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The role of dopamine in cocaine misuse has been extensively documented for

the mesocorticolimbic circuit. Preclinical work from earlier lesion studies to recent

multidisciplinary investigations has suggested that the hypothalamus is critically involved

in motivated behavior, with the lateral and medial hypothalamus each involved in

waking/feeding and resting/satiety. However, little is known of hypothalamus function and

dysfunction in cocaine misuse. Here, we examined resting state functional connectivity

of the lateral and medial hypothalamus in 70 individuals with cocaine dependence (CD)

and 70 age as well as gender matched healthy controls (HC). Image pre-processing

and analyses followed published work. Compared to HC, CD showed increased

lateral hypothalamic connectivity with dorsolateral prefrontal cortex and decreased

functional connectivity with the ventral precuneus. CD showed increased medial

hypothalamic connectivity with the inferior parietal lobule and decreased connectivity

with the ventromedial prefrontal cortex, temporal gyrus, fusiform gyrus, and ventral

striatum. Further, at trend level significance, the connectivity strength between lateral

hypothalamus and dorsolateral prefrontal cortex was positively correlated with total

amount of cocaine use in the past month (p = 0.004, r = 0.35) and the connectivity

strength between medial hypothalamus and ventral striatum was negatively correlated

with cocaine craving as assessed by the Tiffany Cocaine Craving Questionnaire

(p = 0.008, r = −0.33). Together, the findings demonstrated altered resting state

functional connectivity of the hypothalamus and may provide new insight on circuit level

deficits in cocaine dependence.

Keywords: resting state functional connectivity, hypothalamus, cocaine, craving, fMRI

INTRODUCTION

Individuals with drug addiction are characterized by severe motivation deficits (1) and under-
responsiveness to natural reinforcers (2–4). The dopaminergic pathways process reinforcing stimuli
and play a critical role in motivated behavior (5–8). Dopamine helps not only to establish the
motivational value of extrinsic stimuli during initial conditioning but also link incentives to action
through learning (1, 6). Preclinical studies showed that repeated administration of stimulants
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altered dopaminergic signaling and motivated behaviors such
as preference for sucrose (9–12). Abundant research of
dopaminergic deficits in addiction has focused on the ventral
striatum, largely in the context of reward-related responses.
The hypothalamus also receives extensive projections from the
dopaminergic midbrain and is implicated in functions from
those essential to survival to cognitive and affective processes in
support of goal-directed behavior (13–18). On the other hand,
it remains unclear how hypothalamus function is influenced by
cocaine misuse.

Located below the thalamus, the hypothalamus lies along
third ventricle walls below the hypothalamic sulcus and
continues across the floor of the ventricle (19, 20). The
hypothalamus regulates arousal, food intake, sexual drive,
reward and affective response (21–23). Previous studies have
implicated the hypothalamus in drug addiction (24, 25). In
rodents the transition from controlled to compulsive cocaine
self-administration was associated with substantial remodeling of
hypothalamic circuitry (26–28). Compulsive cocaine use altered
an array of dopamine gene expression, leading to functional
reorganization of the hypothalamus (26). In humans individuals
with cocaine dependence (CD) showed altered hypothalamus
activation viewing erotic vs. neutral pictures, as compared to
healthy controls (HC) (29). Hypothalamus response to monetary
reward vs. non-reward was associated with the duration of
abstinence in CD (30). HC showed increased hypothalamus
activation viewing food vs. neutral pictures (31–34), whereas a
recent study reported decreased hypothalamus activation in CD
for the same contrast (35). Together, these findings highlighted
hypothalamus dysfunction in the context of reward, food and sex
drive in cocaine addiction.

Preclinical work from earlier lesion studies to recent
multidisciplinary investigations has suggested that the
hypothalamus could be broadly divided into lateral
hypothalamus (LH) and medial hypothalamus (MH) each
involved in waking/feeding and resting/satiety (36). On the
other hand, imaging studies in humans have not aimed to
distinguish LH and MH and delivered a more diverse picture of
hypothalamus functions. For instance, on the basis of reported
coordinates, both LH (37–40) and MH (32–34) appeared to
respond to exposure to high caloric vs. low caloric food or non-
food stimuli. Both LH (41–49) and MH (46, 49–51) responded
to exposure to erotic vs. neutral visual stimulation. Similarly,
both LH (52–54) and MH (52, 55–57) increased activations to
gain vs. no-gain scenarios in the monetary incentive delay task.
Thus, both hypothalamus divisions appeared to be engaged in
behavioral challenges that involved explicit reward.

Combining T1-weighted 3D Fast Field Echo MR imaging
and histology, Baroncini and colleagues identified hypothalamic
nuclei and adjacent white matter fascicles (20). Gray and
white matter structures within and around the hypothalamus
were identified via specific landmarks on histological sections,
from the optic chiasm anteriorly to the mammillary bodies
posteriorly, and with reference to published work and atlas
(58–65). The landmarks, including the optic tract, the floor
of the diencephalon, the third ventricle, and the fornix, were
readily identifiable in MR scans. Identifiability scorings between

an anatomist and a neuroradiologists for 20 brains was highly
in agreement (Cohen’s κ = 0.96, p < 0.0001). The averaged
MNI coordinates of identified hypothalamic nuclei in anatomical
MNI space were provided from the 20 volunteers. Based on
these coordinates, the MH (mean: ±4, −2, −12) included
the arcuate nucleus, ventromedial nucleus and part of the
dorsomedial nucleus and LH (mean: ±6, −9, −10) included
the other hypothalamic nuclei located laterally and posteriorly.
With the coordinates, a more recent study highlighted distinct
resting state functional connectivity (rsFC) of the LH and
MH (66). Specifically, LH was more heavily connected to the
dorsomedial PFC (dmPFC), thalamus, and frontal operculum,
andMHwasmore connected to the vmPFC and ventral striatum.
These studies suggested the feasibility in examining activity and
functional connectivity of the LH and MH separately.

In the current study, we examined the rsFC of the LH and
MH in CD as compared to HC. We hypothesized that (1)
LH and MH would show distinct functional connectivities, in
replication of Kullmann et al. (66); and (2) compared to HC, CD
showed altered rsFC in correlation with clinical characteristics
such as cocaine craving score and duration and recent amount
of cocaine use. Further, the literature supports sex differences
in hypothalamus dysfunction in relation to cocaine misuse.
For instance, female as compared to male rats showed greater
hypothalamic-pituitary-adrenal (HPA) axis activation following
administration of cocaine (67). Male but not female rats showed
significant increases in cocaine- and amphetamine-regulated
transcript (CART) peptide expression in the hypothalamus
following forced swim stress (68). In humans, cocaine use
appeared to alter hypothalamic-pituitary-gonadal function more
in men than in women (69). During exposure to stress or drug
cues, cocaine-dependent women demonstrated more blunted
HPA axis response than did cocaine-dependent men (70, 71).
Thus, we explored potential sex differences in the current study.

MATERIALS AND METHODS

This is an exploratory study using an imaging data set collected
earlier (72). Briefly, cocaine dependent subjects (CD) were
recruited for inpatient stay at the Clinical Neuroscience Research
Unit of the Connecticut Mental Health Center and healthy
control subjects (HC) participated in the study as “outpatients.”
The goals of the original study were to examine the component
neural processes of cognitive control using a stop signal task (73,
74) and how these processes were altered in cocaine addiction.
The original sample consisted of 97CD and 96 HC. The current
study was based on a subsample of the participants who were
also scanned during resting state. Below is a description of
the subjects, study procedures, and data analysis specific to the
current work.

Subjects, Informed Consent, and
Assessment
Seventy recently abstinent subjects with cocaine dependence
(CD, 52 men) and 70 age- and gender-matched healthy control
(HC, 46 men) subjects participated in the study (Table 1).
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TABLE 1 | Demographics of the subjects.

Subject characteristic CD (n = 70) HC (n = 70) p-value

Age (years) 40.7 ± 7.7 38.5 ± 9.4 0.14*

Gender (M/F) 52/18 46/24 0.28∧

Current cigarette

smokers/non-smokers

51/19 21/49 <0.001∧

Years of alcohol use 18 ± 9.0 19 ± 11.7 0.48*

Amount of average monthly

cocaine use (gm) in the prior year

26.1 ± 32.0 N/A N/A

Average cocaine amount per use

(gm)

1.4 ± 1.3 N/A N/A

Days of cocaine use in the prior

month

15.9 ± 9.9 N/A N/A

Years of cocaine use 19.2 ± 8.0 N/A N/A

values are mean ± S.D.; *two-tailed two-sample t-test; ∧χ2 test.

CD met criteria for current cocaine dependence, as diagnosed
by the Structured Clinical Interview for DSM-IV (75). Recent
cocaine use was confirmed by urine toxicology screens. They
were drug-free while staying in an inpatient unit for 7–10 days
prior to the current fMRI study. All subjects were physically
healthy with no major medical illnesses or current use of
prescription medications. None reported having a history of
head injury or neurological illness. Other exclusion criteria
included dependence on another psychoactive substance (except
nicotine) and current or past history of psychotic disorders.
Individuals with current depressive or anxiety symptoms
requiring treatment or currently being treated for these
symptoms were excluded as well. The Human Investigation
committee at Yale University School of Medicine approved all
study procedures, and all subjects signed an informed consent
prior to participation.

CD’s were assessed with the Beck Depression Inventory
(76) and the State-Trait Anxiety Inventory (77) at admission.
The mean (±SD) BDI (10.0 ± 7.5) and STAI state (34.0
± 8.1) and trait (37.8 ± 8.2) scores were within the range
reported previously for individuals with cocaine dependence
(78–81). Cocaine craving was assessed with the Cocaine Craving
Questionnaire, brief version (CCQ-Brief), for all participants
every 2–3 days during the inpatient stay (82). The CCQ-Brief
is a 10-item questionnaire, abbreviated from the CCQ-Now
(83). CCQ-Brief, CCQ-Now and other measures were highly
correlated in craving assessment (82). Each item was rated on a
scale from 1 to 7, with a higher total score (ranging from 10 to
70) indicating greater craving. Here, CDs averaged 22.7± 11.9 in
CCQ score across all assessments and 19.3 ± 6.6 on the day or
within 2 days of the scan.

Imaging Protocol
Conventional T1-weighted spin echo sagittal anatomical images
were acquired for slice localization using a 3T scanner
(Siemens Trio). Anatomical images of the functional slice
locations were next obtained with spin echo imaging in the
axial plane parallel to the AC–PC line with TR = 300ms,

TE = 2.5ms, bandwidth = 300 Hz/pixel, flip angle = 60◦, field
of view= 220× 220mm, matrix= 256× 256, 32 slices with slice
thickness = 4mm and no gap. Functional, blood oxygen level-
dependent (BOLD) signals were then acquired with a single-
shot gradient echo echoplanar imaging (EPI) sequence. 32 axial
slices parallel to the AC–PC line covering the whole brain were
acquired with TR = 2,000ms, TE = 25ms, bandwidth = 2,004
Hz/pixel, flip angle = 85◦, field of view = 220 × 220mm,
matrix = 64 × 64, 32 slices with slice thickness = 4mm and no
gap. One 10-min resting state BOLD scan was obtained for each
participant with eyes closed.

Imaging Data Preprocessing
Data were analyzed with Statistical Parametric Mapping (SPM8,
Wellcome Department of Imaging Neuroscience, University
College London, U.K.). Images from the first five TRs at
the beginning of each trial were discarded to enable the
signal to achieve steady-state equilibrium between RF pulsing
and relaxation. Standard image preprocessing was performed.
Images of each individual subject were first realigned (motion
corrected) and corrected for slice timing. A mean functional
image volume was constructed for each subject per run from
the realigned image volumes. These mean images were co-
registered with the high-resolution structural image and then
segmented for normalization with affine registration followed by
nonlinear transformation (84, 85). The normalization parameters
determined for the structure volume were then applied to
the corresponding functional image volumes for each subject.
Finally, the images were smoothed with a Gaussian kernel of
4mm at Full Width at Half Maximum.

Additional preprocessing was applied to reduce spurious
BOLD variances that were unlikely to reflect neuronal activity
(86–89). The sources of spurious variance were removed through
linear regression by including the signal from the ventricular
system, white matter, and whole brain, in addition to the six
parameters obtained by rigid body headmotion correction. First-
order derivatives of the whole brain, ventricular and white matter
signals were also included in the regression.

Cordes and colleagues suggested that BOLD fluctuations
below a frequency of 0.1Hz contribute to regionally specific
BOLD correlations (90). Thus, we applied a temporal band-pass
filter (0.009Hz < f < 0.08Hz) to the time course in order to
obtain low-frequency fluctuations, as in previous studies (87–89,
91).

Head Motion
As extensively investigated in Van Dijk et al. (92), micro
head motion (>0.1mm) is an important source of spurious
correlations in resting state functional connectivity analysis (92).
Therefore, we applied a “scrubbing” method proposed by Power
and colleagues (93) and successfully applied in previous studies
(94, 95) to remove time points affected by head motions. Briefly,
for every time point t, we computed the framewise displacement
given by FD (t) =

∣

∣1dx (t)
∣

∣ +
∣

∣1dy (t)
∣

∣ +
∣

∣1dz (t)
∣

∣ +

|1α (t)| + |1β (t)| + |1γ (t) |, where (dx, dy, dz) and (α,β , γ )

are the translational and rotational movements, respectively (93).
The second head movement metric was the root mean square
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variance (DVARS) of the differences in % BOLD intensity I(t)
between consecutive time points across brain voxels, computed

as follows: DVARS (t) =

√

〈

|I (t) − I(t − 1)|2
〉

, where

the brackets indicate the mean across brain voxels. Finally, to
compute each subject’s correlation map, we removed every time
point that exceeded the head motion limit FD(t) >0.5mm or
DVARS(t) >0.5% (93, 95). On average, 1% of the time points
were removed across subjects. CD and HC did not differ in FD
(p= 0.72) or in DVARS (p= 0.52).

Seed Based Correlation and Group
Analyses
The seed regions of MH (two spheres of 2mm in radius, centered
at x = ±4, y = −2, z = −12) and LH (two spheres of 2mm in
radius, centered at x = ±6, y = −9, z = −10) were generated
according to previous studies (Figure 1) (20, 66). Supplementary
Figure 1 shows the seed region in relation to potential locations
of the hypothalamic subnuclei based on an atlas (65). The BOLD
time courses were averaged spatially over each of the MH and
LH seeds. For individual subjects, we computed the correlation
coefficient between the averaged time course of each seed region
and the time courses of all other brain voxels. To assess and
compare the resting state functional connectivity, we converted
these imagemaps, which were not normally distributed, to z score
maps by Fisher’s z transform (96, 97): z = 0.5loge[

1 + r
1−r ]. The Z

maps were used in group random effect analyses. We performed
one-sample t-test each on the Z maps of MH and LH for CD and
HC and two-sample t-test with age as covariate to compare the
two groups. We also performed a two-way ANOVA with age as
a covariate on Z maps to verify group (CD vs. HC) main effect
and examine seed (LH vs. MH) main effect and group by seed
interaction. In addition, we examined main effect and interaction
effect of sex differences in another two-way ANOVA (group ×

sex) each for LH and MH connectivity.

RESULTS

We reported the results of one-sample t-test of whole-brain
connectivity of the MH and LH each for CD and HC and of two-
sample t-test of CD vs. HC. The one-sample t-test allowed us to
examine whether the findings of HC replicated those reported
in earlier studies. Further, with a two-way ANOVA (group: CD
vs. HC × seed: LH vs. MH) we examined whether LH and
MH connectivities were differentially altered in CD vs. HC. All
findings were queried at a corrected threshold, according to
current reporting standards.

Resting State Functional Connectivity
(rsFC)
Examined at voxel p < 0.05 corrected for FWE on the basis of
Gaussian random field theory, the results of a one-sample t-test
of the MH and LH connectivity to the whole brain are shown in
Supplementary Figure 2 for HC and CD. The patterns of whole-
brain connectivity largely reflected those reported earlier (66).
We then compared CD and HC in a two-sample t-test at voxel

FIGURE 1 | Seed regions of the (A) medial hypothalamus (MH; x = ±4,

y = −2, z = −12) and (B) lateral hypothalamus (LH; x = ±6, y = −9, z = −10).

p < 0.001 uncorrected and cluster p < 0.05 FWE (Figure 2;
Table 2). Because more CD than HC participants were current
smokers, we included smoker status as well as age as covariates
in the model. Compared to HC, CD showed increased MH rsFC
with inferior parietal lobule (IPL) as well as decreased rsFC with
the ventromedial prefrontal cortex (vmPFC), ventral stratum
(VS), superior temporal gyrus, fusiform gyrus and cerebellum.
Compared to HC, CD showed increased LH rsFC with the
dorsolateral prefrontal cortex (dlPFC) and decreased LH rsFC
with the ventral precuneus (PCu).

As the LH and MH appear to support motivated behavior in
opposite directions, we conducted a two-way group (CD vs. HC)
× seed (LH vs. MH) ANOVA with smoker status and age as
covariates to examine the interaction effects. At voxel p < 0.001,
uncorrected and cluster p < 0.05 FWE, the results showed main
effects of increased dlPFC and decreased vmPFC, temporal gyrus,
fusiform gyrus and cerebellum connectivities in CD as compared
to HC, as expected. In interaction effects, the ventral striatum
(VS, x = −9, y = 8, z = −17, volume = 891 mm3, peak voxel
Z = 3.92) showed increased LH connectivity (p = 0.005) but
decreased MH connectivity (p = 4 × 10−8) in CD as compared
to HC (Figure 3A). In contrast, a cluster in the dorsal precuneus
(PCu) (x = 6, y = −73, z = 49, volume = 999 mm3, peak voxel
Z = 3.85) showed decreased LH connectivity (p = 0.02) but
increased MH connectivity (p = 3 × 10−5) in CD as compared
to HC (Figure 3B).

Relationship to Clinical Characteristics
In evaluating the relationship between the connectivity changes
and cocaine use variables, we focused on cocaine craving (CCQ
score), duration of use (years), and amount of recent use
(grams of cocaine used in the past month). Thus, with the
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FIGURE 2 | Hypothalamic connectivity differences between 70CD and 70 HC (voxel p < 0.001 uncorrected and cluster p < 0.05 FWE corrected) each for LH and

MH. Histograms show mean ± standard error of the connectivity z scores. dlPFC, dorsolateral prefrontal cortex; PCu, precuneus; IPL, inferior parietal lobule; VS,

ventral striatum; vmPFC, ventromedial prefrontal cortex; TG, temporal gyrus.

number (7) of ROIs tested, the results of linear regression were
evaluated with a corrected p = 0.05/(3 × 7) = 0.0024. None
of the Pearson regressions demonstrated a correlation at the
corrected threshold. At an uncorrected threshold, across CD,
the LH-dlPFC connectivity strength (z scores) was positively
correlated with total amount of cocaine use in the past month
(p = 0.006, r = 0.34). The MH-VS connectivity strength was
negatively correlated with cocaine craving as assessed by the CCQ
(p = 0.006, r = −0.34). The MH-vmPFC connectivity strength
was negatively correlated with years of cocaine use (p = 0.03,
r =−0.26).

Sex Differences
In a separate ANOVA, we assessed group by sex interaction
each for LH and MH connectivity with smoker status and age
as covariates (Figure 4). For the sex main effect women showed
higher connectivity between MH and bilateral ventral tegmental
area (VTA) (x= 12, y=−19, z=−14, volume= 486 mm3, peak
voxel Z = 3.73; and x = −9, y = −13, z = −17, volume = 540
mm3, Z = 3.35). An interaction effect was observed for the
MH—dorsomedial prefrontal cortex (dmPFC) (x=−12, y= 38,
z = 46, volume = 3,321 mm3, Z = 4.30) connectivity, with
HC men showing higher connectivity than HC women and
CD showing the opposite pattern. At an uncorrected threshold,

MH-dmPFC connectivity was negatively correlated with CCQ
score in CD women (p = 0.02, r = −0.64) but not in CD men
(p = 0.59, r = 0.09). A slope test confirmed the sex difference
(p= 0.04).

DISCUSSION

The ventral striatum is a major projection target of the
dopaminergic midbrain and critically implicated in the etiology
of cocaine addiction. Many studies have examined functional
connectivities of the ventral striatum (98–102). We recently
employed difference mapping to describe how ventral striatal
subregions were altered in resting state connectivities in cocaine
addicted vs. non-drug using individuals (103). Hypothalamus
also receives heavy dopaminergic projections from the midbrain.
On the other hand, no studies to date have examined whether
or how functional connectivities of the hypothalamus may
be influenced by chronic cocaine exposure. The current work
took on this challenge and explored resting state functional
connectivity (rsFC) of the lateral (LH) and medial (MH)
hypothalamus in recently abstinent individuals with cocaine
dependence (CD) as contrasted with age- and sex-matched
healthy subjects (HC). Whole-brain rsFC of the LH and MH
largely replicated the results reported earlier, with the LH
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TABLE 2 | Regions showing differences in connectivity of MH and LH between 70CD and 70 HC.

Volume Peak voxel MNI coordinate (mm) Side Identified brain region

(mm3) (Z) x y z

MH (CD > HC)

3,645 4.21 54 −31 46 R Inferior parietal louble

MH (HC > CD)

1,215 4.67 −21 −34 −17 L Fusiform gyrus

4.38 −24 −43 −20 L Cerebellum

1,188 4.38 −48 14 −32 L Temporal gyrus

1,080 4.02 6 35 −2 L/R Ventromedial prefrontal cortex

1,107 4.15 −9 8 −14 L Ventral striatum

LH (CD > HC)

1,512 4.84 −48 11 31 L Dorsolateral prefrontal cortex

LH (HC > CD)

2,322 4.23 −3 −61 43 L/R Ventral precuneus

Voxel p < 0.001 uncorrected and cluster-level p < 0.05, FWE; R, right; L, left.

FIGURE 3 | Results of two-way ANOVA (CD vs. HC × LH vs. MH). Left panel showed brain regions (A: ventral striatum; B: dorsal precuneus) identified under voxel

p < 0.001 uncorrected and cluster-level p < 0.05 FWE corrected. Right panel showed bar plots of connectivity z scores (mean ± standard error). P-values were from

planned two-sample t-tests of CD vs. HC each for LH and MH connectivity.

connected with the midbrain, thalamus, lentiform nucleus as well
as the rostral and dorsal anterior cingulate cortex and the MH
connected with the ventral striatum and ventromedial prefrontal

crotex (66). Compared with HC, CD showed distinct changes in
LH and MH rsFC. We highlighted some of the main findings in
the below.
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FIGURE 4 | Sex main and sex by group interaction effects of a two-way ANOVA (CD vs. HC × men vs. women). Left panel showed brain regions identified under

voxel p < 0.005 uncorrected and cluster-level p < 0.05 FWE corrected (or small volume correction at p < 0.05, FWE for the VTA). The middle panel showed

corresponding bar plots of the connectivity strength (z score, mean ± S.E.). VTA, ventral tegmental area; dmPFC, dorsomedial prefrontal cortex. The lower right panel

showed regression of CCQ score vs. MH-dmPFC rsFC for men vs. women.

Hypothalamus and Ventral Stratum (VS)
The VS was more heavily connected with the MH than LH,
in accord with (66). Compared to HC, CD showed decreased
MH-VS connectivity, with the connectivity strength negatively
correlated with cocaine craving score. Thus, cocaine addiction is
associated with diminished MH-VS connectivity and the extent
of impairment appears to be associated with cocaine craving.
The VS and hypothalamus are reciprocally connected (104).
Both the VS and hypothalamus receive projections from the
dopaminergic midbrain and are implicated in processing of
reward-related stimuli, including those associated with drugs
of abuse (6, 14, 104–106). Imaging studies showed that the
extracellular concentration of dopamine in the VS increased with
administration of drugs of abuse, and the experienced euphoria
was positively associated with the extent of dopamine release in
the VS (107–110). Hypothalamus connectivity with the VS was
also observed here as a group (CD vs. HC) by seed (LH vs. MH)
interaction effect, with CD showing increased LH and decreased
MH-VS connectivity as compared to HC. For HC, the VS was
each positively and negatively connected with the MH and LH,
but this differential pattern of connectivity was not observed in
CD. How disrupted hypothalamus VS connectivity may conduce
to changes in motivated behavior in CD would be an important
issue to address in future work.

Hypothalamus and Precuneus
Compared with HC, CD showed decreased LH rsFC with
the ventral precuneus. ANOVA showed an interaction effect

with CD and HC each showing stronger negative LH and
MH connectivity with the dorsal precuneus. Previous studies
implicated the precuneus in behavioral engagement and self-
awareness, with the ventral precuneus comprising part of the
default mode network (DMN) (111–114). DMN dysfunction
has been widely reported in drug addiction (115–120) and
hypothalamus—DMNdysconnectivity was observed in a number
of neuropsychiatric disorders (121–124). The current findings
may also be considered with our earlier report of the fractional
amplitude of the low frequency BOLD signal of the dorsal
precuenus as a neural analog of behavioral engagement (113)
and studies of altered behavioral engagement in cocaine misuse
(125–129).

Hypothalamus and Prefrontal Cortex (PFC)
The hypothalamus and nucleus accumbens share projections
from the PFC (130), with the medial PFC projecting
preferentially to the MH (131). Neurons of the subgenual
anterior cingulate cortex—a subarea of the vmPFC—increased
firing during rest and sleep (132), as do neurons of the MH
(133, 134). Neurons in the vmPFC that project directly to the
hypothalamus responded to a conditioned food cue in sated
rats (135). Both the vmPFC and hypothalamus responded to
emotional exposure (136), sexual arousal (42, 44, 45, 137),
as well as food stimulus (138, 139). These studies suggested
functional coordination between the (medial) hypothalamus and
vmPFC, which, as the current findings showed, may be disrupted
in CD.
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The dlPFC is widely implicated in drug addiction. Severity
of drug use across heroin, alcohol, MDMA, and cannabis
was negatively associated with dlPFC activation in dependent
individuals (140). In the current study, we observed increased
functional connectivity between the LH and dlPFC, a finding
that can be considered with earlier reports of hyperactive
dlPFC during negative emotion processing in addicted
individuals (29, 128, 141–144). In studies of depression,
repetitive transcranial magnetic stimulation of the dlPFC
induced neuroendocrine changes, likely via its effects on the
hypothalamus-pituitary-adrenal (HPA) axis (145). Interestingly,
a recent study showed increased hypothalamic connectivity
with the dlPFC in depression patients after 8 weeks of sertraline
treatment (146). Thus, altered LH-dlPFC connectivity may
reflect an outcome of chronic exposure to catecholaminergic
agents, including cocaine and many antidepressants. How
cocaine misuse disrupts dlPFC regulation of the HPA axis
activity warrants more research.

Hypothalamus and Inferior Parietal Lobule
(IPL)
Weobserved increasedMH rsFCwith the IPL in CD as compared
to HC, with HC but not CD showing significant negative
connectivity. The finding was broadly consistent with attention
and parietal dysfunction in chronic cocaine users (147–151).
Notably, a recent study showed increased hypothalamus IPL
connectivity during exposure to food vs. non-food stimuli in
obese individuals (152). Further, craving and hypothalamus—
IPL connectivity both decreased after leptin administration, in
support of a functional role of this circuit in food “wanting.”MH-
IPL circuit dysfunction may similarly be investigated with cue
craving tasks or behavioral paradigms that address attentional
bias to drug cues.

LIMITATIONS OF THE STUDY,
CONCLUSIONS, AND FUTURE RESEARCH

Several limitations of the study need to be considered. First,
the hypothalamus is a relatively small structure (∼2,360 mm3,
vs. amygdala ∼3,744 mm3, for comparison). We drew a
hypothalamus mask in MNI space based on a brain atlas (65)
and marked the putative locations of hypothalamic subnuclei
based on Baroncini et al. (20), as shown in Supplementary Figure
1. Our LH and MH seeds were within the range of previous
reported coordinates. The connectivity we observed between
LH and dmPFC/thalamus and between MH and vmPFC/ventral
striatum was identical to the results reported in Kullmann
et al. (66). On the other hand, image resolution as well as
inter-subject variation in anatomy pose challenges to accurately
identifying the hypothalamus. These findings thus remain to
be substantiated. Second, CD may differ from HC in details
of alcohol and nicotine use, or other clinical variables, such
as history of childhood trauma, that were not assessed in

the current study. Further, although candidates with clinical
depression or anxiety disorders were excluded, we evaluated
subclinical depression and anxiety with the BDI and STAI for
CD but not for HC. Thus, we cannot rule out the possibility
that the current findings may be influenced by these other
clinical variables. Third, the 10-min resting state scan was
conducted after four 10-min sessions of a stop signal task to
address cognitive control. These task runs may influence rsFC
of the default network, for instance (153). Although a previous
study also showed that whole brain functional connectivity
organizations were robust and stable between pre- and post-
task resting states (154), we cannot rule out the possibility
that the hypothalamus rsFC may be influenced by prior task
runs. Fourth, as described earlier, the hypothalamus is involved
in a variety of motivated behavior. Here, we related the
connectivity findings to cocaine use variables but it remains
to be seen how hypothalamus connectivity is disrupted in
association with changes in of motivated behavior in cocaine
addiction.

In summary, we demonstrated altered hypothalamus
rsFC in recently abstinent cocaine addicted individuals.
Cocaine misuse was associated with distinct changes in
LH and MH rsFC. The findings suggested the importance
in characterizing the role of hypothalamus circuit as a
neural marker of cocaine addiction. Both thalamus and
hypothalamus functions are disrupted in cocaine addiction
(72, 155–159). Although studies have generally conceived
of thalamus and hypothalamus dysfunction in terms of the
respective effects of cocaine on noradrenergic and dopaminergic
signaling, more work is needed to examine the neurobiological
bases of thalamus-hypothalamus dysfunction in cocaine
addiction.
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