMDAR
antagonists memantine and amantadine improve ASD-related
symptoms. Thus, ASD could result, at least in part, from
deviations in hormetic NMDAR responses. D-cycloserine is
considered to be a partial agonist of NMDAR i.e., it acts like
an agonist when it is the primary neurotransmitter involved but
has antagonistic features when it is abundant in the system. This
seems to be due to its different receptor subtype selectivity and
intrinsic action, which depends on various NR2 subunits (NR2A,
NR2B, NR2C), which happen to be the location of glutamate
binding. One of the most prevalent hypotheses suggested is that
the effects seen in vivo at low doses of D-cycloserine reflect its
agonistic action at the NR1/NR2C receptors, for which it has
a high affinity, while at high doses the effects might be due to
antagonistic inhibition of NR1/NR2A and NR1/NR2B receptors,
for which D-cycloserine has a lower affinity. It is observed that
this effects the glutamate binding and hence does not affect the
plasticity from its own path. The resultant glutamate binding is
inhibited at NR2A, NR2B once all sites of NR2C are occupied
by either of the agonist. It must be noted that D-cycloserine in
natural state is not an activated pathway, hence making it the
noise source in the system.

2.3.4. Shank and Neuroglin
Shank proteins are master scaffold proteins within the post-
synaptic density of glutamatergic neurons important for
synaptogenesis and function (Sala et al., 2015) but have also
recently been described to have a pre-synaptic role in Drosophila
(Wu et al., 2017). Mutations in human Shank genes are also
found in ASD (Durand et al., 2007; Berkel et al., 2010; Sato et al.,
2012) and expected to relate to their role in activity-dependent
formation and remodeling of synaptic function. Analysis in a
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mouse model of Shank2, lacking exons 6 and 7, showed reduced
hippocampal NMDAR function, whereas mice lacking only exon
7 show up-regulation of NMDARs in synaptosomes, increased
NMDAR/AMPAR ratio, and enhanced NMDAR dependent LTP
(Wegener et al., 2018). We can model this condition by varying
the equilibrium constant value of k or kNMDAR. Hence, the
synaptic weight limit is increased as the limit of excitation current
is increased. Due to higher NMDAR/AMPAR value, we adopt a
working assumption that synaptic vesicle release is unbounded.
However, two Shank2 deletion mouse models resulted in very
similar social deficits, which support the notion that deviation
in NMDAR function in either direction can result in ASD
like phenotypes. Interestingly, aberrant NMDAR function and
behavioral deficits observed in those mice could be normalized
with systemic D-cycloserine and administration of the positive
modulator of mGluR5 3-Cyano-N-1, 3-diphenyl-1H-pyrazol-5-
ylbenzamide (CDPPB) (Jiang and Ehlers, 2013). Shank1 similarly
has been associated with ASD-like behavior in mice, including
increased anxiety and deficits in contextual fear learning, but
with improvements in spatial learning. This corresponds well
with the cognitive changes observed in many individuals with
ASD. Shank1 mice additionally show smaller dendritic spines
in CA1 pyramidal hippocampal neurons and weaker synaptic
transmission (Hung et al., 2008), supporting recent evidence that
dendritic spine abnormalities are associated with ASD. We also
consider Neuroglins that are synaptic cell adhesion molecules
(Dean and Dresbach, 2006; Craig and Kang, 2007) in which
several mutations have been found associated with ASD (Südhof,
2008). Knocking-in the ASD-associated R451C substitution into
the endogenous Neuroglins NLGN3 locus caused a prominent
decrease in Neuroglin levels that resulted in impaired social
behaviors, enhanced spatial learning, and increased synaptic
inhibition in the mouse somatosensory cortex. Its effects are
complementary to Shank, as in the ratio of AMPAR/NMDAR
becomes lower. We model the Shank and Neuroglin mechanisms
on the effective change in synaptic current and the impacted
changes can be observed in the secondary mediator dynamics.

2.3.5. Chromosomal Defects

2.3.5.1. Chromosome 15 Syndrome
A “chromosome 15 phenotype” characterized by ataxia, language
delay, intellectual disability, repetitive movement disorders and
facial dysmorphic features has been described in individuals with
chromosome 15 duplications (Muhle et al., 2004). Within the
15q11–15q13 locus. We model the chromosome 15 inhibitory
receptor action on neuronal dynamics onto the synapticmediator
dynamics and observe their effect on the calcium dynamics in the
post-synaptic region of the neuron as a consequence of ITP3K
enzyme and ATP on IP3 dynamics.

3. METHODS FOR IMPLEMENTATION OF
SOFTWARE AND HARDWARE MODELS

3.1. Algorithm Design
3.1.1. Pre-synaptic Region
We consider the neuron model proposed by Faghini-Moustafa
(Faghihi and Moustafa, 2015) that describes the processes

involved in synaptic plasticity in a synapse mediated by
retrograde messengers (RMs). The model, described in Figure 2,
demonstrates the synaptic current release from the pre-synaptic
region when activity spike and retrograde messenger are
provided to it. The amount of RM that diffuses into the pre-
synaptic neuron consists of RMtrace. Activity trace of input spike
considers the effect of plasticity and assigns the effect of latency
to the input impulse train. RMtrace along with the activity trace
of input spike decide the amount of inhibitory complex released.
This inhibitory complex decides the effective release of synaptic
vesicles from the pre-synaptic region. Thus, inhibitory complex
concentration along with the concentration of neurotransmitter
release and the activity trace of input spike decide the magnitude
associated with the released synaptic current. This value is the
synaptic weight and its rate of change gives the synaptic efficacy,
a parameter that describes the strength of plasticity.

The equilibrium point of inhibitory complex is adjusted
because the value considered in Faghihi and Moustafa (2015) has
a very high threshold and is impractical, to a value where the
effects of the impulses can be observed distinctly.

The state variables of the pre-synaptic region: effective
strength of feedback of Retrograde Messenger (RMtrace),
Inhibitory complex concentration (Inh), and activity trace of
spike (C), and the concentration of neurotransmitter (D) are
defined using the Tsodyks MarkramModel as:

d

dt
RMtrace = −

RMtrace

τr
+ RM (1)

d

dt
Inh = −

Inh

τinh
+ RMtrace.C (2)

d

dt
C = −

1

τc
[C + 1δ(t − tp)] (3)

d

dt
D = −

1

τd
[D+

∑
δ(t − td)] (4)

where, τr is the time constant associated with the influx of
RMs, τinh is the time constant associated with inhibition of
release of neurotransmitters, tp is the time when an impulse is
received at the pre-synaptic neuron, RM is the concentration
of retrograde messenger present in the post-synaptic region
and τc and τd are the time constants associated with the
biological latency in activity spike and neurotransmitter release,
respectively. Equations (1)–(3) give the resulting effect of the
action potential on the concentration of the inhibitory complex.
Equation (4) gives the concentration of neurotransmitter released
from the pre-synaptic neuron which depends on the rate at which
impulses enter. 1 is the parameter for Hebbian plasticity and is
calculated according to Table 1.

The probability of inhibition and release of neurotransmitter,
concentration of neurotransmitter and synaptic current are
written as:

Pinh = ee
− 0.0000001

Inh −1 (5)
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TABLE 1 | Specific values of timescales, threshold values, and control parameters

in neuron model.

u[n] sgn(RMtrace− RMrest) 1

1 1 1

1 0 −1

0 1 −1

0 0 0

Prel = Pinit(1− Pinh) (6)

Here, the probability of inhibition is a function dependent only
on the concentration of the inhibitory complex. The probabilities
considered here decide the synaptic weight of a neuron i.e., the
amount by which the transmission of an impulse through the
synapse is magnified. The rate of change of synaptic weight is
called synaptic efficacy and is calculated as:

d

dt
ω = Prel.C.D (7)

Hence, the resulting synaptic current transmitted can be
written as:

Isyn(t) = ω
∑ t − tp

τ
e
t−tp

τ δ(t − tp) (8)

3.1.2. Post-synaptic Region
At the post-synaptic RM, the RM depends on the calcium
concentration due to endoplasmic reticulum and secondary
mediator. Calcium effects due to endoplasmic reticulum and
secondary mediator can be written as:

τCc

dCc

dt
= −Cc − C4.f (Cc,Ce)+ [r + α(Wpost −Wpostrest )

+βSm]+ k.
dm

dt
(9)

τCc .eCc

dCe

dt
= f (Cc,Ce) (10)

f (Cc,Ce) = C1
C2
c

1+ C2
c

−
C2
e

1+ C2
e

.
C4
c

C4
2 + C4

c

− C3Ce (11)

dm

dt
= v1max

C2
c

K2
d
+ C2

c

− v2max

[Na2+]2

K2
Na2+

+ [Na2+]2
.

m

1+m
(12)

τSm
dSm

dt
= (1+ tanh(SSm(Isyn − ISm)))(1− Sm)−

Sm

dSm
(13)

Here, in these equations, c1, c2, c3, and c4 are the fixed control
parameters of the function f(cc,ce), cc describes the calcium
concentration in the cytoplasm, ce represents the calcium
concentration in the internal store (endoplasmic reticulum ER),
Wpost is the recovery variable for the post-synaptic current

in FHN model, Sm is the generation of IP3 in response to
the influx of calcium current. The term [r + α(Wpost −
Wpostrest) + β .Sm] represents the calcium influx from the
external space. Also, interaction between the cytoplasmic calcium
(cc) and endoplasmic calcium (ce) is described with a two-
variable function f(cc,ce). There is threshold value for the Sm
production that is triggered by the synaptic current. Threshold
parameter ISm is hence selected to distinguish between activated
and inactivated states of the variable.

The plasticity of the system is decided by the retrograde
messenger. The concentration of retrograde messenger is
only dependent on the post-synaptic calcium concentration.
The concentration of post-synaptic retrograde messenger is
written as:

RM = e−e−e
√
3log(Cc)+25.4146

(14)

By FHN model, a simplified version of the Hodgkin-Huxley
model, for post-synaptic site, we get:-

dWpost

dt
= Vpost + Ipost − Isyn

dVpost

dt
= Vpost −

V3
post

3
−Wpost

(15)

3.2. Linearization of Neuron Model
The equations are optimized to improve the computational
efficiency of the model and reduce its implementation cost
by implementing polynomial expansion of functions to reduce
complex and lengthy functions. While this does mean that the
hardware will be easier to design, the approximations are taken
such that they resemble the curve closely in the domain the
functions shall be operating in.

3.2.1. Pre-synaptic Region
In the 1st order Tsodyks Markram differential Equations (14)–
(4), since all the equations are linear, there is no requirement to
make any adjustments to them.

For determining the probability of inhibition, we encounter
the implementation of exponential function. On using CORDIC
algorithm to implement the same, the area of the hardware is
increased by a large amount. Also since the CORDIC algorithm
operates on convergence, this would lead to an increase in time
taken per process for computation. Hence, we solve by using an
rectangular hyperbolic function that closely resembles the curve
in the region of operation.

Pinh =
−0.00007

Inh− 0.00001
+ 1.1 (16)

For synaptic current, we consider the summation segment as a
reset enabled function. Thus, we obtain a pair of equations Y and
Z, which generate the form of unweighted synaptic current.

Y =
t − tp

τ
e
t−tp

τ

Z = τe
t−tp

τ

(17)
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For a pre-fixed frequency of tp0 interval, the summation symbol
in (8) is removed without any loss of accuracy by considering the
summation of each power for a finite number of terms. However,
for SyNC model to function for any form of tp provided, we
needed to make some approximations. Adoption of a piece-wise
approach leads to a trade-off between area efficiency and error
efficiency. Also the properties of the curve are lost at every new
impulse completely, which leads to significant error in output,
unless more functions are added to compensate the loss. But
this almost doubles the area. Hence, the alternative is to go
for differential form of these equations. As such the impulse
driven activation can be enabled, without removing the value
of Y completely before the activation. For this particular set of
equations, activation conditions can be met simply by adding 1
to Z, when an impulse arrives in each cycle. Such a form is more
robust in error handling for discretized calculations. Based on
above technique, Isyn is calculated as follows:

dY

dt
=

Z − Y

τ

dZ

dt
=

−Z

τ
+ u[n]

(18)

Isyn = ω.Y (19)

3.2.2. Post-synaptic Region
It is observed that the value of f(cc, ce) is in the order of 10–
12, hence making the detection of this potential via instruments
impossible. Moreover, the value of the function is much lower
than the noise threshold, due to which the noise parameter will
be the primary contributor to the value of this function. Hence,
we consider f(c,E)=0. This in turn gives us E=0 (from Equation
12). Hence, the changed calcium dynamics equations are:

τCc

dCc

dt
= −Cc+ [r+α(Wpost −Wpostrest )+βSm]+ k.

dm

dt
(20)

dm

dt
= v1maxC

2
cK

2
d(1−

C2
c

K2
d

+
C4
c

K4
d

)− v2max .k1.(1−m+m2)

(21)

k1 =
[Na2+]2

K2
Na2+

+ [Na2+]2

For secondary mediator, polynomial expansion of tanh is
implemented to reduce the complexity of the equation:

τSm
dSm

dt
= (1+ ks −

ks

3
)(1− Sm)−

Sm

dSm

ks = SSm(Isyn − ISm)

(22)

For concentration of retrograde messenger, we implement
polynomial expansion of exponential function:

RM = 1− (k2.ck1)+
(k2.ck1)2

2
−

(k2.ck1)3

6
(23)

where k1 = 2.0447, k2 = 9.1799x10−12.
We modify the original FHN model such that the nonlinear

terms are eliminated. Unlike the other equations, where we
have allowed powers of a variable in expansion, we avoid this
scenario here since we are able to reduce power taken in this
particular variable description with no noticeable precision loss.
This enables us to approximately solve both linearized FHN
equations for the power cost of one. So, the nonlinear term
from equation:

f (Vpost) = Vpost −
V3
post

3
(24)

can be rewritten into the closest fitting linear curve (Hayati et al.,
2016). The curve we chose here is:

f (Vpost) = 1−
|Vpost|

2
(25)

4. RESULTS

4.1. Hardware Design
This section provides a detailed description of the hardware

realization of the proposed discretized SyNC model. The

computation core has been developed to work with IEEE-754
single precision floating point number system. The pathways
of information flow in the hardware realization of SyNC
are described in Figure 4. Figure 5 describes the different

stages of pipelining in terms of registers or flip-flops in each
arithmetic unit used in the model. The design has been
pipelined extensively and even arithmetic operators have been
pipelined for mantissa operations by using custom-made, non-
compressed, tree structured, pipelined, moderately large sized
and power consuming high speed, wallace tree multipliers. The
largest combinational unit floating point multiplier architecture
is a mantissa multiplication of respective mantissa widths,
whereas the largest one in division is the iterative Newton-
Raphson division method which consists of three mantissa
width multiplications for both posit and float. All of these
multiplications are done using custom implemented wallace
tree unsigned multipliers for gaining greater speed and to meet
acceptable operating frequency.

Design has been pipelined with basic pipeline registers and
clock speed has been achieved as high as 1 GhZ in 45 nm
technology node. The hardware design of the SyNC model, with
exact same input configurations, are simulated in Questasim
10.0b Simulator by simulation scripts and output results are
functionally verified by self-developed utility scripts in C++
v.11 and Python 3.8. For simulation as well as the hardware
design for the given system of equations, we consider a constant
input of retrograde messenger from the pre-synaptic region
such that it is always just above the threshold for activation of
synaptic plasticity parameter. We have implemented SyNC in
RTL which are then mapped and synthesized using Synopsys
Design Compiler on 45 nm OpenNangate technology. The
power consumption is derived using Synopsys Power Compiler.
Standard operating frequencies of almost 1 GHz is met for all the
designs in 45 nm ASIC.
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FIGURE 4 | Description of flow of data in hardware architecture. Each submodule for its corresponding equation is highlighted. The architecture has the lowest power

requirements for the complexity of the designed model.

For low power, economical and optimized implementation
of most widely used single precision float, we have made
use of reduced complexity hardware of base arithmetic units.
Complexity of other numerous subunits are also significantly
reduced. This brought down the power and area footprints by
orders of magnitude than the base version to 2.135 W and 1.877
mm2, respectively, by reduction of the number of intermediate
registers and less frequent switching of intermediate variables.
Through extensive pipelining, single precision floating point
optimized version is able to meet acceptable operating frequency
of 1,030MHz. The operation parameters are described inTable 2.

One of the key features of our mathematical design is that
an endocannabinoid feedback mechanism is involved. While this
is a staple in analog designs, for hardware implementation, an
inadvertent delay is obtained in the system. This is observed to
be equivalent to 25 clock cycles in the hardware domain. Here,

TABLE 2 | Operation parameters of SyNC architecture.

Sl.No. Parameter Value Units

1. Area 1.877 mm2

2. Dynamic power 2.135 Watt

3. Cell leakage power 32.1054 mW

4. Total cell power 2.167 Watt

5. Total no. of gates 2.35 Million

6. Total no. of transistors 9.4 Million

7. Speed-up by pipelining 3.88 N/A

instead of resorting to Verilog AMS, we control the accuracy to
the model and minimize this delay to negligible extent by varying
δ. The role of δ in our model is defining the relationship between
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FIGURE 5 | Optimization of the hardware module pipelining stages to obtain 1 GHz frequency. Represented are the three arithmetic submodules used in the SyNC

architecture. Each task is represented with the number of pipelined stages involved for that task.

the clock timing and the actual timeframe of operation. Hence by
increasing δ, we decrease the effective influence of the delay in the
timeframe of operation of the synapse.

4.1.1. Considerations for Error vs. Complexity in

Architectural Design
The primary focus for development of a hardware model
is for future use in large scale hardware implementations.
Such applications necessitate low power consumption designs.
Solutions such as linearization have been applied to obtain
the required level of biological complexity but with reduced
mathematical complexity. In the variable outputs obtained from
the hardware realization of the SyNC neuron model, a latency in
the results is observed. The net latency across all variables is 0.031
s, which is an effect of pipelining as well as the delay in feedback
of retrograde messenger to the pre-synaptic region. As can be
observed from the equations, while other equations have some
garbage value output before the system stabilized for accepting
action potential input, the only variable that does not always
return to rest and which impacts the variables that come after it is
synaptic weight, ω. For this very reason, the first values obtained
just during the initialization of the model within this period must
be rejected and the value of ω is fixed at 0, to remove the effect of
default values of ω from influencing the nature of the curve. The
error is<1% for architectures designed, which are sufficiently low
and the output is barely affected and hence acceptable.

4.1.2. Device Sensitivity Compared to Mathematical

Model
For our hardware design with precision mode IEEE-754 Single
Precision floating point, we observe that the amplitudes of
the variables are higher in the hardware realization of our
models than that of our software results. This is a result of

using differential forms of the equations to develop the SyNC
hardware realization. The response of the variables in the
current curves is a consequence of the choice of value of δ for
model implementation. The smoothness and root mean square
(RMS) accuracy of all obtained curves are directly proportional
to δ. Hence, we designed our hardware model with such
considerations in mind. We can’t increase the value of δ in our
model because such an adjustment will reduce the speed-up
achieved by the system.

However, for a biological system, the currency of
communication is not entirely the form of the curve, but
also the concentration of calcium influx associated with it.
Rather, after RMS error reaches a particular range, it is this
concentration influx which is more important to replicate.
This can be evaluated by obtaining the error in area under
the curve in the form of Area Average Error (AAE). Since
for the SyNC neuron model, the conservation of molecules
involved is of higher importance from a biological perspective,
we disregard the amplitude error in favor of lower AAE after
RMS error is within 1%.

4.2. Software Analysis of Autism Spectral
Disorders
4.2.1. Designing Mathematical Modules for ASD

Scenarios in Extended Model

4.2.1.1. FXS Syndrome
For modeling the effect of FMRP in FXS syndrome in a synaptic
device, we consider its impact on mGluR5 LTD. We define
the equilibrium dynamics for the mGluR5 due to accelerated
generation of Homer 1a. The synaptic current influx in the
postsynaptic region can be considered a directly proportional to
mGluR5 activity. Since the increased sensitivity in dynamics is
observed, the gain achieved can be expressed as:
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dInflux

dt
= −kfmrp.kt .[Isyn]

Isyn′ = Isyn+ Influx

(26)

Here, the dynamic parameter kfmrp is the outcome of molecular
stochastic process. Therefore, it behaves as the source of
noisy behavior in this model for FMRP concentration. The
variations in FXS are expressed first in secondary mediator in
our model.

4.2.1.2. Tuberous Sclerosis Complex
To understand and model TSC, we approach it from the
perspective of the solutions that have been suggested in the
literature. Allosteric modulation has been one of the most
promising solutions that have been studied extensively in the
recent times. Due to lack of an exact model of how both
enhancement and inhibition of mGluR5 activity improves
synaptic output in allosteric modulation of TSC (Figure 6), we
hypothesize a mathematical form for the same that can duplicate
such behavior successfully. Hence in our model, we consider
the behavior of the NAM akin to lowering the threshold of
mGluR5 activation, leading to easier activation of the post-
synaptic region and improving mGluR-LTP. We consider the
equivalent mechanism of the action of PAM by considering the
impact of impaired protein function behavior onto the output
dynamics of the synapse.

As observed from numerous studies, the activity of TSC
is essentially centered around the activity of mGluR5. This
is consistent with mGluR5 PAM alleviation of LTP by
compensating for reduced mGluR5. However, mGluR5 must
also be the primary carrier of distortion in this system because
reduction of mGluR5 activity by NAM is also beneficial for the
plasticity of the system. Hence, we hypothesize that the impaired
protein synthesis is the generator of distortion in the process. We
develop the equilibrium constructs of the system as follows:

dkmGluR5

dt
= +kmGluR5 − knamGluR5

dkmGluR5

dt
= +kmGluR5 + kpamGluR5

knamGluR5 > kmGluR5 > kpamGluR5

(27)

4.2.1.3. NMDAR and Partial Agonist
D-cycloserine’s activity as a partial agonist can be best described
as a competitive process at NMDAR. Electrodynamically, in
the concerned scenarios, the concentration of D-cycloserine is
more than the concentration of NMDAR, hence the molecules
unable to bind with NR1/NR2C receptors act as agonists.
However, it is also observed that this effects the glutamate
binding and hence does not affect the plasticity from its own
path. The resultant glutamate binding is inhibited at NR2A,
NR2B once all sites of NR2C are occupied by either of the
agonist. It must be noted that D-cycloserine in natural state is
not an action potential activated pathway involved in synaptic

transmission dynamics, hence making it the noise source in the
system. To demonstrate the role of D-cycloserine, we model
its role in synaptic transmission dynamics via the competitive
concentration dynamics process. The effect of such dynamics can
be first observed in our model at the secondary mediator, the
first state variable evaluated at the post-synaptic region and is
directly dependent to mGluR5 activity. To better understand the
process dynamics, the distortion for this specific case is evaluated
by comparison between the simulated outputs to a noisy signal
for the case where D-cycloserine is acting passively along with
primary neurotransmitter (glutamate).

For the scenario involving D-cycloserine along
with glutamate:

dIsyn

dt
= [+

Isyn

kGlutamate
−

N

kD−cycloserine
+

1

kadjust
] (28)

4.2.1.4. Shank and Neuroglin
The role of Shank proteins in synaptogenesis and function (Sala
et al., 2015) while understood to a certain extent, have not
been successfully generalized due to the numerous ways Shank
proteins can impact the synaptic function. Many experimental
studies have been made to understand its role, but the highly
diverse and often contentious conclusions from these studies
have been an impediment. Here, we seek to reduce the core
properties of the Shank such that all such scenarios can be
simulated successfully. The core properties of Shank protein can
be reduced to variations in NMDAR activity, NMDAR mediated
LTP and NMDAR/AMPAR ratio at the postsynaptic region. We
can model this condition by varying the equilibrium constant
value of k or kNMDAR. To be able to model a wide range
of NMDAR/AMPAR values, we adopt a working assumption
that synaptic vesicle release is unbounded. We also consider the
action of Neuroglins, synaptic cell adhesion molecules, which
have effects complementary to that of Shank, as in the ratio
of AMPAR/NMDAR becomes lower. We can hence develop a
composite model that can effectively demonstrate the impact
of Shank and Neuroglin dynamics on the effective change in
synaptic current and the impacted changes can be observed in
the secondary mediator dynamics.

Isyn′

Isyn
=

kShank

.kNeuroglin
.kadjust (29)

4.2.1.5. Chromosome 15 Syndrome
A “chromosome 15 phenotype” is characterized by ataxia,
language delay, epilepsy, intellectual disability, repetitive
movement disorders, and facial dysmorphic features and has
been described in individuals with chromosome 15 duplications
(Muhle et al., 2004). We model the chromosome 15 inhibitory
receptor action on neuronal dynamics onto the synaptic
mediator and observe the effects on calcium dynamics in the
post-synaptic region of the neuron.
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FIGURE 6 | The effect of allosteric modulation in TSC. The limitations for positive allosteric modulation (A) and negative allosteric modulation (C) are compared with

an unperturbed scenario (B) in which no allosteric modulation agents were introduced into the system. (A) Positive allosteric modulation results in higher amplitude

and low frequency filter. (C) Negative allosteric modulation results in lower amplitude threshold and high frequency filter.

4.2.2. Classification of Noise Response to Steady

Synaptic Output Potential for ASD Scenarios
Here, we observe the normalized impact of an identical noisy
input to the synaptic potential output at the post-synaptic
region of the neuron. The effective distortion observed in the
synaptic output potential can be classified into three primary
types (Figure 7). Type A shows the least amount of distortions.
The impact on one synapse can be considered unobservable
by experimental methods. Hence, we can say that to have
observable impact on the neuronal circuit, multiple synapses and
neural networks with them must be affected by these particular
synaptopathies. Type B events show considerable distortions
whose impact can be considered observable via high precision
experimentations. To have observable impact on the neuronal
circuit, a small collective of such affected synapses and networks
are sufficient. Type C shows abruptly high distortions whose
impact on a single synapse can be considered observable by
experimental methods. Few such altered synapses for neurons
in key processing regions of the brain will lead to observable
variations in the neuronal circuit.

5. DISCUSSION

In this work, we realize a biologically descriptive synaptic model
for neural communication, with primary focus on modeling
the complexity of a synapse in a way that can translate into
competent hardware models. Large scale implementation of such
models is aimed at utility in designing biologically extensive
neuronal circuits. We focus on Autism Spectrum Disorders
in which a variety of synaptopathy mechanisms operate in
various syndromes. By generating a set of ASD interrogation
algorithms (ASDint) we modeled changes to synaptic dynamics
in regard to corresponding disease variables and observed
the spread of their impact in larger neural circuits. This is
the first demonstration of algorithms designed specifically to
address complex synaptopathies of ASD. Co-development of
ASDint over the SyNC core algorithm provides a powerful

new computational and hardware approach to benefit ASD
experimental analysis and to help predict manifestation of
symptoms for ASD. This is accomplished by abstraction of
neuronal behavior at the synapse while describing the complexity
involved in the interactions of the implicated primary state
variables. Importantly, such an approach is not restricted to ASD
and the SYNC algorithmic core can be used to design network
models for any such synaptopathies with complex dynamics.

Most of the synapses in the CNS are low pass filters.
While the synaptic communication properties are not ideal, the
attenuation is not significant. For a large network of neurons
consisting of many synaptic nodes, it is important that the signal
amplitude is not attenuated to a large degree or else distant
synaptic nodes in the neural communication framework won’t
be able to communicate with each other. Synapses modulate
not only the amplitude of the action potential but also the
selectivity and accuracy of the synaptic output response. The
filter form of synapses has decisive implications on their noise
response (Voglis and Tavernarakis, 2006; Faghihi and Moustafa,
2015). Synapses as such can be widely classified into three
such classes: high pass, low pass and band pass filters. Those
synapses with release probability below 0.3 act as high pass
filters (Goda and Südhof, 1997). Such synapses have very high
selectivity and noise resistance to environmental procedures.
However, the attenuation to synaptic output potential is also very
significant in such synapses. Synapses with initial probability of
neurotransmitter release greater than 0.7 act as low pass filters
(Murphy et al., 2004). Such synapses have very low selectivity,
while attenuation to synaptic output potential is also rather
insignificant in such synapses. However, the resulting synaptic
transmission is affected by noise generated by environmental
procedures to an observable degree. Synapses with intermediate
initial release probability, between 0.3 and 0.7, act as band pass
filters (Rose et al., 2013). In our models, we consider the initial
neurotransmitter release probability of 0.5, which adequately
describes a low pass filter glutamatergic synapse.

Synaptopathies can be described in the form of distortions
observed in the system compared to normal conditions.

Frontiers in Cellular Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 674030

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Chatterjee et al. SyNC Neural Net on Synaptopathies

FIGURE 7 | Classification of ASD mechanisms considered based on distortion from the ideal synaptic output potential, with ideal distortion response set at 1. Noise

describes the variations in variables that are considered for these synaptopathies, with baseline for no noise input set at zero. The baseline for noise is added to the

plots for reference. D-cycloserine here acts as partial agonist on NMDAR. Type A synaptopathies are categorized as the least amount of distortions. Multiple neurons

must be affected by these particular synaptopathies to be observable. Type B synaptopathies have observable impact on the neuronal circuit even when occurring in

a small collective of such affected neurons. Type C synaptopathies show abruptly high distortions that can lead to easily observable variations in the neuronal circuit.

The distortion obtained from the ASDint simulations show
consistency with the conditions underlying those specific
synaptopathies. Two primary ways to look at a noise response
is the gain in potential strength they provide and the number of
spikes in the resultant output that are at a threshold to impact
the system dynamics. Gain in potential results in stronger and
more sensitive LTP dynamics, reducing the threshold of action
potential spike input and frequency required to activate it. Such
an output response implies improved LTP dynamics and lower
LTD threshold, resulting in greater sensitivity of the model as
well as lower duration of information retention of the synapse.
Greater noise spikes result in false activation of the region and
can result in faulty activation of the boutons. Such impulses
can result in variations in synaptic weight and lead to repetitive
behaviors. In analysis of the ASD mechanisms different resulting
distortions occurred.

Evaluation of distortions provides insights into phenotypes
observed in ASD synaptopathies. For TSC under the impact of
negative allosteric modulation, the noise spikes in the distorted
curve, although of lower amplitude threshold, are greater than
the general scenario. This can manifest itself in the form
of false activation of the post-synaptic region, which can be
considered a trigger for repetitive behaviors. When positive
allosteric modulation occurs, we observe the distortion curve
to have higher noisy spikes as well as lower attenuation of
action potential. Hence, it has better LTP characteristics and LTD
threshold that can be associated with obstructions in learning and
lower attention span. Modeling the FXS syndrome in ASDint
module, we observe that LTP is very easily activated here and
can be observed in the form of lower LTP threshold. Thus,
it can be associated with difficulty in learning process as well
as increased sensitivity to noisy inputs in the neural circuitry.

The interactions of partial agonist with NMDAR show us the
output of competition in the synaptic channel manifested at
the synaptic gate. Social withdrawal and repetitive behavior are
associated with this particular synaptopathy. On observing the
noise response of the ASDint module, we see that the noise-
induced variations are the highest when compared to the other
three scenarios and can be considered a trigger for repetitive
behavior. For Shank, NG activity variations, the NMDAR
induced LTP is affected and results in higher required amplitude
of LTD, which we can see from the noise plots resembles
the expected activity variations. Chromosome 15 syndrome is
associated with repetitive movements which as observed from
the distortion curve, could be a consequence of false activation
of post-synaptic regions.

Large scale hardware usage is key for further understanding
the impact of plasticity and synaptopathy mechanisms on larger
circuits. In our hardware modeling, use of the IEEE 754 single
precision floating point has accuracy within tolerable error
ranges. It is also remarkably small and efficient in terms of PPA
(power, performance, area) vs. ARM core implementations. It has
been a prevalent practice of late to use floating point numerals
in 16 bit widths or lower order custom width floats to optimize
computational resources specifically for edge computing use-
cases. Such practices give us higher power efficiency which
increases the scalability of the neuronal circuit model. We were
unable to consider them without decisive loss in accuracy within
the neuron ASDint model. Due to such considerations, IEEE 754
single precision floating point is noticeably the most suitable bit
width for our application. For comparison of our neural network,
one of the well known state-of-the-art SNN architectures, IBM
TrueNorth (Akopyan et al., 2015) and Intel Loihi (Davies et al.,
2018) has been considered. IBM TrueNorth uses a smaller

Frontiers in Cellular Neuroscience | www.frontiersin.org 15 July 2021 | Volume 15 | Article 674030

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Chatterjee et al. SyNC Neural Net on Synaptopathies

technology node of 28 nm and consumes about 100 mW of
power. It has a power density of 20 mW/cm2 consisting of 5.4
billion transistors. Intel Loihi has used a further smaller node
of 14 nm processor with a 2 billion transistor size or 60 mm2

in chip area. The proposed SyNC architecture is designed on a
technology node of 45 nm and consists of 9.4 million transistors
over an area of 1.877mm2. Hence, we can observe that we are able
to bypass the requirements of programmability to model diverse
descriptive synaptic models by design of a minimalist ASIC
synaptic core that describes every state variable in a synapse. On
utilization of lower technology nodes, we expect performance of
our device to be at par with state of the art SNN architectures. For
future studies a programmable Application Specific Processor
like the former chips are being targeted for better flexibility and
programmability and to have a one chip for all solutions.

Models built in equivalent Posit numeral representation,
such as Jaiswal and So (2019) and Chatterjee et al. (2021)
have demonstrated highly flexible and fast convergence in
specific format scientific functions. Such models have shown
accuracy comparable to IEEE 754 double precision floating point,
using much lesser resources than the latter. However, due to
complications in evaluations that result from dynamic power
owing to higher switching of states, the net power requirement
is significantly high on account of deep pipeline and conversion
of FPGA fabric optimized design to general ASIC.

CONCLUSION

The SyNC model provides us with an elaborate and accurate
neuron model. It is one of the only hardware models that
has efficiently used posit in highly sensitive systems, while
achieving low error percentages. Its low power and low error

margins make it optimal for large scale digital implementations.

Finally, ASDint and SyNC can be used to process and test data
obtained from experiments and hypothesize neuron network
possibilities and hence identify key variables and areas for
experimental verification. Hence, when used in large scale
network models, SyNC accelerates our understanding of the
roles of synapses, synaptic plasticity and neuronal circuits in
brain function.
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