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Abstract: Myocardial infarction (MI) is a worldwide condition that affects millions of people. This
is mainly caused by the adult human heart lacking the ability to regenerate upon injury, whereas
zebrafish have the capacity through cardiomyocyte proliferation to fully regenerate the heart following
injury such as apex resection (AR). But a systematic overview of the methods used to evidence
heart regrowth and regeneration in the zebrafish is lacking. Herein, we conducted a systematical
search in Embase and Pubmed for studies on heart regeneration in the zebrafish following injury and
identified 47 AR studies meeting the inclusion criteria. Overall, three different methods were used to
assess heart regeneration in zebrafish AR hearts. 45 out of 47 studies performed qualitative (37) and
quantitative (8) histology, whereas immunohistochemistry for various cell cycle markers combined
with cardiomyocyte specific proteins was used in 34 out of 47 studies to determine cardiomyocyte
proliferation qualitatively (6 studies) or quantitatively (28 studies). For both methods, analysis was
based on selected heart sections and not the whole heart, which may bias interpretations. Likewise,
interstudy comparison of reported cardiomyocyte proliferation indexes seems complicated by distinct
study designs and reporting manners. Finally, six studies performed functional analysis to determine
heart function, a hallmark of human heart injury after MI. In conclusion, our data implies that
future studies should consider more quantitative methods eventually taking the 3D of the zebrafish
heart into consideration when evidencing myocardial regrowth after AR. Furthermore, standardized
guidelines for reporting cardiomyocyte proliferation and sham surgery details may be considered to
enable inter study comparisons and robustly determine the effect of given genes on the process of
heart regeneration.

Keywords: zebrafish; heart regeneration; cardiomyocyte proliferation; cardiac fibrosis; systematic
review

1. Introduction

Heart failure (HF) is a global condition that has been estimated to affect more than 38 million
people [1]. The pathology of HF includes a loss of cardiomyocytes (CM) that causes the heart to
pump an insufficient amount of blood to the body. The most common cause of HF is myocardial
infarction (MI) [2]. MI is defined as an area that has reduced or absent oxygen perfusion, which can
cause the initiation of necrosis, apoptosis and autophagy leading to death of myocardial cells [2–4].
It is generally accepted that the mammalian heart cannot regenerate after ischemia or injury [5]. Thus,
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the compensatory mechanism after ischemia or injury, are assumed to favor fibrotic healing and
hypertrophy instead of regeneration and cardiomyocyte proliferation [2,5]. Unfortunately, fibrotic
healing may result in loss of heart contractility, leading to various complications and symptoms such
as arrhythmias that also contribute to an increase in morbidity and mortality [5]. Today, only heart
transplantation and palliative medication is offered as treatment of MI. Thus, a substantial effort is
ongoing worldwide to develop regenerative therapies that can reduce mortality and improve life
quality for millions of people [6].

2. The Regenerating Zebrafish Heart

In search for new treatment options for MI, researchers have focused their attention on certain
lower vertebrates such as amphibians (e.g. axolotl, salamander) and some fish species such as zebrafish,
that have shown the capacity to fully regenerate their hearts following myocardial injury. Even though,
the zebrafish anatomy differs from the human heart by only having one ventricle and one atrium
(Figure 1), several similarities exist. The zebrafish heart itself consists of a pericardial sac as also seen in
humans, the bulbous arteriosus that can be compared to the human aortic arch, and the sinus venosus
that is analogous to the human vena cava [7]. However, a dissimilarity, beside a lack of pulmonary
vasculature, is that the zebrafish have an absence of a coronary artery network that is found in the
human heart. Instead, zebrafish have small coronary capillary like vessels localized to the compact
muscle layer, which has to be taken into consideration when performing heart injury models [8]. In 2002,
Poss et al. [9] pioneered the field of zebrafish heart regeneration when demonstrating that the zebrafish
heart fully regenerates following removal of ~10–20% of the ventricular apex (AR) (Figure 1A–C). Poss
and colleagues showed that the zebrafish cardiac muscle had gained its full contractile function and
normal appearance after 60 days post injury (dpi) [9,10]. Since then, other adult injury models such as
cryoinjury, genetic cell ablation and hypoxia models have also been established. Whereas regeneration
time and scar formation differs between injury types (i.e Apex resection (AR), cryoinjury, genetic
ablation), the defining process of regeneration in various zebrafish injury models remains the same,
and is the requirement of fully differentiated cardiomyocytes to revert to a developmental like state
and re-enter the cell cycle in order to replenish the lost myocardium [11,12]. Overall, the AR model
consists of different stages [6]. At 3–12 h dpi, a fibrin clot is formed that eventually dissolves, and
localized apoptosis and necrosis occur, along with activation of the immune system. In parallel, the
endocardial and epicardial cells become activated. At 3 dpi, myofibroblasts occupy the scar and secrete
extracellular material, while endo- and epicardial cells undergo proliferation to cover the interior and
exterior of the heart within the injury site, with epicardial cells actively invading the injury site later
in the regeneration process [13]. The scar is transient, and while being dissolved, cardiomyocytes
start proliferating, peaking at day 7–14 dpi and then migrating into the injury site. Hereafter, the
myocardial wall will undergo thickening until the AR heart has become fully recovered at 60 dpi.
In contrast, cryo-injury includes more substantial scar formation and requires a longer recovery time of
80-130 days [6]. Thus, given the ability of the zebrafish heart to regenerate relatively quickly following
AR, the mechanisms underlying cardiomyocyte proliferation in AR hearts are of high interest for
researchers to shed new lights on how to treat MI in humans.

Despite the rapid identification of proliferative signals since the introduction of the zebrafish
model (For a detailed review refer to [6]), one current shortcoming in the field is that the techniques
used for evaluation of heart regrowth and regeneration after AR are limited. This complicates a robust
evaluation of genes and processes affecting zebrafish heart regeneration. To clarify this issue in detail
and spur enthusiasm to develop new techniques for assessing zebrafish heart regeneration, we herein
set out to perform a systematical literature analysis illuminating the quality and precision of the most
commonly used methods for evidencing heart regrowth. We focused on studies exploiting the AR
model since this injury type is the most prominent heart regeneration model studied in zebrafish.
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Figure 1. Apex resected (AR) zebrafish hearts regenerates during a 60 days time course. (A) The 
zebrafish heart consists of an atrium (A) and a ventricle (V). The cardiac layers, starting from the 
inner, is called endocardium, myocardium and epicardium. The heart is furthermore covered by a 
pericardial sac. The blood comes from the sinus venosus into the atrium and goes to the ventricle and 
out through bulbous arteriosus. (B) Hematoxylin staining of zebrafish hearts following sham surgery 
and AR of 10–20% of the heart. (C) Schematic representation of the overall processes occurring fol-
lowing AR in the zebrafish heart. Initially, a fibrin clot is formed in the apex region, whereafter cardi-
omyocytes starts to proliferate, peaking at 7–14 dpi, and regenerates the heart until 60 dpi, when it is 
fully recovered. 

3. Methods 

3.1. Search Strategy 

The systematical approach for literature search, study selection and data extraction follow the 
PRISMA guidelines. However, since our aim was to make a systematical assessment of existing liter-
ature regarding the methods used but not the reported results, we did not evaluate for risk of bias as 
otherwise recommended for meta-analysis etc. [14]. H.J.B. performed the systematical screening (Fig-
ure 2) in the Embase and Pubmed databases at 03/12/2018 and W.H. repeated the search at 04/11/2019. 
The search included three key MeSH and Emtree terms “Heart regeneration”, “Cardiac regeneration” 
and “Zebrafish”. The complete search strings in Pubmed (https://www.ncbi.nlm.nih.gov/pubmed/ ) 
and Embase (Ovid Interface; http://ovidsp.dc1.ovid.com.proxy1-bib.sdu.dk:2048/sp-3.33.0b/ovid-
web.cgi ) were as follows: Pubmed Search ((((((("journal article"[Publication Type]) AND 
zebrafish[MeSH Terms]) AND heart regeneration[MeSH Terms]) AND cardiac regeneration[MeSH 
Terms]) NOT "review"[Publication Type]) NOT "biography"[Publication Type]) NOT "editorial"[Pub-
lication Type]) NOT "comment"[Publication Type] and Embase search (Zebrafish and Heart regenera-
tion and Cardiac regeneration).mp. not review.pt. Notably, MeSH and Emtree terms rely on annota-
tion resulting in a two-three months delay from publication to annotation. Thus, we also checked 
literature using searches based on related free text terms, and hereby identified and included one 
article [15] that followed the criteria. 

3.2. Study Selection 

Search identified studies were imported into the systematic data management program Covi-
dence [16] where duplicates were initially removed by the program and then screened manually. 
Then Covidence was used to screen first on title and abstract, and then in a second round by full-text 
screening against inclusion and exclusion criteria (Figure 2, Supplementary Materials). Inclusion cri-

Figure 1. Apex resected (AR) zebrafish hearts regenerates during a 60 days time course. (A) The zebrafish
heart consists of an atrium (A) and a ventricle (V). The cardiac layers, starting from the inner, is called
endocardium, myocardium and epicardium. The heart is furthermore covered by a pericardial sac.
The blood comes from the sinus venosus into the atrium and goes to the ventricle and out through
bulbous arteriosus. (B) Hematoxylin staining of zebrafish hearts following sham surgery and AR of
10–20% of the heart. (C) Schematic representation of the overall processes occurring following AR in
the zebrafish heart. Initially, a fibrin clot is formed in the apex region, whereafter cardiomyocytes starts
to proliferate, peaking at 7–14 dpi, and regenerates the heart until 60 dpi, when it is fully recovered.

3. Methods

3.1. Search Strategy

The systematical approach for literature search, study selection and data extraction follow the
PRISMA guidelines. However, since our aim was to make a systematical assessment of existing
literature regarding the methods used but not the reported results, we did not evaluate for risk of bias
as otherwise recommended for meta-analysis etc. [14]. H.J.B. performed the systematical screening
(Figure 2) in the Embase and Pubmed databases at 03/12/2018 and W.H. repeated the search at 04/11/2019.
The search included three key MeSH and Emtree terms “Heart regeneration”, “Cardiac regeneration”
and “Zebrafish”. The complete search strings in Pubmed (https://www.ncbi.nlm.nih.gov/pubmed/) and
Embase (Ovid Interface; http://ovidsp.dc1.ovid.com.proxy1-bib.sdu.dk:2048/sp-3.33.0b/ovidweb.cgi)
were as follows: Pubmed Search ((((((("journal article" [Publication Type]) AND zebrafish [MeSH Terms])
AND heart regeneration [MeSH Terms]) AND cardiac regeneration [MeSH Terms]) NOT "review"
[Publication Type]) NOT "biography" [Publication Type]) NOT "editorial" [Publication Type]) NOT
"comment" [Publication Type] and Embase search (Zebrafish and Heart regeneration and Cardiac
regeneration).mp. not review.pt. Notably, MeSH and Emtree terms rely on annotation resulting in
a two-three months delay from publication to annotation. Thus, we also checked literature using
searches based on related free text terms, and hereby identified and included one article [15] that
followed the criteria.

3.2. Study Selection

Search identified studies were imported into the systematic data management program
Covidence [16] where duplicates were initially removed by the program and then screened manually.
Then Covidence was used to screen first on title and abstract, and then in a second round by full-text
screening against inclusion and exclusion criteria (Figure 2, Supplementary Materials). Inclusion
criteria accounted only for studies that had used adult zebrafish as a model for cardiac injury and
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evaluated cardiac regeneration. Only studies using injury types corresponding to ablation, cryoinjury
or AR were extracted. Thus, studies using scratching, squeezing of the ventricle or hypoxia as heart
injury were excluded from the search [17,18]. Methodical studies that primarily introduced a protocol
for e.g. how to induce injury, were not included in the search [19,20]. Finally, we excluded studies if
relevant information was lacking, if the full article was inaccessible online, or if a study was published
in another language than English [21–24].

Cells 2020, 9, 548 4 of 16 

 

teria accounted only for studies that had used adult zebrafish as a model for cardiac injury and eval-
uated cardiac regeneration. Only studies using injury types corresponding to ablation, cryoinjury or 
AR were extracted. Thus, studies using scratching, squeezing of the ventricle or hypoxia as heart 
injury were excluded from the search [17,18]. Methodical studies that primarily introduced a protocol 
for e.g. how to induce injury, were not included in the search [19,20]. Finally, we excluded studies if 
relevant information was lacking, if the full article was inaccessible online, or if a study was published 
in another language than English [21–24]. 

3.3. Extraction of Data 

All data were extracted by H.J.B., and then re-checked independently by W.H. Any disagree-
ments were solved by discussion between the disagreeing parties and by involving D.C.A. to solve 
the controversy. For each study, detailed data on injury type was first extracted and then in a second 
round of data extraction only AR studies were further evaluated for extraction on data concerning 
author research group and methods used for quantification of heart regeneration and regrowth. This 
included both methods related to reestablishment of the cardiomyocyte pool and the myocardium, 
as well as, measures of scarring and function. Moreover, we extracted count data and continuous 
data on days of injury, proliferation markers used, and measures as well as design relating to a car-
diomyocyte proliferation index. By using the Pivot Table function in Microsoft excel, the identified 
data were categorized, sorted and counted. Data are either presented as count or continuous data. 

 
Figure 2. Flowchart of the literature search including inclusion and exclusion criteria. See methods 
and materials for details. As modified from PRISMA guidelines. 

Figure 2. Flowchart of the literature search including inclusion and exclusion criteria. See methods
and materials for details. As modified from PRISMA guidelines.

3.3. Extraction of Data

All data were extracted by H.J.B., and then re-checked independently by W.H. Any disagreements
were solved by discussion between the disagreeing parties and by involving D.C.A. to solve the
controversy. For each study, detailed data on injury type was first extracted and then in a second round
of data extraction only AR studies were further evaluated for extraction on data concerning author
research group and methods used for quantification of heart regeneration and regrowth. This included
both methods related to reestablishment of the cardiomyocyte pool and the myocardium, as well as,
measures of scarring and function. Moreover, we extracted count data and continuous data on days
of injury, proliferation markers used, and measures as well as design relating to a cardiomyocyte
proliferation index. By using the Pivot Table function in Microsoft excel, the identified data were
categorized, sorted and counted. Data are either presented as count or continuous data.
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4. Results

4.1. Included Studies on Zebrafish Heart Regeneration Following Apex Resection

A total of 34 studies from Embase and 155 from Pubmed were retrieved. Ten duplicates were
identified, and the remaining 179 studies were screened against inclusion criteria based on title and
abstract using Covidence (Figure 2). Further full text screening was then conducted for 82 articles,
where approximately half (47 studies) used apex resection (AR), 27 exploited cryo-injury, and only
8 studies performed genetic ablation (Table 1).

Table 1. Systematically identified zebrafish studies divided by heart injury type.

Apex Resection (AR) Cryoinjury Genetic Ablation

Balciunas [25] Azuaje [26,27] Poss K.D. [28]
Belmonte [11,29–32] Bakkers [33] Mercarder [34]

Burns [35,36] Butcher [37] Poss [38–43]
Chuang [44] Flores (CNIC) [45]

Heideman [46] Hassel [47,48]
Hsiai [7,49] Hsiai [50]

Jazwinska [51,52] Jazwinska [52–58]
Kawakami [15,59,60] Mercarder [61–63]

Keating [64] Planas [65]
Kudo [66] Pompa [67]
Lee [68,69] Stainer [70]

Reischauer S. [71]
Stainer [72]

Lien [73] Weidinger [74]
Lou [75] Cheng [76,77]

Pedrazzini [78]
Poss [9,12,13,38,79–85]

Raya [86]
Shih [87]

Shung [88]
Tsang [89,90]

Wang [91]
Weidinger [74]
Xiong [92,93]

Yin [94]
Zhong [95,96]

The 47 studies that used AR as an injury type, were performed by 24 different research groups,
with only three groups headed by Poss (11 studies), Belmonte (5 studies), and Kawakami (3 studies)
publishing more than two studies (Table 2). We identified that the majority of AR studies (45/47) used
qualitative analysis of heart sections for evaluating viable myocardium, where 8 of these extended this
evaluation to include quantitative measures such as scarring measures (Table 2). 34 out of the 47 studies
assessed more directly heart regeneration by analyzing cardiomyocyte proliferation, whereas 6 out of
47 studies performed functional heart analysis (Table 2).
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Table 2. Methods used to evaluate heart regrowth and regeneration after apex resection (AR) in zebrafish.

Research Group
(Last Author)

Qualitative
Histology

Quantitative
Histology

CM
Proliferation

Heart
Function

Total No. 45 8 34 6

Balciunas [25] 1
Belmonte [11,29–32] 5 1 5

Burns [35,36] 2 1 2
Chuang [44] 1 1

Heideman [46] 1 1
Hsiai [7,49] 2 2

Jazwinska [51,52] 2 1
Kawakami [15,59,60] 3 3

Keating [64] 1 1
Kudo [66] 1 1
Lee [68,69] 2 2
Lien [73] 1 1 1
Lou [75] 1

Pedrazzini [78] 1
Poss [9,12,13,38,79–85] 11 1 9 1

Raya [86] 1 1
Shih [87] 1

Shung [88] 1
Tsang [89,90] 2 2 1 1

Wang [91] 1
Weidinger [74] 1 1
Xiong [92,93] 2 2

Yin [94] 1 1 1
Zhong [95,96] 2 2

4.2. Qualitative and Quantitative Analysis of Cardiac Outgrowth

A total number of 45 out of 47 articles used histology on sections for assessing heart regrowth and
regeneration after AR (Table 2). The two articles [87,88] that did not use histology were focused on
evaluating whether heart function as measured by echocardiography reflect heart regrowth. Thus,
histology in general seems to be an accepted qualitative method for the evaluation of heart regeneration
in zebrafish. Histology was performed either by Acid Fuchsin Orange G (AFOG; 23 studies), Masson’s
Trichrome (MT; 5 studies), or Hematoxylin/Eosin (HE; 5 studies) or single reagents hereof [44].
Whereas HE [9,15,32,46,59] stains nucleic acids and proteins (nonspecifically e.g., cytoplasm and
extracellular matrix) [97], AFOG and MT staining highlight the difference between muscle and collagen.
The preference for AFOG staining may likely be explained by a higher sensitivity for Collagen in
particular in zebrafish as suggested by Poss et al. [9]. Eight out of the 45 studies [9,29,36,66,73,89,90,94]
evaluated the extent of heart regeneration by quantifying the amount of fibrosis on heart tissue sections
in 2D where the area of collagen was compared to the total area of the ventricle.

4.3. Quantification of Cardiomyocyte Proliferation

34 studies out of the 47 studies used CM proliferation either alone or in combination with the
above mentioned method as a measurement for quantifying heart regeneration [9,11–13,15,29–32,
35,36,44,46,51,59,60,64,68,69,73,74,79–81,83–86,89,92–96]. Accordingly, expression of proliferating cell
nuclear antigen (PCNA) (20 out of 34 studies [15,29,31,35,44,59,60,68,69,74,79–81,83–85,89,94–96]),
phosphohistone-H3 (PHH3) (7 out of 34 studies [9,11,29–31,64,68]) as well as incorporation of
5-Bromo-2′-deoxyuridine (BrdU) (17 out of 34 studies [9,11–13,29–32,36,44,46,51,64,73,86,92,93]) or
5-Ethynyl-2′-deoxyuridine (EdU)(2 out of 34 studies [59,85]) have been used to assess CM proliferation
(Tables 3–5) in combination with a cardiomyocyte marker (myocyte enhancer factor 2 (Mef2c), Myosin
heavy chain 1 (MYH1), α-Sarcomeric Actin, or a transgene CM reporter (such as cmlc2::DsRed2).
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One study used Phalloidin to define cardiac cells and one study based their evaluation on structural
characteristics. The Assessment of CM proliferation was mainly reported as a CM proliferation index
in percentage or as an absolute number, whereas only a few studies rely on qualitative evaluations
(Table 5). Yet, besides the use of different proliferation- and CM markers, studies were distinct in study
designs with respect to BrdU/EdU exposure time and the number of injections (Table 5).

Table 3. Proliferation markers used to quantify cardiomyocyte proliferation after apex resection (AR)
in zebrafish.

Research Group (Last Author) PCNA Brdu PH3 Edu

Total No. 20 17 7 2

Belmonte [11,29–32] 2 5 4
Burns [35,36] 1 1
Chuang [44] 1 1

Heideman [46] 1
Jazwinska [51] 1

Kawakami [15,59,60] 3 1
Keating [64] 1 1
Lee [68,69] 2 1
Lien [73] 1

Poss [9,12,13,79–81,83–85] 6 3 1 1
Raya [86] 1
Tsang [89] 1

Weidinger [74] 1
Xiong [92,93] 2

Yin [94] 1
Zhong [95,96] 2

Table 4. Timepoint (days past injury: dpi) used for assessment of cardiomyocyte proliferation after
apex resection (AR) in zebrafish.

Research Group (Last Author) 3 dpi 7 dpi 10 dpi 14 dpi 30 dpi 60 dpi

Total No. 7 26 2 13 3 1

Belmonte [11,29–32] 1 3 3 2
Burns [35,36] 1 2
Chuang [44] 1

Heideman [46] 1
Jazwinska [51] 1

Kawakami [15,59,60] 1 1 3
Keating [64] 1 1 1
Lee [68,69] 1 1
Lien [73] 1 1

Poss [9,12,13,79–81,83–85] 1 9 2 1 1
Raya [86] 1
Tsang [89] 1

Weidinger [74] 1 1
Xiong [92,93] 2 1

Yin [94] 1
Zhong [95,96] 1 2
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Table 5. Overview of design and reporting manners for cardiomyocyte proliferation studies after Apex
resection (AR) in zebrafish.

Research Group dpi Exposure
(Days)

No. of
Injections Proliferation- and Cardiomyocyte Markers Proliferating

CMs in AR

Belmonte [11] 14 7 7 No. BrdU+,GFP/Cmlc2+ 400/section
Belmonte [31] 14 - - No. BrdU+/α-sarcomeric Actin+ 3591
Belmonte [29] 14 14 7 No. BrdU+ cells (MyHC+) 250/section
Belmonte [32] 7 7+4 h * 7 Only visualization of BrdU+ (structural CMs) -
Belmonte [30] 14 7+4 h * 7 No.BrdU+/α-sarcomeric actin+ 750/section

Burns [35] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 20%/in injury
Bruns [36] 14 7 1 % PCNA+/Mef2+ cells out of total Mef2+ 7.5%/in injury

Chuang [44] 10 4 4 No. BrdU+ cells (Myosin+) 52/in injury
Heideman [46] 7 1 1 Only visualization of BrdU+/Phalloidin+ -
Jazwinska [51] 10 1 * - % BrdU+/Cmlc2:dsred+ out of Cmlc2:dsred+ 4%/section
Kawakami [15] 14 - - No. PCNA+/Mef2+ 21/section
Kawakami [59] 13 6 2 No. EdU+/Cmlc2-mCherry+ 21/section
Kawakami [60] 7 - - No. PCNA/Mef2+ 22/in injury

Keating [64] 14 7 1 BrdU+/Mef2+ (Only relative measures) -
Lee [68] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 15%/ in injury
Lee [69] 14 - - PCNA+/Mef2+/Troponin+ 17%/unit area
Lien [73] 10 4 * - % BrdU+/Mef2+ cells out of total Mef2+ 10%/ in injury
Poss [9] 7 7 1 %BrdU+/Myosin+ out of Myosin+ 17%/ in injury
Poss [12] 7 3 3 Only visualization of BrdU+ cells -
Poss [80] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 12%/in injury
Poss [13] 7 3 3 Only visualization of BrdU+/cmlc2:nRFP+ -
Poss [79] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 16%/ in injury
Poss [81] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 17%/in injury
Poss [85] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 15%/ in injury
Poss [83] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 15%/in injury
Poss [84] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 15%/unit area
Raya [86] 30 - - Only visualization of BrdU+/Myosin+ -
Tsang [89] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 25%/in injury

Weidinger [74] 7 - - PCNA+ cells/cmlc2:GFP 12%/section
Xiong [93] 7 7 1 % BrdU+/Mef2+ cells out of total Mef2+ 15%/in injury
Xiong [92] 14 7 1 % BrdU+/Mef2+ cells out of total Mef2+ 15%/ in injury

Yin [94] 3 - - % PCNA+/Mef2+ cells out of total Mef2+ 5%/ in injury
Zhong [95] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 7%/ in injury
Zhong [96] 7 - - % PCNA+/Mef2+ cells out of total Mef2+ 9%/ in injury

Only one selected timepoint and proliferation marker from each study is shown. The number or percentage of
proliferating CMs represent a wildtype or a control (non-transgenic/non-manipulated). * Marks a design of BrdU
added to the fish water instead of injection.

4.4. Analysis of Heart Function

The zebrafish heart, despite having only two chambers and a lack of pulmonary vasculature,
shows a similar pattern of electrical activity and pump function as measured in humans when using
electrocardiography (ECG) and echocardiography (ECHO), respectively. Yet, the parametric values are
different between species, and data are thus mainly suited for relative measures between groups such
as AR and sham zebrafish [88,98].

In our systematical analysis we identified a total number of six studies [7,12,49,87–89] that used a
functional heart test as a measurement for cardiac recovery after AR. Three of these studies [7,49,89]
used electrocardiography (ECG) while the other half [12,87,88] performed echocardiography.

The three studies that used ECG evaluated functional recovery after AR either by measuring
variation in the R-R interval, (the time between each heartbeat) [89], or by measuring variation in the
QT intervals [7,49].

5. Discussion

To the best of our knowledge, we here provide the first systematical analysis of methods used for
evaluating heart regrowth and regeneration after apex resection in zebrafish. This is important since
zebrafish offers an opportunity to identify mechanisms underlying heart regeneration, which may then
be translated into the non-regenerative mammalian heart to improve heart repair after MI. 47 zebrafish
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studies performing AR were identified and showed that 95.7% of these studies used histology either
alone or in combination with immunofluorescence detection of cardiomyocyte proliferation to assess
zebrafish heart regeneration. 82.2% of the histology studies were merely qualitative, while 82.4% of the
CM proliferation studies were quantitative. Only 12.8% of all studies included functional heart test,
and no study used height or volume of the regenerating myocardium, which may provide even more
robust evidence for heart outgrowth as discussed below.

Overall, histology was used in the studies to discriminate between viable myocardium and collagen
rich scar tissue. The latter is a major outcome after MI in mammals, and as such it cannot compensate
functionally for the CM loss. However, despite being informative on the presence or absence of fibrosis
in the AR zebrafish hearts, such histology stains do not evidence heart outgrowth and regeneration
capacity. This likely explains why only 8 out of 47 studies indeed perform quantitative histology (e.g.
scarring index), whereas remaining studies only report qualitative evaluations. Moreover, one major
caveat of this type of assay is that quantifications are based on a few sections, which then represent
the whole heart. In this regard, it is important to note that consensus in the field exist, where the
two-three largest sections of the ventricle are chosen to make an averaged and thus more robust
analysis [87,95,96]. Yet, this could also bias heart outgrowth analysis, since one will select towards
the size of the sections and not the injury site itself. With the numerous new imaging modalities 3D
analysis or at least 2D serial analysis throughout the heart could be an alternative to minimize such
bias and enable more robust quantifications as discussed below. Still the use of histology stains should
be treated with cautions when claiming heart outgrowth. For instance, the degree of fibrosis and
the amount of viable myocardium may depend on initial heart size and lesion performance, both
parameters that may vary a lot in a heart that is only 1mm wide on average [6].

In contrast to fibrosis as a measure of heart regeneration, CM proliferation seems more appropriate
as this biological process is considered the main underlying mechanism of heart regeneration [99].
As in general, zebrafish CMs go through the four phases of the cell cycle: G1, S, G2 and M, but in
contrast to mammals the proportion of binucleated and polyploid CMs are <5% [36,99]. The latter
may partly explain why zebrafish accomplish heart regeneration per se, but it is also important to
consider when quantifying CM proliferation. In mammals, the majority of proliferation markers cannot
distinguish whether a CM indeed undergoes division or simply binucleates or becomes polyploid
(as reviewed elsewhere [100,101]), but in zebrafish it must be assumed that expression of these markers
mainly represents the formation of two daughter CMs, although binucleation may occur at a low rate.
However, the reported rates of CM proliferation may be difficult to compare across studies (Table 5),
since the experimental design and reporting manner vary (Table 5). Also, the choice of cardiomyocyte-
and proliferation markers as well as the day of analysis post injury are different between studies
(Tables 3–5).

The inclusion of a cardiomyocyte marker is a prerequisite since also fibroblasts, hematopoietic
cells as well as epicardial-, endocardial- and vascular cells proliferate following AR injury [6,8,102].
While Mef2c is a nuclear transcription factor, MYH1 and α-Sarcomeric Actin are cytoplasmic proteins
present, and all can be used to label cardiomyocytes in the [103,104]. Visualization of these proteins
mainly relies on antibody detection and thus depends on the quality of the reagents and protocols
as in general. Since the used proliferation markers PCNA, BrdU/EdU, and PHH3 represent proteins
residing in the nucleus, Mef2c co-localization may be more specific as compared to co-localizations
with MYH1, α-Sarcomeric Actin, and the cardiac myosin light chain cmlc2 reporters that may require
confocal imaging in 3D to validate single CM co-localization. The use of Phalloidin and CM structural
characteristics [32,46] may be less robust in defining CMs. The used proliferation markers PCNA,
BrdU/EdU, PHH3 are detected via immunofluorescence in the identified studies. Yet, it is important to
note that they differ in their expression during the cell cycle which can have an impact upon analysis
and interstudy comparison [100,101]. Pulse chase labelling using the thymidine analogues BrdU or
EdU are golden standards for assessing cell proliferation through DNA labeling [105,106]. When
comparing with PCNA, one must consider that PCNA marks cardiomyocytes from G1 phase until
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S phase, whereas thymidine analogues marks cardiomyocytes from S phase and onward. This will
result in higher number of proliferating cardiomyocytes detected by PCNA per cell cycle [100,101,107].
In the identified studies, evaluation of CM proliferation was performed at different timepoints with 7-
and 14 dpi being most commonly used (see Tables 4 and 5) [9,60]. Since longer periods of BrdU/EdU
incorporation and repetitive labelling pulses will increase the number of labelled cardiomyocytes, the
quantifications depend on the specific BrdU/EdU setup [107] and should be taken into consideration
upon interstudy comparisons.

In humans, the heart pump function is the ultimate determinant of a patient’s well-being after
MI with arrythmias after infarction being a dangerous complication, and in mouse heart regeneration
studies functional analysis such as MRI, ECHO or PET often are included. The similar pattern of
electrical activity between zebrafish and humans despite the obvious anatomical difference makes it
also a candidate for similar functional studies in zebrafish. However, in zebrafish AR studies, only
6 out of the 47 identified studies used functional analysis of heart function likely due to the small size
of the zebrafish heart and the sensitivity of available techniques. ECHO is a non-invasive method in
zebrafish, that uses ultrasound for imaging of cardiac structures and visualizes systolic and diastolic
function [108], representing ventricular emptying and ventricular filling, respectively. In two [87,88] out
of the three ECHO studies identified, ECHO was the sole measure of heart recovery and regeneration.
In this regards it is important to acknowledge that ECHO is highly subjective and depends on user
training and equipment quality among other parameters [109]. ECG, another non-invasive method, on
the other hand might be more reproducible, and favorable for studying arrythmias, as indicated by
QT- and T-wave abnormalities that can appear after AR. Prolongation of QT interval would suggest
alterations in the ventricular repolarization that should normalize over time when the heart is healed
and can thus be used as a readout for complete functional regeneration. Interestingly study showed a
type of arrythmia with a prolongated QT interval after AR, reflecting ventricular repolarization and
which is also seen after cryoinjury [49,51]. This may still persist even after complete heart regeneration
as evidenced by histology [49]. In contrast, another article reported a shortened QT interval, another
type of arrythmia after AR [7]. With only six studies using a functional readout and varying results,
there is room for an improvement in implementation of techniques such as ECHO and ECG analysis
in zebrafish.

6. Conclusions and Perspectives

Finally, we cannot emphasize enough that the present analysis is restricted to the data collected
for the present study and we also cannot exclude that a few eligible studies have been unnoticed by
our search strategy, and we apologize to authors of those studies. Other factors than those analyzed
and discussed above may as well have an impact on the evaluation of zebrafish heart regrowth
after AR. Particular we observed that only 3 out of 47 articles [46,49,74] explained the procedure of
sham operations in detail and described clearly whether the sham was matched with a particular
dpi specimen. Since, CM proliferation can be induced by injury or activation of tissues adjacent to
the myocardium such as the epicardium [60,102], sham animals at a matched day seem obligate to
consider when evaluating heart regeneration after AR.

Furthermore, our data suggest that some of the more advanced new imaging modalities could
improve the field and accuracy of determining heart regrowth after AR. For instance, one may consider
measuring the myocardial volume or height after AR and compare with a day matched sham. In this
regard, the volume or height of myocardial tissue could ideally be quantified by two-photon imaging of
a persistent cardiomyocyte reporter following tissue clearance. Very recently, Mercader and co-workers
used a similar approach for analyzing Sox10+ CMs following cell specific ablation within the zebrafish
heart [110].

Thus, although some consensus exists in the field, more standard guidelines for testing and
reporting as well as the use of new less biased approaches could improve the field and provide more
close evidence of heart regrowth after AR in zebrafish.
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