
Introns of plant pri-miRNAs enhance miRNA
biogenesis
Dawid Bielewicz1, Malgorzata Kalak1, Maria Kalyna2, David Windels3, Andrea Barta2, Franck Vazquez3+,
Zofia Szweykowska-Kulinska1++ & Artur Jarmolowski1+++

1Department of Gene Expression, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland, 2Max F. Perutz Laboratories,

Medical University of Vienna, Vienna, Austria, and 3Botanical Institute of the University of Basel, Zürich-Basel Plant Science Center,
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Plant MIR genes are independent transcription units that encode
long primary miRNA precursors, which usually contain introns.
For two miRNA genes, MIR163 and MIR161, we show that
introns are crucial for the accumulation of proper levels of
mature miRNA. Removal of the intron in both cases led to a drop-
off in the level of mature miRNAs. We demonstrate that the
stimulating effects of the intron mostly reside in the 50ss rather
than on a genuine splicing event. Our findings are biologically
significant as the presence of functional splice sites in the MIR163
gene appears mandatory for pathogen-triggered accumulation of
miR163 and proper regulation of at least one of its targets.
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INTRODUCTION
MicroRNAs (miRNAs) are 20–22-nt-long small RNAs that regulate
the expression of genes involved in critical developmental pro-
grammes or in response to specific environmental conditions [1–5].
In plants, a set of 15–20 miRNA families that are evolutionarily
highly conserved and serve in the regulation of crucial develop-
mental programmes have been identified. In contrast, the other
miRNA families are lineage- or species-specific, and serve in the
regulation of specialized aspects of plant life [6]. While animal
miRNAs are generally embedded into introns of protein-coding
genes, plant miRNAs are encoded by independent MIR genes that

are transcribed by Pol II to yield long primary miRNA precursors
(pri-miRNAs) [7–9]. Processing of the pri-miRNAs occurs in two
steps by the RNAse III enzyme DICER-LIKE1 (DCL1) and its main
double-strand RNA-binding partner DRB1/HYL1 [10–12]. The first
cut generates the intermediate hairpin-containing pre-miRNAs,
whereas the second cut releases the miRNA/miRNA* duplexes.
The miRNA strand is then incorporated into ARGONAUTE (AGO)
effector complexes to guide RNA cleavage or translation
inhibition [13–15]. The biogenesis and function of miRNAs are
tightly regulated at several levels to ensure that proper regulation
of the mRNA targets is maintained and adjusted in changing
environmental conditions that includes posttranscriptional
feedback regulation of DCL1 and AGO1 mRNA levels [16].

We have recently shown that plant pri-miRNAs are unexpect-
edly long and contain one or more introns located usually in their
30 regions downstream of the hairpin folds that encode the miRNA
duplexes [17,18]. Our laboratory and others have shown that
these pri-miRNAs are bound, similarly to pre-mRNAs, by the
nuclear cap-binding complex (CBC) proteins, CBP80 and CBP20,
to promote their splicing in a step that involves the C2H2 zinc
finger protein SERRATE, which is proposed to bridge the CBC
and the spliceosome [17,19]. Our work suggests that splicing and
processing of pri-miRNAs are coupled processes that might
influence each other, although it is still unclear whether the two
processes occur simultaneously or sequentially. Moreover, while
the presence of introns appears to be a widespread conserved
feature of plant MIR genes [17,18], their biological significance
and the effect of pri-miRNA splicing on the biogenesis and
function of miRNAs have not been evaluated.

We have introduced intron-less and splice site mutated versions
of the single-copy gene AtMIR163 in a miR163-defective mutant
background, and similar AtMIR161 versions were tested in
transient expression assays in Nicotiana benthamiana to evaluate
the relationship between splicing and processing of miRNA. Our
data demonstrate that the introns of MIR genes are essential for the
accumulation of proper levels of mature miRNAs. In addition, in
the case of miR163, we also show that the intron is required for
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proper regulation of its newly validated mRNA target in response
to the bacterial pathogen Pseudomonas syringae DC3000. Further
genetic analyses showed that most of the stimulating effects of
the intron reside in the 50 splice site that might be caused by
the binding of U1 snRNP that creates a connection between the
spliceosome and the miRNA machinery. Analyses of several
intron-containing MIRs in SR protein mutants allowed us to
ascertain our conclusion concerning the direct requirement of
introns for proper miRNA biogenesis.

RESULTS AND DISCUSSION
Intron stimulates the biogenesis of miR163
To evaluate the significance of introns in pri-miRNAs and
specifically whether they influence the level of mature miRNAs,
we introduced original or mutated MIR163 constructs controlled
by the native MIR163 promoter in the mir163-2 mutant (Fig 1A).
This mutant contains a T-DNA insertion in the promoter of the
intron-containing single-copy MIR163 gene, and has undetectable
levels of pri-miRNA163 in any of the tissues tested (Fig 1B, upper
panel), as well as undetectable levels of mature miR163 (Fig 1B,
lower panel). When the IVSwt construct, that is, a wild type (wt)
MIR163 gene copy, was introduced in the mir163-2 mutant, the

level of miR163 was restored to the wt level in the two
independent transgenic lines obtained (100% in IVSwt.1 and
94% in IVSwt.2; Fig 1C, lower panel). In contrast, the level of
miR163 in the two DIVS lines expressing an intron-less MIR163
gene was three times lower than that of wt plants (32% in DIVS.1
and 36% in DIVS.2; Fig 1C, lower panel). Interestingly, the level
of pri-miR163 generated in DIVS.1 and DIVS.2 plants was
significantly higher than that recorded in wt plants or in IVSwt
plants (Fig 1C, upper panel). Thus, together these observations
show that the intron of MIR163 is required for accumulation of
proper levels of miR163, and suggests that the processing of
pri-miR163 is significantly altered by the absence of the intron in
DIVS plants. We also obtained similar results for another miRNA,
miR161, that suggests our conclusion that introns stimulate the
biogenesis of plant miRNAs is also true for other MIR genes
(supplementary Fig S2 online).

Splice sites are required for proper miR163 biogenesis
The intron of MIR163 is required for the accumulation of proper
levels of miR163 but it is unclear whether this is caused by its
splicing or by an unknown stimulatory feature of a sequence
motif of the intron. To answer this, we generated MIR163 variants
in which the splice sites were mutated (Fig 2A). The two
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Fig 1 | The intron of MIR163 stimulates the biogenesis of miR163. (A) Schematic representation of MIR163 gene variants used. The splicing sites and

position of proximal and distal poly(A) sites are shown. (B) Level of pri-miR163 (upper panel) and miR163 (lower panel) recorded in different organs of

the mir163-2 mutant. U6 snRNA serves as a loading control. (C) Level of pri-miR163 (upper panel), pri-miR163 splicing variants (middle panel) and
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independent IVSmut transgenic lines, in which MIR163 had
both 50 and 30 splice sites mutated, displayed a strong decrease in
miR163 accumulation (16–17% of wt level) associated with a
strong decrease in pri-miR163 levels (12–14% of wt level; Fig 2B).
This suggests that the IVSmut primary transcript is far less stable
than the original pri-miRNA with functional splice sites.

In the IVSD50ss lines, in which MIR163 had only the 50 splice
site mutated, miR163 accumulated to only 36–38% of the wt level
but the pri-miR163 level was similar to that of wt plants (Fig 2B).
Importantly, in the IVSD30ss lines, in which MIR163 had only the
30 splice site mutated, miR163 accumulated to levels similar to that
of wt plants (90–91% of wt level; Fig 2B, lower panel). Moreover,
the pri-miR163 accumulated 1.65–1.8-fold more in IVSD30ss than
in wt plants (Fig 2B, upper panel). These results show that the
accumulation of miR163 is far less affected by mutation in the
30 splice site than in the 50 splice site. Moreover, mutation of
both splice sites had an additive effect on decreasing the
accumulation of miR163. Overall our data show that splicing, or
at least the presence of the 50 splice site, is important for

accumulation of proper levels of miR163. This conclusion was
further strengthened by the similar results that we obtained with
the MIR161 construct containing a mutated 50ss (supplementary
Fig S2 online).

Two poly(A) sites are used in the MIR163 gene
Our 30 RACE experiments showed that an alternative proximal
poly(A) site located within the intron gives rise to a shorter
MIR163 transcript (Fig 2A). In the wt plants, this proximal poly(A)
site is used for about 40% of the MIR163 transcripts (Fig 2C). The
frequency of alternative poly(A) transcripts in IVSwt plants was
similar to that of wt non-transformed plants, whereas in intron-less
DIVS plants only the distal poly(A) site was used as the proximal
poly(A) site was removed together with the intronic sequence. We
ascertained that the changes observed in IVSmut, IVSD50ss and
IVSD30ss are due to defects in splicing by showing that spliced pri-
miR163 was not detectable in these lines (supplementary Fig S1
online). We also determined that the ratio of proximal and distal
poly(A)-tailed transcripts in these plants was altered in IVSD50ss
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and IVSmut lines compared with wt plants but not in IVSD30ss
(Fig 2C). The proximal poly(A) site was more frequently used in
IVSD50ss lines compared with the wt plants (40% in wt; more than
80% in IVSD50ss). In IVSmut plants, in which MIR163 had both
50 and 30 splice sites mutated, usage of the proximal poly(A) site
was almost exclusive (more than 95%). Dreyfuss and coworkers
have recently found that U1 snRNP can shield premature
polyadenylation sites in human cells [20]. Therefore, it is
possible that binding of U1 snRNP to the 50ss of pri-miR163
might inhibit usage of the proximal poly(A) site. Importantly, our
data also suggest a slight contribution of the 30ss to this process
(80% in IVSD50ss and 95% in IVSmut). Earlier studies by Valcarcel
and coworkers have shown that U2AF65, recognizing the 30ss
and/or U-rich sequences within introns, is able to stimulate
interactions between U1 snRNP and the 50ss [21]. Thus, similar to
human cells, the 30ss additive effects that we have observed in our
experiments might be owing to the stimulation of U1 binding to
the 50ss similarly to that reported in human cells.

SR proteins affect miR163 biogenesis
SR proteins are important splicing factors that act as positive
regulators of splicing. To test whether excision is important in the
intron effect that we have observed on miR163 biogenesis, we
used different sr-null mutants. The level of miR163 was decreased
to 62–77% of the wt level in many of the SR protein mutants tested
(Fig 3, lower panel). Moreover, these differences correlated with
changes in the splicing efficiency of pri-miR163 (Fig 3, upper and
middle panels). These effects were similar to those observed in the
splicing-miRNA biogenesis mutants se-1, cbp20, cbp80 and in
the cbp20/cbp80 double mutant, cbc, in which the level of miR163

is dramatically reduced (Fig 3, lower panel) and the splicing
efficiency is affected (Fig 3, upper and middle panels) [19].

Importantly, the effect of SR proteins on miRNA levels was also
observed for other intron-containing MIR genes (supplementary
Fig S2 online), but not all SR protein mutants tested showed
changes in pri-miRNA splicing and miRNA accumulation.
Although we provide evidence for the involvement of plant SR
proteins in the biogenesis of miRNA from intron-containing genes,
changing SR protein expression levels had much weaker effects on
the accumulation of miR163 than the mutations in the IVSmut
(50ss and 30ss mutated) or IVSD50ss constructs. Nevertheless, these
observations strongly support our previous conclusion that
splicing stimulates miRNA production from intron-containing
pri-miRNAs, and that the functional connection between intron
removal and miRNA accumulation relies on the recognition of the
50ss rather than on genuine intron excision.

miR163 targets a SAM-dependent methyltransferase
To experimentally validate some of our in silico predicted
miR163 mRNA targets, we carried out 50RLM-RACE experiments
in wt and mir163-2 mutant plants, as well as in the xrn4-3
mutant that accumulates higher levels of 30 cleavage fragments
of selected miRNA targets [22]. The 50 RACE amplification
product for At1g66690, which encodes an S-adenosyl-L-
methionone-dependent methyltransferase, was at the expected
size, and accumulated to slightly higher levels in the xrn4-3
mutant than in the wt plant (Fig 4A, left panel). Moreover, in the
mir163-2 mutant, this product was not observed, and instead
a ladder of different RNA degradation fragments was detected
(Fig 4A, right panel). The cloning and sequencing of this
50 RACE product identified the cleavage site guided by miR163
(Fig 4A, upper sequence). Furthermore, the steady-state level of
At1g66690 mRNAs in the miRNA biogenesis mutants hyl1-2,
se-1, cbp20, cbp80 and cbc, the double mutant cbp20/cbp80, was
higher than in wt plants (Fig 4B). This increased mRNA
accumulation was in agreement with the decreased miR163 level
in the miRNA biogenesis mutants tested (Fig 3, lower panel). Thus,
taken together our data show that At1g66690 mRNA is a target of
miR163. Two more targets of miR163 have been already
described, At1g66700 and At3g44860, of which the former also
belongs to the family of S-adenosyl-L-methionine-dependent
methyltransferases [23].

Induction of miR163 depends on functional splice sites
Recent work has shown that miR163 accumulation is induced by
various biotic stress [23]. To test whether the stimulatory effect of
an intron on miR163 biogenesis is biologically significant, we
compared the response of wt and IVSmut plants to infection by
P. syringae. Interestingly, the level of miR163 in wt plants reached
135% and 145% of the wt level after 24 and 72 h of infection
(Fig 4C, middle panel), whereas the level of the At1g66690 mRNA
target correlated by a simultaneous reduction (Fig 4C, lower
panel). In contrast, in the IVSmut plants miR163 accumulation
was low and uninduced after 24 or 72 h of infection (Fig 4C,
middle panel), although the level of pri-miR163 was increased at
these time points (Fig 4C, upper panel). These observations show
that the posttranscriptional regulation of miR163 biogenesis
under biotic stress condition is impaired in IVSmut plants, and
highlight an important role for the MIR163 intron and its
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functional splice sites in regulation of miR163 biogenesis during
bacterial infection. The microarray data have already suggested
that the expression of At1g66690 is connected with bacterial
infection of Arabidopsis [24]. Owing to the type of microarrays
used in the experiments (Affymetrix ATH1), it was unclear if the
effect observed (the authors claimed that the level of the
At1g66690 transcript increased after infection) meant the level
of full-length transcripts and/or stable 30 fragments of miRNA-
directed cleaved mRNA. Since we as well as others observed the
increased accumulation of miR163 on P. syringae infection [25],
and miR163 is involved in cleavage of At1g66690 transcripts, the
accumulation of target 30 fragments can explain the microarray
results [24].

CONCLUSIONS
Our experiments have shown that the intron of MIR163 is required
for proper biogenesis and function of its mature miRNA. The
removal of the MIR163 intron, as well as mutations that block its
splicing, led to a significant reduction in the level of mature
miR163 and to accumulation of its newly validated target. The
disruption of the 50ss had a stronger impact on miR163
accumulation than the disruption of the 30ss had. However, the
disruption of the 30ss in addition to the 50ss led to an even higher
decrease in the level of mature miR163. Although we could not
exclude a direct effect of splicing on stimulation of miR163
biogenesis, our data indicate that the crosstalk between the
spliceosome and the miRNA biogenesis machinery most likely
involves recognition of the 50ss by the U1 snRNP. Importantly, our

similar analyses of MIR161 in transient expression assays in
N. benthamiana, as well as analyses of several intron-containing
pri-miRNAs in SR protein mutants strengthen and expand our
conclusion that pri-miRNA introns have a direct effect on proper
biogenesis of miRNAs. Interestingly, a feed-forward model of the
crosstalk between miRNA biogenesis and splicing in mammals
has been recently proposed [26]. In contrast to plants, most of the
miRNAs in mammals are encoded by introns of protein-coding
genes. It has been shown that in this type of miRNA genes, U1
snRNP recognizes the 50ss and promotes recruitment of Drosha, a
human RNase III-type enzyme that catalyses the excision of
miRNA precursors from pre-mRNAs. According to the model
proposed, the U1 snRNP first recognizes the 50ss of the miRNA-
containing intron, which leads to increased efficiency of the
enzymatic activity of Drosha. On the other hand, Drosha bound to
the cut intron generates a better splicing substrate by stabilizing
U1 snRNP binding to the 50ss, thus subsequently promoting
splicing completion. Although the mechanism of functional
connections between splicing and miRNA biogenesis in plants
has to be different, as most plant miRNAs are generated from
long non-coding precursors, our results strongly suggest the
involvement of U1 snRNP in such crosstalk that is similar to
the feed-forward model proposed for mammalian miRNAs
embedded in introns. Schwab and colleagues report in this
issue of EMBO reports a similar positive effect of introns on
miRNA accumulation that corroborates our conclusions.
However, a difference lies on the effect of 50ss mutations, which
in their study either lead to no change in miR163 accumulation or
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to increased accumulation of miR172. This discrepancy might
be due to mutations introduced into the mutated 50ss, which do
not sufficiently compromise (miR163) or even favour (miR172)
the binding of U1 snRNP. It is also possible that the difference
arised from the use of promoters with different strength: the native
MIR163 promoter in our experiments, and the CaMV 35S
promoter in Schwab and colleagues’ studies. This hypothesis is
actually supported by our observations with the 50ss mutated
version of the MIR161 gene, which is driven by the 35S promoter,
leads to weaker effects on miRNA biogenesis than the 50ss
mutated version of MIR163, which is driven by its native
promoter (compare the results presented in Fig 2 and
supplementary Fig S2 online). Future work will have to test these
possibilities in detail and provide further understanding of this
specific regulatory mechanism.

METHODS
Plant material. Arabidopsis seeds were stratified on ½ MS or
directly on soil for 2 days at 4 1C and grown at 22 1C with 16-h
light in SANYO MLR-351H growth chamber. The mir163-2
mutant (SALK_0034556) was identified by PCR (oligonucleotides
are listed in supplementary Table S1 online). The SR protein
knock-out lines used in this study are: SALK_106067 (sr34-1),
SALK_021332 (rs31-1), GABI_180D12 (rs2z33-1) and
SALK_095431 (scl30a-1).
Generation of transgenic lines. MIR163 gene variants were
prepared by PCR (oligonucleotides are listed in supplementary
Table S1 online), and cloned in pENTR/D-TOPO plasmid (Life
Technologies) using NotI and AscI restriction sites. The sequence
of all constructs used were verified by sequencing. To perform the
Gateway LR reaction, the pENTR/D-TOPO plasmids containing
inserts were digested with PvuII (Fermentas). For expression in
plants, pMDC99 or pMDC123 Gateway binary vectors were
used [27]. Transgenes were introduced in mir163-2 plants by the
Agrobacterium-mediated floral dip transformation [28].
Transient expression in N. benthamiana. MIR161 gene variants
were prepared by PCR (oligonucleotides are listed in
supplementary Table S1 online), and cloned in pCR8 plasmid
(Life Technologies). For expression in plants, pMDC32 Gateway
binary vector was used [27]. For one construct, four leaves of
5-week-old N. benthamiana were infiltrated with Agrobacterium
tumefaciens (OD600¼ 0.6 in 10 mM MES pH 5.6, 10 mM MgCl2).
Leaves were harvested after 72 h.
RNA isolation and analysis. Total RNA from 10-day-old seedlings
or from leaves of 21-day-old plants was isolated using Trizol
reagent (Life Technologies) and treated with Turbo DNase
(Ambion) before reverse transcription with oligo dT(18) (Fermentas)
and SuperScript III Reverse Transcriptase (Life Technologies). We
analysed sRNA as described previously [17]. To perform
50RLM-RACE, the GeneRacer kit (Life Technologies) was used
according to the manufacturer’s instructions.
Quantitative real-time PCR analysis (qPCR). Real-time qRT-
PCRs were performed as described previously [29]. Estimation
of poly(A) site usage was done with two real-time PCR reac-
tions each detecting one of the pri-miRNA163 isoform.
The two reactions had equivalent efficiencies that allowed to
calculate the relative abundance of each isoform (supplementary
Fig S3 online).

Bacteria treatment. Two weeks old plants were sprayed with
P. syringae DC3000 at an OD600¼ 0.2 in 10 mM MgCl2. P. syringae
was grown overnight in YEB medium at 28 1C. Aerial parts of the
plants were collected just after treatment or after 24 and 72 h.
Statistics. Statistical tests were performed using MS-Excel 2007
and the Statistica program. The Mann–Whitney U-test was used.
P-values are presented in figure legends.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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