
animals

Article

Effects of Increasing Levels of Defatted Rice Bran on
Intestinal Physical Barrier and Bacteria in
Finishing Pigs

Huan Wang 1,2, Pinghua Li 1,2,3,4,*, Taoran Du 1,2, Guang Pu 1,2, Lijuan Fan 1,2, Chen Gao 1,2,
Peipei Niu 2, Chengwu Wu 1,2, Wuduo Zhou 1,3 and Ruihua Huang 1,2,3

1 Institute of Swine Science, Nanjing Agricultural University, Nanjing 210095, China;
2017105010@njau.edu.cn (H.W.); dtrnjau@163.com (T.D.); puguang940105@163.com (G.P.);
18305177622@163.com (L.F.); GC1594140795@126.com (C.G.); W1692716569@126.com (C.W.);
zhouwuduo@163.com (W.Z.); rhhuang@njau.edu.cn (R.H.)

2 Huaian Academy, Nanjing Agricultural University, Huaian 223003, China; niupeipei2@126.com
3 Industrial Technology System Integration Innovation Center of Jiangsu Modern Agriculture (PIG),

Nanjing 210095, China
4 Nanjing Agricultural University’s New Rural Research and Development Corporation of Huaian City,

Huaian 223003, China
* Correspondence: lipinghua718@njau.edu.cn

Received: 8 November 2019; Accepted: 25 November 2019; Published: 28 November 2019 ����������
�������

Simple Summary: In China, the largest pig-raising country in the world, feed resources are gradually
scarce, and the imports of grain crops including corn are increasing. Therefore, it is an urgent problem
to find alternatives to grain feed materials. Defatted rice bran (DFRB), an abundant and underutilized
agricultural coproduct of brown rice refining process, is rich in energy and dietary fiber (DF). The aims
of this study were to assess the effects of increasing levels of DFRB (0%, 7%, 14%, 21%, and 28%
DFRB) as a replacement for corns on intestinal physical barrier function and numbers of specific
bacteria, and determine the optimal substitution level of DFRB in finishing pigs. We found that 7%
DFRB as a replacement for corns had a beneficial effect on intestinal wall thickness, Bifidobacterium
and Clostridium perfringens (C. perfringens), and had no adverse effect on intestinal permeability and
Escherichia coli.

Abstract: The aims of this study were to assess the effects of increasing levels of DFRB as a replacement
for corns on intestinal physical barrier function and bacteria of finishing pigs. A total of 35 castrated
finishing pigs (age: 158.5 ± 2.0 d, initial body weight: 62.9 ± 0.8 kg) were randomly divided into
five dietary treatments (seven replicates/treatment) for a 28-day experimental period, i.e., a control
diet with basal diet, and four experimental diets in which maize was replaced by 7%, 14%, 21%,
and 28% DFRB, respectively. The results showed that serum endotoxins concentration and diamine
oxidase (DAO) activity were both increased (linear, p = 0.0004, 0.001, respectively) with DFRB level.
However, compared with control group, serum endotoxins concentration and DAO activity were not
different in pigs fed with 7% DFRB in the diet. There was a quadratic response in serum D-lactate
concentration to the increased DFRB (quadratic, p = 0.021). In the cecum, thickness of the intestinal
wall significantly increased with increasing levels of DFRB in the diets (linear, p = 0.033), while crypt
depth/thickness of the intestinal wall ratio significantly decreased with increasing level of DFRB in the
diets (linear, p = 0.043). In the jejunum, total bacteria, Escherichia coli, and Bifidobacterium all responded
quadratically to increasing levels of DFRB in the diets (quadratic, p = 0.003, 0.001, 0.006, respectively).
Additionally, there was no difference in Escherichia coli in pigs fed 0%, 7%, and 14% DFRB diets. In
the colon, there were quadratic responses in C. perfringens to the increased DFRB (quadratic, p =

0.023). C. perfringens reduced as the DFRB concentration increased from 0% to 14% and then increased.
When D-lactate, total bacteria, Escherichia coli, Bifidobacterium, and C. perfringens were considered,
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the optimal substitution level of DFRB were 12.00%, 11.84%, 7.50%, 8.92%, and 15.92%, respectively.
In conclusion, 7% DFRB had a beneficial effect on intestinal wall thickness, Bifidobacterium and C.
perfringens, and had no adverse effect on intestinal permeability and Escherichia coli.

Keywords: defatted rice bran; corns; intestinal barrier; bacteria

1. Introduction

In China, the largest pig-raising country in the world, feed resources are gradually scarce, and
the imports of some grain crops including corns are increasing. During the last decade, the pattern of
the feed industry has changed dramatically in price and accessibility of animal feed raw materials [1].
Therefore, it is an urgent problem to find alternatives to grain feed materials. The supply of milling
by-products, which is a rich source of dietary fiber (DF), has increased. It is essential to understand the
effects of these new and potential DF sources on gut health in pigs. A lot was already known about the
impact of DF on swine nutrition [2–6]. In addition, people are increasingly interested in adding dietary
fiber to pig diets because DF has been found to modulate gut microbiota and improve gut health [7].

Defatted rice bran (DFRB), an abundant and underutilized agricultural coproduct of the brown
rice refining process, is rich in energy and DF [8,9]. The concentration of soluble dietary fiber and
insoluble dietary fiber were 1.4% and 26.1% in DFRB, respectively (measured value of the present
study). Ingredients of DFRB usually increase beneficial bacteria, reduce potentially pathogenic bacteria
populations, and improve gut barrier function [10–13]. Some studies have indicated that addition
of rice bran in diets may have a prebiotic effect. Addition of 10% and 20% full fatted rice bran
(FFRB) in mice diets significantly reduced the enteric burden of Salmonella infection and increased
Lactobacillus [13]. Adding 10% rice bran to mice diets increased Lactobacillus [10]. Addition of 10% rice
bran improved feed utilization efficiency and tended to increase intestinal Bifidobacteria in weaning
pigs [14]. Arabinoxylan (insoluble dietary fiber) reduced colonic mucosa permeability of healthy
humans [11].

However, the high level of DFRB may have a negative effect on growth performance, intestinal
bacteria, and gut barrier function because of the high concentration of DF. Warren et al. [15] found
addition of 10% or 20% DFRB to growing pigs’ diets had no effect on growth performance, but addition
of 30% reduced gain to feed ratio (G:F). Gloria et al. [16] found that average daily feed intake (ADFI)
increased linearly and G:F decreased linearly as DFRB increased from 0% to 30% in the diets of finishing
pigs. The high mixed-linked β-glucan (soluble dietary fiber) in diets fed to piglets significantly
reduced numbers of Lactobacilli in the small intestine and decreased the microbial diversity in the
colon [17]. Addition of 10% guar gum which is rich in soluble dietary fiber increased colonization of
enterotoxigenic E. coli and reduced body weight gain in pigs infected with enterotoxigenic E. coli [18].

Our previous study has shown that the growth performance of Suhuai finishing pigs were not
affected by 28% DFRB [19]. Intestinal barrier function and bacteria are very important to porcine
health, whereas effects of increasing levels of DFRB on intestinal barrier function and bacteria was
not clear. We hypothesized that moderate levels of DF may improve intestinal barrier function and
beneficial bacteria, but excessive levels of DF may have a negative effect on them, and there is an
optimal replacement of DFRB for porcine intestinal health.

Therefore, the aims of this study were to assess the effects of increasing levels of DFRB as a
replacement for corns on intestinal physical barrier function and bacteria and determine the optimal
substitution level of DFRB in finishing pigs.
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2. Materials and Methods

2.1. Experimental Design and Animal Management

A total of 35 Suhuai castrated finishing pigs (age: 158.5 ± 2.0 d, initial body weight: 62.9 ± 0.8 kg)
were blocked by initial body weight and randomly divided into one of five experimental diets using
a complete randomized block design. Suhuai pig is a new breed that is bred by Chinese Huai pig
(25%) and Western Large white pig (75%). The five treatments included a control group and four
experimental groups in which maize was separately replaced by 7%, 14%, 21%, and 28% DFRB. All
pigs were fed by the Osborne Testing Stations System (OTSS) and it can accurately record daily intake,
daily weight gain for each pig. Therefore, each pig was identified as a replicate and there were seven
replicates in each treatment. The size of each pen was 5.25 × 2.50 m. The pre-feeding period of the trial
was 10 days and all pigs were fed with the same control diet during this period. The feeding experiment
lasted 28 d. The finishing body weight of control group, 7%, 14%, 21%, and 28% DFRB group were
82.7 ± 2.1, 82.2 ± 2.0, 84.8 ± 2.1, 83.9 ± 3.0, and 84.8 ± 2.9 kg, respectively. All the pigs were held in
the same pigsty with a half seam floor, air-source heat pumps, and a fan system. The temperature
inside the piggery varied from 15.5 to 19.6 ◦C for the whole experimental period. Pigs had ad libitum
access to feed by OTSS and water by water-saving type stainless-steel drinker. Pigs were healthy and
no mortality or diarrhea was observed throughout the experiment. The experimental protocol and
procedures were approved by the Animal Care and Use Committee of Nanjing Agricultural University,
China (with protocol SYXK (Su) 2017-0007).

2.2. Diet Design

The basal diet used for pigs was formulated according to the Feeding Standard of Swine 60–90 kg
Standard of Meat-fat Type Growing-finishing Pig (NY/T 65-2004). It was mainly maize that was
replaced by 7%, 14%, 21%, and 28% DFRB in four experimental diets. In addition to maize, the other
raw materials including wheat bran, soybean oil, lysine also made a small change in four experimental
diets to balance metabolic energy and amino acids among five groups. The feed was produced by
Huaian Zhengchang Feed Co., Ltd. (Jiangsu, China). Crude protein (CP), crude fiber (CF), ether extract
(EE), acid detergent fiber (ADF), neutral detergent fiber (NDF), and hemicellulose contents of corn
and DFRB are summarized in Table 1. The chemical characteristics of five diets were analyzed as
previously described [20] and presented in Table 2.

Table 1. Nutrient level of corn and DFRB.

Ingredients (%) Corn DFRB

CP 10.62 18.54
CF 2.42 10.88
EE 5.49 2.90

ADF 3.24 11.39
NDF 11.12 30.09

Hemicellulose 1 7.82 18.44

CP, Crude protein; CF, crude fiber; EE, ether extract; ADF, acid detergent fiber; NDF, neutral detergent fiber; DFRB,
defatted rice bran; 1 Hemicellulose = NDF − ADF.
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Table 2. Ingredients and nutrient level of the experimental diets.

Items
Diet

Control 7% 14% 21% 28%

Ingredients (%)
Corns 68.61 62.00 55.00 48.00 41.00

Wheat bran 15.40 15.80 16.15 16.67 17.21
DFRB 0.00 7.00 14.00 21.00 28.00

Soybean meal 13.30 11.70 10.40 8.95 7.50
Soybean oil 0.00 0.84 1.83 2.78 3.74

98.5% Lysine 0.03 0.04 0.03 0.03 0.03
Salt 0.30 0.30 0.30 0.30 0.30

Limestone 0.82 0.85 0.85 0.85 0.85
CaHPO4 0.75 0.68 0.65 0.63 0.58

60% Choline 0.04 0.04 0.04 0.04 0.04
Premix 1 0.40 0.40 0.40 0.40 0.40

Nutrient level 2

DM (%) 88.56 88.68 88.93 89.16 88.46
Digestible energy/(MJ·kg−1) 13.13 13.13 13.13 13.13 13.13

CP (%) 15.60 16.67 16.13 15.73 16.40
CF (%) 8.89 11.80 12.93 14.35 17.94

Calcium (%) 0.55 0.55 0.55 0.55 0.55
Available phosphorus (%) 0.27 0.27 0.27 0.27 0.27

L-lysine (%) 0.65 0.65 0.65 0.66 0.65
Methionine + cystine (%) 0.45 0.45 0.46 0.47 0.47

IDF (%) 16.14 17.19 18.42 19.32 23.37
SDF (%) 0.52 0.56 0.68 0.73 0.82
TDF (%) 16.70 17.75 19.10 20.05 24.11
ADF (%) 5.53 6.25 6.53 7.08 8.13
NDF (%) 8.89 11.80 12.93 14.35 17.94
EE (%) 5.19 5.08 5.32 5.27 5.38

Hemicellulose (%) 3.80 5.69 7.09 8.00 10.34
Cellulose (%) 4.06 4.43 4.71 5.09 5.79

Lignin (%) 0.46 0.54 0.72 0.96 1.13
1 The premix provided the following per kg of diets: vitamin A 8000 IU, vitamin E 100 mg, vitamin K3 4 mg, vitamin
D3 1500 IU, vitamin B1 2 mg, vitamin B2 8 mg, vitamin B6 3 mg, vitamin B12 0.04 mg, niacin 30 mg, Choline 150 mg,
biotin 0.13 mg, folic acid 0.6 mg, pantothenic acid 35 mg, Fe 60 mg, Cu 5 mg, Zn 60 mg, Mn 10 mg, Se 0.15 mg, I
0.1 mg. 2 DM, dry matter, CP, crude protein, CF, crude fiber, IDF, insoluble dietary fiber, SDF, soluble dietary fiber,
TDF, total dietary fiber, EE, ether extract, ADF, acid detergent fiber, NDF, neutral detergent fiber, DFRB, defatted rice
bran. DM, CP, CF, IDF, SDF, ADF, NDF, EE, hemicellulose, cellulose and lignin were measured values, while the
other nutrient levels were calculated values.

2.3. Sample Collection

After the 28-d trial, blood samples were collected from jugular vein and centrifuged at 3000× g
at 4 ◦C for 10 min to collect serum [21]. The serum was stored at −80 ◦C until further analyses
of endotoxin, diamine oxidase (DAO), and D-lactate. All pigs were stunned by electric shock and
slaughtered. The abdomen of each pig was immediately opened, and the jejunum, cecum, and colon
were removed. The middle sections (1 cm) of the colon and cecum were collected and then fixed in 4%
paraformaldehyde for histological analysis. Mucosal scrapings from the jejunum, ileum, and colon
were prepared and stored at −80 ◦C for measuring 16S rRNA gene copy numbers in bacteria and the
mRNA levels of Caspase 3, Bax, and Bcl-2L1.
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2.4. Histological Measurements

Since fibers are mainly fermented in the large intestine and may have an impact on morphology
of the large intestine, we only measured caecal and colonic mucosal morphology. Crypt depth and
thickness of the intestinal wall were determined as described by Shen et al. [22]. Fixed intestinal
segments were dehydrated with alcohol and encapsulated with paraffin. Consecutive sections at 5 µm
thickness were stained with hematoxylin-eosin for histology morphological measurements. The crypt
depth was determined on well oriented crypts as distance from the crypt mouth to the crypt base at
the basement membrane. Thickness of the intestinal wall was determined as vertical distance from the
lateral side of the intestinal wall to the crypt mouth. Crypt depth and thickness of the intestinal wall
was measured with a Nikon Eclipse 80i microscope (Nikon Company, Tokyo, Japan).

2.5. Blood Sample Analysis

According to the manufacturer’s instructions, the levels of endotoxin, D-lactate, and DAO in the
serum were measured by a reagent kit (Jiancheng Bioengineering Institute of Nanjing, Nanjing, Jiangsu,
China). The range of the detection of endotoxin, D-lactate, and DAO was 0–1600 EU/L, 0–4.8 µg/L, and
0–80 ng/mL, respectively. Serum was diluted 10 times when D-lactate was measured.

2.6. DNA Isolation, Design, and Validation of Primers for Total Bacteria Escherichia coli, Clostridium
perfringens, Bifidobacterium and Lactobacillus

Bacterial DNA of the intestinal mucosal scrapings was extracted by FastDNA® Spin Kit for Soil
(MP Biomedicals, Irvine, CA, USA). All the primers (Table 3) were commercially synthesized by Beijing
Tsingke Biotech Co., Ltd. DNA quality and concentration of were measured using UL-1000 (Shanghai
Meixi Instrument Co., Ltd., Shanghai, China). For the quantification of bacteria in samples, standard
curves were made by constructing standard plasmids, as described by Han et al. [23]. The specific
PCR product of target bacteria was purified by the Cycle Pure Kit PCR (OMEGA Bio-tek, Norcross,
GA, USA), and inserted into a Versatile Simple Vector (TsingKe, Nanjing, China). The plasmid
DNA was extracted using the AxyPrepTM Plasmid Miniprep Kit (AXYGEN, Fremont, CA, USA) and
standard plasmids were constructed successfully. The copies were calculated by the following formula:
(6.0233 × 1023copies/mol × DNA concentration (µg/mL))/(660 × 109

× DNA size (bp)). A 10-fold serial
dilution series of plasmid DNA was used to construct the standard curves for total bacteria, E. coli, C.
perfringens, Lactobacillus, and Bifidobacterium. Each standard curve was constructed by linear regression
of the plotted points, and cycle threshold (CT) values were plotted against the logarithm of template
copy numbers. Quantitative analysis of PCR was performed with TB Green ® Premix Ex Taq ™ II
(TaRaKa Biotechnology, Shiga, Japan) by an ABI QuantStudio 3 Real-Time PCR System (Applied
Biosystems, Foster City, CA, USA).
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Table 3. Primers used for real-time PCR.

Target Primer Sequence (5′-3′) Reference

Total bacteria
Forward ACTCCTACGGGAGGCAGCAG [24]
Reverse ATTACCGCGGCTGCTGG

Escherichia coli
Forward CATGCCGCGTGTATGAAGAA [25]
Reverse CGGGTAACGTCAATGAGCAAA

C. perfringens
Forward CGCATAACGTTGAAAGATGG [26]
Reverse CCTTGGTAGGCCGTTACCC

Lactobacillus
Forward GCAGCAGTAGGGAATCTTCCA [27]
Reverse GCATTYCACCGCTACACATG

Bifidobacterium
Forward CGGGTGAGTAATGCGTGACC [28]
Reverse TGATAGGACGCGACCCCA
GAPDH
Forward GTCGGAGTGAACGGATTTGG [29]
Reverse CAATGTCCACTTTGCCAGAGTTAA
Bcl-2L1

Forward TGAATCAGAAGCGGAAACCC [30]
Reverse GCTCTAGGTGGTCATTCAGGTAAG

Bax
Forward AAGCGCATTGGAGATGAACT [30]
Reverse CGATCTCGAAGGAAGTCCAG
Caspase 3
Forward ACACGCCATGTCATCTTCAGTCC [30]
Reverse TTCATAATTCAGGCCTGCCGAG

2.7. Real-Time Quantitative PCR

Caspase-3 is considered to be the most important apoptotic executor, and its activation is a marker
of irreversible apoptosis. Bcl-2L1 protein family plays an important role in regulating apoptosis, in
which Bcl2 is an anti-apoptotic gene and Bax is a pro-apoptotic gene. All of them play an important
role in the process of apoptosis. To evaluate the effects of increasing levels of DFRB as a replacement
for corns on intestinal cell proliferation and apoptosis of finishing pigs, the mRNA levels of Caspase 3,
Bax, and Bcl-2L1 were detected by real-time quantitative PCR.

According to the manufacturer’s guidelines, total RNA of intestinal mucosa was extracted using
TRIZOL (Shanghai Yuanye Biotechnology Co., Ltd., Shanghai, China). The RNA concentration
and quality were measured using UL-1000 (Shanghai Meixi Instrument Co., Ltd., Shanghai, China).
The RNA samples were reverse transcribed into complementary DNA using 5X All-In-One RT
MasterMix (Applied Biological Materials, Richmond, B.C., Canada). Quantitative analysis of PCR
was performed with TB Green ® Premix Ex Taq™ II (TaRaKa, Shiga, Japan) by an ABI QuantStudio 3
Real-Time PCR System (Applied Biosystems, Foster City, CA, USA).

The reaction was performed using the following cycle program: a hold stage at 95 ◦C for 10 min;
35 cycles for PCR stage at 95 ◦C for 15 s and at 60 ◦C for 60 s; a melt curve stage at 95 ◦C for 15 s,
at 60 ◦C for 60 s, and at 95 ◦C for 1 s. All samples were analyzed for three repetitions. The relative
expression of the Caspase 3, Bax, and Bcl-2L1 mRNA was calculated using the 2−∆∆Ct method [31].
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2.8. Statistical Analysis

Bacterial 16S rRNA gene copy numbers were transformed (log 10) before statistical analysis.
Linear and quadratic effects of dietary treatments on all indices were determined by curve estimation
and some indices including serum endotoxins, DAO and Escherichia coli in the jejunum in Appendix A
Table A1 were also analyzed by one-way ANOVA (SPSS 25.0) (SPSS Inc., Chicago, IL, USA). DFRB was
the main effect. Each pig was considered as the experimental unit for all analyses. The α-level was set
as 0.05 for significance determination. Data are presented as means with their pooled standard errors.
The linear effects was determined by equation:

y = a + bx, (1)

where y is dependent variable, and x is the content of DFRB.
The optimal substitution level of corn by DFRB was predicted by quadratic regression equation as

described by Souza et al. [32]. Quadratic regression equation:

y = a + bx + cxˆ2 (2)

the optimal substitution level (%) = −b/2 × c (3)

where y is dependent variable, and x is the content of DFRB.

3. Results

3.1. Effects of Varying DFRB Levels on Intestinal Permeability

Serum endotoxins, D-lactate concentration, and DAO activity are shown in Table 4. Serum
endotoxins concentration and DAO activity were both increased (linear, p = 0.0004, 0.001, respectively)
as the DFRB content of the diets increased. However, compared with control group, serum endotoxins
concentration and DAO activity were not different in pigs fed with 7% DFRB in the diet (Appendix A
Table A1). There was a quadratic response in serum D-lactate concentration to the increased DFRB
(quadratic, p = 0.021).

Table 4. Effects of varying defatted rice bran levels on intestinal permeability 1.

Item
Diet

SEM
p Value

Basal 7% 14% 21% 28% Linear Quadratic

Endotoxins, EU/L 219.58 240.42 335.60 421.78 352.86 18.01 <0.001 <0.001
D-lactate, µg/L 4.86 4.00 4.42 4.89 5.15 0.36 0.102 0.021
DAO, ng/mL 2 23.38 27.39 23.71 35.16 32.23 1.16 0.001 0.005

1 Values are means and pooled SEMs, n = 7. 2 DAO, diamine oxidase; SEM, standard error of mean.

3.2. Effect of Varying DFRB Levels on Intestinal Morphology

We observed the effects of varying DFRB levels on intestinal morphology (Table 5). The thickness
of the intestinal wall significantly increased with the increasing level of DFRB in the diets (linear,
p = 0.033), while crypt depth/thickness of the intestinal wall ratio significantly decreased with the
increasing level of DFRB in the diets (linear, p = 0.043) in the cecum. Crypt depth was not influenced
by the level of DFRB in the diet in the cecum. Moreover, the crypt depth, thickness of the intestinal
wall, and crypt depth/thickness of the intestinal wall ratio in the colon were not influenced by the level
of DFRB in the diet.
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Table 5. Effect of varying defatted rice bran levels on intestinal morphology.

Item
Diet

SEM
p Value

Basal 7% 14% 21% 28% Linear Quadratic

Cecum
Crypt depth, µm 452.03 450.95 462.07 434.32 448.66 22.13 0.631 0.884
Thickness of the

intestinal wall, µm 1253.06 1319.43 1348.21 1409.07 1336.48 30.12 0.033 0.021

CD/IWT 1 0.36 0.34 0.34 0.31 0.34 0.01 0.043 0.063

Colon
Crypt depth, µm 420.31 431.61 355.04 418.50 405.18 29.73 0.546 0.470
Thickness of the

intestinal wall, µm 1115.69 1187.08 1425.81 1130.41 1262.36 28.79 0.251 0.116

CD/IWT 0.38 0.37 0.25 0.37 0.32 0.12 0.210 0.127
1 CD/IWT, Crypt depth/thickness of the intestinal wall ratio. Values are means and pooled SEMs, n = 7. SEM,
standard error of mean.

3.3. Effect of Varying DFRB Levels on 16S rRNA Gene Copy numbers in Bacteria

The effects of varying DFRB levels on 16S rRNA gene copy numbers in bacteria are reported in
Table 6. In the jejunum, total bacteria, Escherichia coli, and Bifidobacterium all responded quadratically
to increasing levels of DFRB in the diets (quadratic, p = 0.003, 0.001, 0.006, respectively) while C.
perfringens and Lactobacillus were not influenced by the level of DFRB in the diets. There was no
difference in Escherichia coli in pigs fed 0%, 7%, and 14% DFRB diets (Appendix A Table A1). In the
ileum, total bacteria, Escherichia coli, C. perfringens, Lactobacillus, and Bifidobacterium were not influenced
by the level of DFRB in the diets. In the colon, there were quadratic responses in C. perfringens to the
increased DFRB (quadratic, p = 0.023). C. perfringens reduced as the DFRB concentration increased
from 0% to 14% and then increased as the DFRB concentration increased from 14% to 28%.

Table 6. Effect of varying defatted rice bran levels on 16S rRNA gene copy numbers in bacteria, lg
(copies/g) 1.

Item
Diet

SEM
p Value

Basal 7% 14% 21% 28% Linear Quadratic

Jejunum
Total bacteria 6.84 6.51 6.49 6.59 7.27 0.17 0.140 0.003
Escherichia coli 5.17 4.00 5.08 6.20 6.58 0.54 0.002 0.001
C. perfringens 2.10 1.78 1.52 2.03 1.95 0.16 0.810 0.156
Lactobacillus 5.53 6.39 4.35 4.96 5.39 0.49 0.379 0.402

Bifidobacterium 4.88 5.02 4.82 4.91 4.44 0.10 0.014 0.006

Ileum
Total bacteria 8.53 7.29 8.43 8.15 8.37 0.13 0.987 0.647
Escherichia coli 6.29 5.40 6.02 4.86 6.29 0.14 0.559 0.079
C. perfringens 3.15 2.70 3.01 2.43 3.14 0.12 0.509 0.086
Lactobacillus 7.19 5.37 7.30 5.76 6.75 0.18 0.394 0.509

Bifidobacterium 6.39 5.29 6.35 5.24 6.34 0.11 0.619 0.163

Colon
Total bacteria 8.33 7.60 8.08 8.01 7.76 0.13 0.160 0.303
Escherichia coli 5.75 5.39 5.60 4.92 5.13 0.33 0.123 0.305
C. perfringens 4.05 3.41 2.98 3.36 3.63 0.24 0.277 0.023
Lactobacillus 6.97 5.39 6.51 6.77 6.31 0.48 0.956 0.482

Bifidobacterium 5.01 5.27 5.00 4.83 5.08 0.12 0.437 0.741
1 Values are means and pooled SEMs, n = 7. SEM, standard error of mean.
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3.4. Effect of Varying DFRB Levels on Intestinal Gene Expression

The mRNA levels of Caspase 3, Bax, and Bcl-2L1 were not influenced by the level of DFRB in the
diets in jejunum, ileum, and colon.

3.5. Calculation of the Optimal Substitution Level of DFRB

The result of the calculation of the optimal substitution level of DFRB for corns is shown in Table 7.
In this experiment, five indicators including D-lactate, total bacteria, Escherichia coli, Bifidobacterium,
and C. perfringens were quadratically correlated with the level of DFRB. They were used to calculate
the optimal substitution level of DFRB for maize. When D-lactate, total bacteria, Escherichia coli,
Bifidobacterium, and C. perfringens were considered, the optimal substitution level of DFRB was 12.00%,
11.84%, 7.50%, 8.92%, and 15.92%, respectively.

Table 7. The optimal substitution level of corns by defatted rice bran in Suhuai finishing pigs.

Item a 1 b c Inflexion Point (%)

D-lactate 4.697 −0.072 0.003 12.00
Total bacteria 6.854 −0.073 0.003 11.84
Escherichia coli 4.931 −0.105 0.007 7.50
Bifidobacterium 4.878 0.023 −0.001 8.92
C. perfringens 4.045 −0.121 0.004 15.92

1 a–c are coefficients of constant term, primary term and quadratic term, respectively.

4. Discussion

Integrated intestinal mucosal barrier is important for the defense of pathogenic bacteria [33,34].
The intestinal permeability can be increased by the injured intestinal mucosal barrier. The intestinal
barrier function has to do with many factors, including endotoxins, D-lactate concentration, and
DAO activity in serum [35–38]. They have been considered as markers for evaluating the extent of
intestinal mucosal damage and repair [39]. As one of the secretions of Escherichia coli, serum endotoxins
activity increased with increased intestinal permeability or injury to intestinal barrier integrity [40].
D-Lactate is the end product of intestinal bacteria. Mammals produced neither D-lactate nor D-lactate
dehydrogenase. Hence, they maintain a lower level of D-Lactate in healthy conditions [41]. When
intestinal mucosal integrity is impaired, almost all D-lactate will release into the blood. Thus, this
indicates that serum D-Lactate reflects the integrity and maturity of intestinal mucosa [42]. DAO is
one of the DAO catalyzed by deaminases, only exists in the villi of the upper small intestine, and its
increasing concentrations indicate increased intestinal epithelial permeability or damage to intestinal
barrier function [43,44]. Serum endotoxins concentration and DAO activity were both increased with
the DFRB level. There was a quadratic response in serum D-lactate concentration to the increased
DFRB. However, compared with control group, serum endotoxins concentration and DAO activity
were not different in pigs fed with 7% DFRB in the diet. Therefore, 7% DFRB had had no adverse effect
on intestinal permeability.

On the other hand, integral morphological structure is important for the intestinal tract to maintain
the ability to secret, digest, and absorb nutrients. As fibers are mainly fermented in the large intestine
and may have an impact on morphology of the large intestine, we only measured cecal and colonic
mucosal morphology. The present study showed that colonic morphology was not influenced by the
increased DFRB. However, in the cecum, thickness of the intestinal wall significantly increased with
increasing level of DFRB in the diets while crypt depth/thickness of the intestinal wall ratio decreased
with the increasing level of DFRB in the diets. One possible explanation for this result is that muscle
thickness increased but crypt depth remained unchanged with the increasing level of DFRB in the diets.
Additionally, increased muscle thickness may increase the mixing of intestinal contents to increase
digestibility of the DF.
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The intestinal microflora is very important to intestinal health, not only because the imbalance
of the microflora may lead to an inflammation response, but also may compete with the host for
nutrients [45]. The microflora enhances the intestinal mucosa barrier function and reduces the adhesion
of pathogenic microorganisms to the mucosa, thus reducing the chance of pathogenic microorganisms
entering enterocytes. Lactobacillus and Bifidobacteria are the main beneficial bacteria in the intestinal tract
of mammals. They play a resistant role against intestinal pathogens through a variety of mechanisms.
Lactobacillus is considered to be a reflection of changes in the population structure of beneficial bacteria
because a large number of intestinal bacteria cannot be cultured [46]. It is controversial to consider E.
coli as a marker of pathogenic bacteria; however, the number of E. coli increased in the intestinal tract
of diarrhea pigs [47]. Therefore, the reduction of E. coli caused by dietary intervention is considered
to be beneficial by many people to a certain extent [48–50]. Many studies have shown that DF is
beneficial to the proliferation of beneficial bacteria and inhibits harmful bacteria. Drew et al. [51] found
that wheat-based diets increased Bifidobacterium and reduced total aerobes and Clostridium. Similarly,
Nielsen et al. [52] reported that addition of arabinoxylan (AX) in pig diets increased Bifidobacterium
and Lactobacillus in the feces. In line with the previous findings, this study shows that there were
declined Escherichia coli and increased Bifidobacterium as DFRB increased from 0% to 7%. Escherichia coli
increased and Bifidobacterium declined when 14% DFRB was fed. One possible explanation might be
that high-fiber diets have a negative effect on intestinal barrier function and is not conducive to the
growth of beneficial bacteria. The high level of DFRB have a negative effect on the intestinal barrier
function, which may be mediated by the changes of microbial composition and the accompanying
changes of intestinal permeability.

This study shows the mRNA levels of Caspase 3, Bax, and Bcl-2L1 were not influenced by the level
of DFRB in the diets in jejunum, ileum, and colon. The results showed that the addition of defatted
rice bran in the diet did not affect the apoptotic process of intestinal cells. This is consistent with the
previous study made by Gregoire et al. [53]. They reported that a short-term increase in dietary fiber
does not result in a significant difference in cell proliferation [53]. However, Jin et al. [54] found that
the number of epithelial cells exhibiting DNA fragmentation (indicating programmed cell death) was
greater in growing pigs consuming the high-fiber diet than in the low-fiber diet group for jejunum and
ileum. The difference in the results may be due to the different types of fibers and the different stages
of animal growth.

5. Conclusions

In conclusion, 7% DFRB had a beneficial effect on intestinal wall thickness, Bifidobacterium, and
C. perfringens, and had no adverse effect on intestinal permeability and Escherichia coli.

Author Contributions: Conceptualization, R.H. and P.L.; methodology, H.W., T.D. and P.L.; investigation, H.W.,
L.F. and C.G.; resources, H.W., C.W. and P.N.; data curation, H.W., G.P. and W.Z.; writing—original draft
preparation, H.W.; writing—review and editing, H.W., P.L. and R.H.; supervision, P.L.; project administration,
W.Z. and P.L.; funding acquisition, R.H. and P.L.

Funding: This research was funded by the National Natural Science Foundation (31872318, 31601923), the Key
Project for Jiangsu Agricultural New Variety Innovation (PZCZ201732), the Construction of Huaian Academy of
Nanjing Agricultural University (BM2017020) and the Jiangsu Modern Agriculture (Pig) Industry Technology
Construction Project (SXGC(2018)275).

Acknowledgments: The authors would like to thank to the Nanjing Agricultural University’s New Rural Research
and Development Corporation for their collaboration during the pig experiments.

Conflicts of Interest: The authors declare no conflict of interest.



Animals 2019, 9, 1039 11 of 13

Appendix A

Table A1. The results of one-way ANOVA of serum endotoxins, diamine oxidase (DAO), and Escherichia
coli in the jejunum 1.

Item
Diet

SEM
p Value

Basal 7% 14% 21% 28% ANOVA

Endotoxins, EU/L 219.58 c 240.42 c 335.60 b 421.78 a 352.86 b 18.01 <0.001
DAO 2, ng/mL 23.38 b 27.39 ab 23.71 b 35.16 a 32.23 a 1.16 0.001
Escherichia coli (Jejunum) 5.17 ab 4.00 b 5.08 b 6.20 ab 7.58 a 0.54 0.006

1 Means with similar lowercase letters (a–c) within a row are the same (p < 0.05). Values are means and pooled
SEMs, n = 7. SEM, standard error of mean. 2 DAO, diamine oxidase.
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