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Abstract

Background: Deep learning–based methods have been used to denoise magnetic resonance imaging.

Purpose: The purpose of this study was to evaluate a deep learning reconstruction (DL Recon) in cardiovascular black-
blood T2-weighted images and compare with intensity filtered images.

Material and Methods: Forty-five DL Recon images were compared with intensity filtered and the original images. For
quantitative image analysis, the signal to noise ratio (SNR) of the septum, contrast ratio (CR) of the septum to lumen, and
sharpness of the endocardial border were calculated in each image. For qualitative image quality assessment, a 4-point
subjective scale was assigned to each image (1 = poor, 2 = fair, 3 = good, 4 = excellent).

Results: The SNR and CR were significantly higher in the DL Recon images than in the intensity filtered and the original
images (p < .05 in each). Sharpness of the endocardial border was significantly higher in the DL Recon and intensity filtered
images than in the original images (p < .05 in each). The image quality of the DL Recon images was significantly better than
that of intensity filtered and original images (p < .001 in each).

Conclusions: DL Recon reduced image noise while improving image contrast and sharpness in the cardiovascular black-
blood T2-weight sequence.
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Introduction

Cardiovascular black-blood T2-weighted imaging is widely
used to examine acute myocardial infarction,1 often using a
short-inversion-time inversion-recovery (STIR) sequence.
The technique is sensitive to cardiovascular motion, which
along with stagnant blood in the lumen in turn can lead to
myocardial signal loss and reduced contrast. Further, par-
allel imaging can be used to decrease scanning time, which
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often decreases the signal to noise ratio (SNR) in these
images. The myocardial SNR in STIR images may be
improved by increasing the slice thickness. However, this
approach increases the unnecessary signal from slow blood
flow, and partial volume effects reduce the sensitivity to
edema.2 The effect of adjusting the sequence on SNR and
contrast in cardiovascular T2-weighted imaging has been
verified in several studies.3,4 In addition to changing pa-
rameters and sequences, using an intensity filter in post-
processing is another option. This technique can remove
noise, but may occasionally lead to unclear edges and does
not improve the image quality. Recent application of deep
learning in radiology has allowed for advances in lesion
detection and evaluation and image segmentation.5,6 Deep
learning–based methods, particularly those derived from
convolutional neural networks (CNN), have also been used
to denoise magnetic resonance imaging (MRI).7,8 Recently,
the dedicated deep learning reconstruction (DL Recon) for
2-dimensional (2D) MRI has also been developed, with the
aim to reduce noise and refine image quality. This tech-
nology can improve image quality in post-processing
without changing the parameters or sequence. Therefore,
we needed to verify the reliability of DL Recon images in
volunteers before clinical application. The objective of this
preliminary study was to validate a deep learning algorithm
in cardiovascular T2-weighted images and compare with
conventional intensity filtered images.

Material and methods

Volunteers

Fifteen healthy volunteers (15 men; median age 31 (29–
35) years) underwent cardiovascular black-blood T2-weighted
MRI. The median body mass index of volunteers was 23.8
(21.7–25.3) kg/m2. This study was approved by insti-
tutional review board. All participants gave informed
consent.

MRI protocol

All MRI examinations were performed with a clinical 3T
MR scanner (SIGNA Architect, GE healthcare, WI, USA).
A breath-hold black-blood T2-weight image with STIR in 3
short-axis slices (basal, mid, apical) was acquired. Imaging
parameters were as follows: repetition time, 2 R to R in-
terval; echo time, 70 ms; slice thickness, 6 mm; field of
view, 340 × 340 mm2; matrix, 320 × 320 (reconstruction
matrix, 512 × 512); flip angle, 107; echo train length, 32;
acceleration factor, 3. The same raw data were used to
reconstruct a set of the following images: the original image,
a DL Recon image with the noise reduction level of 25%,
50%, 75%, and 100%, and the original image with an in-
tensity filter.

Deep learning reconstruction

DL images were obtained using a prototype of Recon DL
pipeline. The DL Recon receives raw k-space data and
outputs high quality images. The prototype software uses a
deep CNN, which reconstructs the MR images with higher
SNR, higher edge sharpness, and the reduction of truncation
artifacts. The CNN was integrated into the standard re-
construction process, allowing the adjustable parameter of
the noise reduction level between 0—100%, so that the
noise variance of the DL image is reduced to the noise
reduction level. The network also recognizes the truncation
artifact and works for de-ringing to improve image
sharpness. The deep CNN contains over 4.4 million
trainable parameters in more than 10,000 kernels and was
trained using a dataset of high-resolution near-perfect image
and low-resolution image with more truncation artifact or
higher noise level, accounting for a database of 4 million
images. Image augmentations, such as intensity gradients,
rotations and flips, phase manipulations, and additional
Gaussian noise were conducted, and 4 million training
datasets were created. A single epoch of training involving 4
million iterations was conducted. The Rectified Linear Unit
activation was used for the activation function of this CNN.
The ADAM optimizer was used to minimize the loss.9 The
reconstruction was conducted using a central processing
unit system on a computer with an Intel Xeon E5-2680 v3 at
2.5 GHz. Efficacity of the DL Recon was evaluated by
retrospectively reconstructing images with noise reduction
factors of 25%, 50%, 75%, and 100%.

Image intensity filter

The acquired images were also applied to the intensity filter
and then compared with their DL Recon and the original
counterparts. This filter, which was used routinely in clinical
practice, separated the image into homogenous and heter-
ogenous regions. The homogenous regions were uniformly
smoothed in every direction with a simple box-like filter.
The heterogenous regions were smoothed only along gra-
dient perpendicular direction to preserve edges. The edge
filter, defined by a blend ratio, aimed to integrate the
structured region with the original image. In contrast, the
smoothing filter, also defined by the blend ratio, was used to
coalesce the homogenous region with the original image. In
routine clinical practice, the combination of high sharpening
and high smoothing was generally used.

Quantitative image analysis

Quantitative image analysis was performed for all 270
images using the workstation (SYNAPSE VINCENT, Fu-
jifilm Corp., Ltd., Tokyo, Japan). The SNR of septal
measured as the ratio of the signal intensity to the standard
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deviation10 was averaged across 3 regions of interests of
septal. The contrast ratio (CR) was calculated using the
following equation: CR = (Cm - Cl)/Cl (note: Cm, signal
intensity of septal myocardium; Cl, signal intensity of lu-
men).11 The CR was calculated as the mean of 3 regions of
interests of septal and lumen. To evaluate the sharpness of
the endocardial border, the signal intensity profile of the
septal endocardial border was calculated. Image sharp-
ness was defined as a gradient value (signal intensity/
millimeter) between 20% and 80% of the total intensity
range. The gradient value was averaged across the 3
profiles.

Of several DL Recon strengths (25, 50, 75, and 100%),
the highest performance one, determined based on the
quantitative analysis, was used to compare with intensity
filtered and original images.

Intra- and inter-observer reproducibility of SNR, CR,
and sharpness were assessed across 3 imaging approaches
(original, DL Recon [strength 100%], and intensity filtered
images). Intra-observer variability was determined by re-
peating quantitative image analysis 4 weeks after initial
evaluation. Inter-observer variability was determined by 2
radiologists with 7 and 13 years of experience with car-
diovascular MRI.

Qualitative image analysis

Image quality was independently evaluated by 3 radiolo-
gists (readers 1, 2, and 3), with 7, 9, and 13 years of ex-
perience with cardiovascular MRI, using a 4-point
subjective scale (1 = poor, 2 = fair, 3 = good, 4 = excellent).
The image quality was defined as follows: 1: non-diagnostic
due to severely blurred, noisy, and inhomogeneous signal;
2: markedly blurred and noisy; 3: mildly blurred and little
noise; 4: well-defined myocardial borders, and almost no
noise. The inter-observer reproducibility of image quality
was assessed in each imaging method (original, DL Recon
[strength 100%], and intensity filtered images).

Statistical analysis

Data are expressed as mean ± standard deviation or median
(interquartile range). The differences in SNR, CR, sharp-
ness, and image quality values between 3 examined groups
were analyzed using Wilcoxon matched-pairs signed-rank
tests and Bonferroni correction was used for multiple
comparisons.

Intra- and inter-observer reproducibility of SNR, CNR,
and sharpness values were assessed using the Bland–
Altman method and Spearman correlation coefficients.
Inter-observer reproducibility of qualitative image quality
was determined by Kappa value. All statistical analyses
were conducted using the JMP software (Version 11.2; SAS
Institute, Inc., Cary, NC, USA).

Results

All scans were successfully completed. The median scan
time of black-blood T2-weight images was 11 (10–11) s for
each slice. The median heart rate was 59 (53–64) beats/min.
The reconstruction time of DL Recon images in each noise
reduction factor was approximately 50 s in 3 short-axis
slices. The reconstruction time did not change according to
the noise reduction factor. Figure 1 shows DL Recon
images with noise reduction factors of 25%, 50%, 75%,
and 100%. Figure 2 illustrates a case with the original
image, its DL Recon (strength 100%), and intensity filtered
images.

Quantitative image analysis

Table 1 shows the quantitative values of all 270 images.
Forty-five DL Recon images with 100% strength were
compared with intensity filtered and original images
Figure 3. The SNR and CR were significantly higher in the
DL Recon than that of intensity filtered and original images
(p < .05 in each). The sharpness of the endocardial border
was significantly higher in the DL Recon and intensity
filtered images than in the original images (p < .05 in each).

Qualitative image quality analysis

Forty-five DL Recon images with 100% strength were
compared with intensity filtered and original images. The
image quality of the DL Recon (3.5 ± 0.7) was better than
that of intensity filtered (3.0 ± 0.5) and original images (2.8
± 0.5) (p < .001 in each). The image quality of the intensity
filtered images was better than that of their original
counterparts (p < .05 in each).

Analysis of reproducibility

There was significant correlation in SNR, CR, and sharp-
ness values (Intra-observer: r = 0.92, p < .001; r = 0.93, p <
.001; r = 0.93, p < .001; Inter-observer: r = 0.74, p < .001; r =
0.89, p < .001; r = 0.84, p < .001). Mean intra-observer
differences (bias) were 0.2 (95% confidence interval [CI]
-2.7 to 3.1) for SNR, 0 (95% CI -2.9 to 2.9) for CR, �3.7
(95% CI -118.7 to 111.3) for sharpness (Figure 4). Mean
inter-observer differences (bias) were�1.7 (95%CI -6.9 to
3.5) for SNR,�0.8 (95%CI -7.1 to 5.5) for CR,�2.9 (95%
CI -148.5 to 142.7) for sharpness (Figure 4). The kappa
values of inter-observer agreement (readers 1 and 2) for
qualitative image quality were 0.81 for the original, 0.79
for the DL Recon, and 0.80 for the intensity filtered im-
ages. The kappa values of inter-observer agreement
(readers 1 and 3) for qualitative image quality were 0.81
for the original, 0.74 for the DL Recon, and 0.73 for the
intensity filtered images.
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Discussion

This preliminary study showed the application of deep
learning methods to cardiovascular T2-weight sequence can
improve image quality. Regarding the resolution and accel-
eration factor of this study, the DL Recon with 100% strength

showed a good performance, but the appropriate strength
may change depending on the resolution or amount of
noise.

The intensity filter used in this study appeared to affect
not only noise but also structural details. Among similar
smoothing filter, a popular technique utilizing a Gaussian

Figure 2. A case with (A) original image, (B) deep learning reconstruction, and (C) intensity filter. The deep learning reconstruction
(strength 100%) showed better noise reduction than that of intensity filter.

Table 1. Signal to noise ratio, contrast ratio, and sharpness values in the original image, deep learning reconstruction, and intensity filter.

Signal to noise ratio Contrast ratio Sharpness (SI/mm)

Original image 8.6 (6.8–12.0) 3.6 (2.4–4.9) 218.0 (144.1–322.9)
Deep learning reconstruction 25% 8.7 (12.1–6.9) 5.3 (3.6–7.3) 232.8 (156.2–365.6)
Deep learning reconstruction 50% 9.3 (12.5–7.2) 6.1 (4.0–8.8) 247.9 (158.6–355.0)
Deep learning reconstruction 75% 10.0 (13.1–7.5) 6.9 (4.3–11.1) 250.0 (154.9–358.4)
Deep learning reconstruction 100% 10.4 (7.7–13.5) 8.4 (4.6–13.4) 254.7 (157.8–366.0)
Intensity filter 9.7 (7.4–13.2) 3.6 (2.4–5.0) 243.0 (139.7–382.8)

Data are presented as median (first quartile, third quartile).
SI/mm: signal intensity/millimeter.

Figure 1. Images from different strengths of deep learning reconstruction. The noise is reduced as the strength changes. DL Recon:
deep learning reconstruction.
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filter has shown by averaging local values to likely remove
both noise and anatomical boundaries.12 In contrast, the DL
Recon could distinguish isolate noise by learning noise
thresholds provided by high frequency components
extracted from images.12 In addition to noise reduction, this
study showed DL Recon could improve contrast between

myocardium and lumen better than the intensity filter. Since
the cardiovascular T2-weighted image often causes poor
contrast between myocardium and lumen due to noise or
stagnant blood in the lumen,13 it was possible that by ef-
fectively removing noise in the lumen, the DL Recon
technique was able to enhance image.

Figure 3. Quantitative values in the original image, deep learning reconstruction, and intensity filter. (A) signal to noise ratio, (B)
contrast ratio, and (C) sharpness. DL Recon: deep learning reconstruction, N.S.: not significant, SI/mm: signal intensity/millimeter.

Figure 4. Bland–Altman plots for intra- and inter-observer agreement of the signal to noise ratio, contrast ratio, and sharpness. The
mean bias (solid line) and 95% confidence intervals (dotted line) are shown. (A) Intra-observer agreement for signal to noise ratio, (B)
intra-observer agreement for contrast ratio, (C) intra-observer agreement for sharpness, (D) inter-observer agreement for signal to
noise ratio, (E) inter-observer agreement for contrast ratio, (F) inter-observer agreement for sharpness.
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The qualitative image quality of the DL Recon images was
significantly better than that of intensity filtered and original
images. Given that no noise was detected by eye in DL Recon
images, these high quality and visually sharper edges could be
attributed to increased contrast between myocardium and lumen.

In general, the novel image acquisition and reconstruction
technique such as compressed sensing takes long time due to
the need of a graphics processing unit. In this study, the
reconstruction duration was approximately 50 s without
using a graphics processing unit. Indeed, this would not only
boost the clinical workflow but also lift any restrictions on
hardware. Another study of the DL Recon also showed fast
reconstruction speed, it was an advantage of DL Recon.14

This study has some limitations. First, the sample size was
relatively small and only healthy individuals were included in
this preliminary study. Since we used a prototype of DL
Recon, we needed to verify the reliability of DL Recon
images in healthy cases first. Improvement in myocardial
noise, contrast, and qualitative evaluation were confirmed,
but a comparison between normal and abnormal myo-
cardium was not possible in healthy individuals. To reveal
the clinical benefit of DL Recon, further patient studies are
needed. Second, the peak SNR and structure similarity
index were not evaluated in this study.15 These metrics are
often used to determine the noise reduction networks.
However, there was difficulty in our study design to
prepare additional noise images to compared with ground
truth images. Third, the acceleration factor was set to 3.
By incorporating parallel imaging with DL Recon,16 we
could take more accelerate and high-resolution images
with finer image quality in the future.

In conclusion, the DL Recon reduced image noise and
improved contrast and sharpness in the cardiovascular T2-
weighted image. Compared with the conventional method
of intensity filter, the deep learning–based technique proved
superior in improving image quality.
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