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Skull stripping is an initial and critical step in the pipeline of mouse fMRI analysis. Manual
labeling of the brain usually suffers from intra- and inter-rater variability and is highly time-
consuming. Hence, an automatic and efficient skull-stripping method is in high demand
for mouse fMRI studies. In this study, we investigated a 3D U-Net based method for
automatic brain extraction in mouse fMRI studies. Two U-Net models were separately
trained on T2-weighted anatomical images and T2∗-weighted functional images. The
trained models were tested on both interior and exterior datasets. The 3D U-Net models
yielded a higher accuracy in brain extraction from both T2-weighted images (Dice >

0.984, Jaccard index > 0.968 and Hausdorff distance < 7.7) and T2∗-weighted images
(Dice > 0.964, Jaccard index > 0.931 and Hausdorff distance < 3.3), compared with
the two widely used mouse skull-stripping methods (RATS and SHERM). The resting-
state fMRI results using automatic segmentation with the 3D U-Net models are highly
consistent with those obtained by manual segmentation for both the seed-based and
group independent component analysis. These results demonstrate that the 3D U-Net
based method can replace manual brain extraction in mouse fMRI analysis.

Keywords: skull stripping, deep learning, 3D U-Net, mouse, fMRI

INTRODUCTION

Functional magnetic resonance imaging (fMRI) (D’Esposito et al., 1998; Lee et al., 2013) has been
widely employed in neuroscience research. The key advantage of mouse fMRI (Jonckers et al., 2011;
Mechling et al., 2014; Wehrl et al., 2014; Perez-Cervera et al., 2018) is that it can be combined
with neuromodulation techniques (e.g., optogenetics) and allows manipulation and visualization
of whole-brain neural activity in health and disease, which builds an important link between pre-
clinical and clinical research (Lee et al., 2010; Zerbi et al., 2019; Lake et al., 2020). In mouse
fMRI research, structural and functional images are commonly acquired with T2-weighted (T2w)
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and T2∗-weighted (T2∗w) scanning, respectively. Generally,
functional T2∗w images need to be registered to standard
space using two spatial transformations, which are obtained
by registering functional images to anatomical images and
subsequently registering anatomical images to a standard space.
To exclude the influence of non-brain tissues on image
registration, it is necessary to perform skull stripping on both
structural and functional images. In the practice of mouse
fMRI analysis, skull stripping is usually performed by manually
labeling each MRI volume slice-by-slice, due to the absence of
a reliable automatic segmentation method. This manual brain
extraction is extremely time-consuming, as a large number of
slices need to be processed in the fMRI analysis for each mouse.
In addition, manual segmentation suffers from intra- and inter-
rater variability. Therefore, a fully automatic, rapid, and robust
skull-stripping method for both T2w and T2∗w images is highly
desirable in mouse fMRI studies.

In human research, a number of automatic brain-extraction
methods have been developed and widely used, including
Brain Extraction Tool (BET) (Smith, 2002), Hybrid Watershed
Algorithm (HWA) (Segonne et al., 2004), the Brain Extraction
based on non-local Segmentation Technique (BEaST) (Eskildsen
et al., 2012), and the Locally Linear Representation-based
Classification (LLRC) for brain extraction (Huang et al.,
2014). However, these methods cannot directly be applied for
mouse skull stripping. Compared to human brain MR images,
mouse counterparts have relatively lower tissue contrast and a
narrower space between the brain and skull, which substantially
increases the difficulty of mouse brain segmentation. In addition,
the T2∗w images used for mouse fMRI may suffer from
severe distortion and low spatial resolution, making the skull
stripping of functional images more challenging than that of
structural images.

Several methods have been proposed for rodent brain
extraction. 3D Pulse-Coupled Neural Network (PCNN)-based
skull stripping (Chou et al., 2011) is an unsupervised artificial
3D network approach that iteratively groups adjacent pixels
with similar intensity and performs morphological operation
to obtain the rodent brain mask. Rodent Brain Extraction
Tool (Wood et al., 2013) is adapted from the well-known
BET (Smith, 2002) method with an appropriate shape for the
rodent. Rapid Automatic Tissue Segmentation (RATS) (Oguz
et al., 2014) consists of two stages: grayscale mathematical
morphology and LOGISMOS-based graph segmentation (Yin
et al., 2010), and it incorporates the prior of rodent brain
anatomy in the first stage. SHape descriptor selected Extremal
Regions after Morphologically filtering (SHERM) (Liu et al.,
2020) is an atlas-based method that relies on the fact that the
shape of the rodent brain is highly consistent across individuals.
This method adopts morphological operations to extract a set
of brain mask candidates that match the shape of the brain
template, and then merges them for final skull stripping. One
of the common disadvantages of the above methods is that their
effectiveness was verified only on anatomical images, and cannot
be guaranteed on functional images. Another limitation is that
the performance of these methods is severely affected by the
brain shape, texture, signal to noise ratio, and contrast of images,

and hence they need to be optimized for different MRI images.
Therefore, it is necessary to develop an automatic skull-stripping
method that is effective and has a stable performance on varying
types of MR images.

Deep learning has gained popularity in varying image analysis
tasks, such as organ or lesion segmentation (Guo et al., 2019;
Sun et al., 2019; Li et al., 2020), and disease diagnosis (Suk et al.,
2017; De Fauw et al., 2018), owing to its excellent performance.
As for skull stripping, Kleesiek et al. (2016) first proposed a 3D
convolutional neural network (CNN) method for human brain
MR images. Roy et al. (2018) trained a CNN architecture with
modified Google Inception (Szegedy et al., 2015) using multiple
atlases for both human and rodent brain MR images. With
the development of deep learning, more advanced architectures
of CNN for semantic segmentation have been proposed. As a
popular architecture of deep CNN, U-Net has proved to be
very effective in the task of semantic segmentation even with
a limited amount of annotated data (Ronneberger et al., 2015).
Some U-Net based methods for rodent skull stripping have
been proposed. Thai et al. (2019) utilized 2D U-Net for mouse
skull stripping on diffusion weighted images. Hsu et al. (2020)
trained a 2D U-Net based model using both anatomical and
functional brain images for mouse and rat skull stripping. De
Feo et al. (2021) proposed a multi-task U-Net to accomplish both
skull stripping and brain region segmentation simultaneously on
mouse anatomical images of the mouse brain. These methods
were only evaluated using segmentation accuracy with reference
to the ground truth mask. However, the effect of skull-stripping
algorithm on the final fMRI results remains unexplored, and
whether automatic skull stripping can replace the manual
approach in mouse fMRI analysis remains an open question.

Here, we investigated the feasibility of using 3D U-Net
to extract the mouse brain from T2w anatomical and T2∗
functional images for the fMRI analysis. We separately trained the
U-Net models on anatomical T2w and functional T2∗w images,
considering that anatomical and functional images are acquired
with different sequences and have different contrast, resolution,
and artifacts. The performance of trained 3D U-Net models
is first quantitatively evaluated using conventional accuracy
metrics. We then compared the fMRI results separately obtained
using the manual and automatic segmentation masks with
different methods to investigate the impact of different mouse
skull-stripping methods on fMRI analyses.

MATERIALS AND METHODS

Datasets
This study includes two different in-house datasets. Both of
these two datasets were collected in the fMRI study and were
reanalyzed for the purpose of the present study. All animal
experiments were approved by local Institutional Animal Care
and Use Committee.

The first dataset (D1) was acquired from 84 adult male
C57BL/6 mice (25–30 g) on a Bruker 7.0T MRI scanner
using cryogenic RF surface coils (Bruker, Germany). Both the
anatomical data (T2w) and resting-state fMRI data (T2∗w)
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were acquired for each mouse. The T2w images were acquired
using a fast spin echo (TurboRARE) sequence: field of view
(FOV) = 16 × 16 mm2, matrix = 256 × 256, in-plane
resolution = 0.0625 × 0.0625 mm2, slice number = 16, slice
thickness = 0.5 mm, RARE factor = 8, TR/TE = 2,500 ms/35
ms, number of averages= 2. The resting-state fMRI images were
then acquired using a single-shot gradient-echo-planar-imaging
sequence with 360 repetitions: FOV = 16 × 16 mm2, matrix
size = 64 × 64, in-plane resolution= 0.25 × 0.25 mm2, slice
number = 16, slice thickness = 0.4 mm, flip angle = 54.7◦,
TR/TE= 750 ms/15 ms.

The second dataset (D2) was obtained from the previous task-
state fMRI research (Chen et al., 2020). A total of 27 adult male
C57BL/6 mice (18–30 g) were used in this study (Part 1: 13 for
auditory stimulation; Part 2: 14 for somatosensory stimulation).
The anatomical T2w images and two sets of functional T2∗w
images were acquired for each mouse with the Bruker 9.4T
scanner. The T2w images were acquired using a TurboRARE
sequence: FOV = 16 × 16 mm2, matrix = 256 × 256, in-
plane resolution = 0.0625 × 0.0625 mm2, slice number = 32,
slice thickness = 0.4 mm, RAREfactor = 8, TR/TE = 3,200
ms/33 ms. Two sets of functional T2∗w data, acquired using a
single-shot echo planar imaging (EPI) sequence, consist of a high
spatial resolution one (EPI01) and a high temporal resolution
one (EPI02). Parameters for EPI01 were: FOV = 15 × 10.05
mm2, matrix size = 100 × 67, in-plane resolution = 0.15 ×
0.15 mm2, slice number = 15, slice thickness = 0.4 mm, flip
angle = 60◦, TR/TE = 1,500 ms/15 ms, repetitions = 256.
EPI02 images were acquired with the following parameters:
FOV = 15 × 12 mm2, matrix size 75 × 60, in-plane
resolution = 0.2 × 0.2 mm2, slice number = 10, slice
thickness = 0.4 mm, flip angle = 35◦, TR/TE = 350 ms/15 ms,
repetitions= 1,100.

U-Net
The U-Net architecture is shown in Figure 1. It consists of one
encoding and one decoding path with a skip connection. The skip
connection, which connects the corresponding downsampling
and upsampling stages, allows the model to integrate multi-scale
information and better propagate the gradients for improved
performance. Notably, the anatomical and functional images
were usually acquired slice-by-slice with 2D sequence to span the
whole brain in the fMRI study, resulting in an intra-slice spatial
resolution that is significantly higher than inter-slice spatial
resolution. In such case, the conventional approach is to take the
individual 2D slice as input and predict the corresponding brain
mask with 2D U-Net. However, the 2D model ignores the inter-
slice information. To capture more spatial feature information
while preserve intra-slice information, we took the multi-slice 2D
images as an anisotropic 3D volume and used 3D U-Net model
for training by only maxpooling and upsampling within the slice.

Every stage in both the encoding and decoding path is
composed of two repeated 3 × 3 × 3 convolutions, each of
which is followed by a rectified linear unit (ReLU), and a
2 × 2 slice max-pooling layer (in the encoding path) or a
2 × 2 slice deconvolutional layer (in the decoding path). The
number of downsampling and upsampling is set to three, and
the channel number of first stage is set to 32, being doubled at

each downsampling step and then halved at each upsampling
step. The output layer following the last decoding stage is a
1 × 1 × 1 single channel convolutional layer with a sigmoid
activation function, which transforms the feature representation
to one segmentation map.

Considering that the appearances of T2w images were
significantly different from those of T2∗w images, using the
data from both modalities to train a network may degrade
the segmentation performance. In this study, two models were
trained separately with anatomical T2w images and functional
T2∗w images based on the above 3D U-Net architecture. As
functional T2∗w data include multiple repetitions in each section,
only the first repetition was used in our study. A total of 74 mice
were randomly selected from the first dataset for training, and
the remaining 10 mice were used for testing. All of the second
dataset were also used as test data to verify the effectiveness of
our model across different data sources. In the training phase,
80% of training data from 74 mice were selected randomly to
train the model, and the remaining 20% was used to validate
the model to avoid over-fitting. Furthermore, data augmentation
like flipping and rotating around three axes was also used to
increase the diversity of the training dataset to improve the
generalization of the models.

The 3D U-Net models were implemented using
TensorFlow1.12.0 (Abadi et al., 2016) and trained on a
Nvidia Titan X GPU (12GB). The convolution parameters were
randomly initialized from a normal distribution with mean
value of zero and a standard deviation of 0.001. Adam was
used to optimize the training network (Kingma and Ba, 2014)
with mini-batch size of two, and batch normalization (Ioffe and
Szegedy, 2015) was adopted to accelerate the network training.
The maximal number of training epochs was set to 100. The
learning rate started from 10−4 and decayed by a factor of
0.99 every epoch. The loss function used to train the models
was focal loss (Lin et al., 2020), which is designed to address
class imbalance and can focus training on a sparse set of hard
examples with large errors.

Comparison of Methods
3D U-Net models were compared to two widely used methods
for mouse brain extraction: RATS and SHERM. The parameters
of both methods were carefully tuned to achieve the best
performance for each dataset. For RATS (Oguz et al., 2014), the
brain volume was set to 380 mm3 for both D1 and D2. In D1,
the intensity threshold was set to 2.1 times of average intensity
of each image for the T2w modality and 1.2 times for the T2∗w
modality. In D2, the threshold value was set to 1.3 times for the
T2w and 0.6 times for the T2∗w. For SHERM (Liu et al., 2020), the
range of brain volume was set to 300–550 mm3 for T2w images
of D1 and D2 and T2∗w images of D1, 150–295 mm3 for EPI01
images of D2, and 50–190 mm3 for EPI02 images of D2. Except
for the above parameters, all others were set to the default values
for RATS and SHERM.

Data Pre- and Post-processing
All images were preprocessed before being fed into the models
as follows. First, the N4bias field correction (Tustison et al.,
2010) was applied to correct the intensity inhomogeneity for all
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FIGURE 1 | Architecture of the 3D U-Net for skull stripping. Each blue box indicates a multi-channel feature map, and the number of channels is denoted on top of
the box. Every white box indicates the copied feature map. Color-coded arrows denote the different operations.

images with the Python SimpleITK (Yaniv et al., 2018). Second,
we resampled all data to a resolution of 0.0625 × 0.0625 mm2

for the anatomical T2w images and 0.25 × 0.25 mm2 for the
functional T2∗w images within the slice, leaving the inter-slice
resolution unchanged. Then, all images were zero-padded to
a size of 256 × 256 for the anatomical images and 64 × 64
for the functional images within slices. The padding was not
performed in the inter-slice direction when the slice number was
larger than 20, otherwise the slice number was padded to 20
with edge values of the slice. Subsequently, the histogram of each
image was matched to a target histogram that was the average
of all histograms of the training dataset. Finally, each anisotropic
volume data was normalized in the range [0, 1].

After obtaining the binary mask from the network’s
probability output, the only post-processing step was to
identify the largest connected component and discard all the
others (disconnected ones) for the final brain mask.

Evaluation Methods
Two types of assessment methods were used to evaluate the
effectiveness of the 3D U-Net models. The first type measured
the overlap of the predicted segmentation mask (Mpredicted)
generated by each skull-stripping algorithm and the manual
segmentation mask (Mmanual). The quantify metrics include the
Dice coefficient, the Jaccard index, and the Hausdorff distance.

The Dice coefficient is defined as twice the size of the
intersection of the two masks divided by the sum of their sizes

Dice =
2
∣∣Mmanual

⋂
Mpredicted

∣∣
|Mmanual| +

∣∣Mpredicted
∣∣ (1)

The Jaccard index is defined as the size of the intersection of the
two masks divided by the size of their union:

Jaccard =

∣∣Mmanual
⋂

Mpredicted
∣∣∣∣Mmanual

⋃
Mpredicted

∣∣ (2)

The Hausdorff distance (Huttenlocher et al., 1993) between two
finite point sets is defined as:

Hausdorff = max

{
sup
x∈X

inf
y∈Y
||x− y||,sup

y∈Y
inf
x∈X
||x− y||

}
, (3)

where X and Y denote the boundaries of the predicted
segmentation mask and the manual segmentation mask,
respectively. To exclude possible outliers, the Hausdorff distance
is redefined as the 95th percentile distance instead of the
maximum in our study. We also perform t-test to assess the
significant difference of each metric between our proposed
method and the other two automatic skull-stripping methods
(RATS and SHERM).

The second assessment involves evaluating the impact of the
proposed method and the other two automatic skull-stripping
methods on the final result of the fMRI analysis. The fMRI data
were preprocessed with the common pipeline including slice
timing, realignment, coregistration, normalization and space
smoothing after skull stripping and then analyzed with seed-
based analysis (Chan et al., 2017; Wang et al., 2019) and
group independent component analysis (group ICA) (Mechling
et al., 2014; Zerbi et al., 2015), which are two widely used
methodologies in fMRI studies. Seed-based analysis requires
creating a seed region first and then generates a seed-to-
brain connectivity map by calculating the Pearson’s correlation
coefficient (CC) between the BOLD time course of the seed
and those of all other voxels in the brain. Group ICA is a
data-driven method for the blind source separation of fMRI
data, which is implemented in the group ICA of fMRI toolbox
(GIFT) (Rachakonda et al., 2007). The Pearson’s correlation
coefficient was calculated between the time courses of each pair
of components extracted from the group ICA. Furthermore,
we also perform t-test to assess the significant differences of
Pearson’s correlation coefficients between using manual masks
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and predicted masks by automatic skull-stripping methods
(RATS, SHERM and 3D U-Net model).

RESULTS

Figure 2 illustrates the segmentation results of RATS, SHERM,
and the 3D U-Net model on the T2w images from one mouse
in D1 (Figure 2A) and from two mice of auditory (b) and
somatosensory (c) stimulation in D2. As shown in Figure 2A,
all three methods successfully extracted most brain tissue. By
comparison, the segmentation contours of the 3D U-Net model
and SHERM were smoother and closer to the ground truth than
those of RATS. The brain mask predicted by SHERM and RATS
misaligned with the ground truth at the sharp-angled corner
(blue arrows) while the 3D U-Net model still performed well
in these locations. As shown in Figures 2B,C, the segmentation
performance on T2w images of D2 was degraded for RATS and
SHERM, compared to that of D1. The performance degradation
might be attributed to T2w images of D2 having lower SNR
and image contrast than those of D1. Specifically, the RATS
generated brain masks with a rough boundary (blue arrow),

and the SHERM mistakenly identifies non-brain tissues as brain
tissues (blue arrow). Compared with the two methods, the 3D
U-Net model still performed well on both D1 and D2.

Figure 3 shows the segmentation results for three
representative slices of RATS, SHERM, and the 3D U-Net
model on T2∗w images from one mouse in D1 (Figure 3A)
and from four mice in D2 with high spatial resolution
(EPI01) (Figures 3B,D) and high temporal resolution (EPI02)
(Figures 3C,E). The SHERM mistakenly identified non-brain
tissues as brain tissues for both D1 and D2 (blue arrow), while
the RATS and our proposed method did not. In addition, the
brain boundaries predicted by the RATS were misaligned with
the ground-truth boundaries in the areas with severe distortions
or signal losses (blue arrow), while the 3D U-Net model still had
an accurate alignment on these locations.

Tables 1, 2 show the quantitative assessment of RATS,
SHERM, and 3D U-Net models for T2w images and T2∗w images,
respectively. The 3D U-Net models yielded highest mean values
of the Dice and Jaccard index, and lowest mean values of the
Hausdorff distance in both T2w and T2∗w images. The values
of Dice coefficient, the Jaccard index, and the Hausdorff distance
of the proposed method exhibited statistical difference to those

FIGURE 2 | Example segmentation comparison for T2w images from one mouse in D1 (A) and from two mice with auditory (B) and somatosensory (C) stimulation
in D2. Red lines show the contours of ground truth; yellow lines show automatically computed brain masks by RATS, SHERM, and the 3D U-Net model. Blue arrows
point to the rough boundary, where the 3D U-Net model performed better than RATS and SHERM.
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FIGURE 3 | Example segmentations comparison for T2*w images from one mouse in D1 (A) and from two mice with auditory stimulation (B,C) and two mice with
somatosensory stimulation (D,E) in D2; (B,D) represent EPI01, and (C,E) represent EPI02. Red lines show the contours of ground truth; yellow lines show
automatically computed brain masks by RATS, SHERM, and 3D U-Net model. Blue arrows point to the rough boundary, where 3D U-Net models performed better
than RATS and SHERM.

of RATS and SHERM in both T2w and T2∗w images, except for
Dice and Jaccard index of D2_PART1_EPI01, D2_PART1_EPI02
and.D2_PART2_EPI02. The above quantitative results indicate
that the 3D U-Net models exhibit a high segmentation accuracy
and stability. The violin plots of Dice of T2- and T2∗w images are
shown in Supplementary Figure 1.

Figure 4 shows the results of seed-based analysis from one
mouse in the test data of D1 with the manual brain extraction
and automatic skull stripping by RATs, SHERM, and 3D U-Net

models. The seeds (2 × 2 voxels) were positioned in the dorsal
striatum (dStr) and somatosensory barrel field cortex (S1BF).
The error maps between the CC maps using manual brain
extraction and the ones using automatic segmentation methods
were attached below each corresponding CC map. It is shown that
the CC maps with our model have less error compared to those
with RATS and SHERM. We also presented the scatter plots,
where the horizontal axis represents the values of CC maps with
predicted masks by automatic skull stripping, and the vertical axis
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TABLE 1 | Mean and standard deviation of Dice, Jaccard index, and Hausdorff distance evaluating the RATS, SHERM, and 3D U-Net model for T2w images in different
datasets.

Dataset Method Dice Jaccard index Hausdoff distance

D1 RATS 0.9377 ± 0.0036*** 0.8826 ± 0.0064*** 8.97 ± 0.99***

Sherm 0.9767 ± 0.0028*** 0.9545 ± 0.0054*** 6.02 ± 1.32***

Proposed 0.9898 ± 0.0013 0.9800 ± 0.0025 3.53 ± 0.86

D2_PART1(auditory) RATS 0.9404 ± 0.0038*** 0.8875 ± 0.0068*** 8.77 ± 1.61***

Sherm 0.9686 ± 0.0079*** 0.9392 ± 0.0147*** 20.28 ± 8.55***

Proposed 0.9842 ± 0.0014 0.9690 ± 0.0027 6.04 ± 1.08

D2_PART2(somatosensory) RATS 0.9442 ± 0.0049*** 0.8943 ± 0.0087*** 9.69 ± 1.61***

Sherm 0.9735 ± 0.0048*** 0.9484 ± 0.0091*** 16.17 ± 6.04***

Proposed 0.9845 ± 0.0023 0.9696 ± 0.0044 6.95 ± 1.96

Bold values indicate the best results.
The asterisk (*) denotes a statistical significance when compared to the proposed method. ***p < 0.001.

TABLE 2 | Mean and standard deviation of Dice, Jaccard index, and Hausdorff distance evaluating the RATS, SHERM, and 3D U-Net model for T2*w images in
different datasets.

Dataset Method Dice Jaccard index Hausdoff distance

D1 RATS 0.9467 ± 0.0028*** 0.8989 ± 0.0051*** 2.98 ± 0.48***

SHERM 0.9070 ± 0.0125*** 0.8301 ± 0.0211*** 5.17 ± 1.82***

Proposed 0.9756 ± 0.0038 0.9523 ± 0.0071 1.88 ± 0.42

D2_PART1_EPI01(auditory) RATS 0.9504 ± 0.0031*** 0.9057 ± 0.0056*** 4.49 ± 0.78***

SHERM 0.9607 ± 0.0173 0.9249 ± 0.0312 4.77 ± 1.57**

Proposed 0.9644 ± 0.0044 0.9313 ± 0.0083 2.95 ± 0.56

D2_PART1_EPI02(auditory) RATS 0.9453 ± 0.0206*** 0.8969 ± 0.0353*** 3.56 ± 1.54**

SHERM 0.9641 ± 0.0086 0.9308 ± 0.0157 3.24 ± 1.05*

Proposed 0.9663 ± 0.0078 0.9350 ± 0.0144 2.57 ± 0.94

D2_PART2_EPI01(somatosensory) RATS 0.9484 ± 0.0064*** 0.9019 ± 0.0116*** 5.52 ± 1.06***

SHERM 0.9608 ± 0.0111* 0.9247 ± 0.0205* 6.73 ± 2.51***

Proposed 0.9694 ± 0.0037 0.9406 ± 0.0070 3.30 ± 0.59

D2_PART2_EPI02 RATS 0.9516 ± 0.0076*** 0.9077 ± 0.0139*** 3.74 ± 0.75***

SHERM 0.9605 ± 0.0114 0.9242 ± 0.0211 3.81 ± 1.40**

Proposed 0.9650 ± 0.0068 0.9326 ± 0.0126 2.83 ± 0.75

Bold values indicate the best results.
The asterisk (*) denotes a statistical significance when compared to the proposed method. *p < 0.05, **p < 0.01, ***p < 0.001.

represents the values of CC maps with manual mask. Each point
represents a pair of the two values at the same pixel location.
These plots show that the points with our proposed method are
more concentrated on the diagonal with R2

= 0.984 for dStr and
0.980 for S1BF, while the R2 of RATS is 0.867 for dStr and 0.873
for S1BF, and the R2 of SHERM is 0.949 for dStr and 0.958 for
S1BF. The above results indicate that the values of CC maps using
the proposed method are more close to those using manual brain
extraction when compared to RATS and SHERM.

Figure 5 shows two components of group ICA analysis with
manual brain extraction and automatic skull stripping by RATS,
SHERM, and 3D U-Net models. The presented two components
in Figure 5 correspond to the same regions used in the seed-
based analysis (dStr and S1BF). The component maps with 3D
U-Net models for skull stripping were visually very close to those
with manual brain extraction and have less errors than those
with RATS and SHERM. The points in the scatter plots of the
proposed method were more concentrated on the diagonal with
R2
= 0.986 for dStr and 0.984 for S1BF, while the R2 of RATS

is 0.966 for dStr and 0.964 for S1BF, and the R2 of SHERM is
0.967 for dStr and 0.969 for S1BF. These results indicate that the
component maps of group ICA with automatic skull stripping by
3D U-Net models are highly consistent with those with manual
brain extraction. Group ICA analysis with automatic methods
generated the same 27 independent components as those with
manual brain extraction. The regions corresponding to each
component are shown in Supplementary Table 1.

Figure 6 shows the functional network connectivity (FNC)
correlations between each pair of 27 regions extracted from
group ICA analysis. The first row shows the average FNC matrix
across 10 mice with manual brain extraction and the second row
shows the ones with RATS, SHERM, and our proposed method.
The third row shows the corresponding error maps between
average FNC matrixes with automatic methods and average FNC
matrix with manual brain extraction. These error maps show
that the FNC matrix with our proposed method has less error
than those with RATS and SHERM. The fourth row shows
the p-values of each pair of 27 regions calculated between the
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FIGURE 4 | Exemplary results of seed-based analysis for one mouse in the test data of D1. The selected seed regions were dStr and S1BF. The left column
illustrates the CC maps with manual brain extraction and automatic skull stripping by RATS, SHERM and the proposed method for each dStr (A) and S1BF (B). The
corresponding right column illustrates the scatters, where each point represents a pair of the two values from different CC maps with manual brain extraction and
automatic skull stripping at the same pixel location.

correlations with manual brain extraction and the correlations
with other automatic methods. These matrixes shows that these
FNC matrixes of 10 mice using our proposed method has no
statistical difference with those using manual brain extraction
(p> 0.05 for all pairs of 27 regions). As a comparison, RATS
and SHERM exist some pairs of regions which has statistical
difference with those using manual brain extraction (p< 0.05).
The final row shows the scatter plots where the horizontal axis

represents the FNC correlations with automatic segmentation
masks, and the vertical axis represents the FNC correlations with
the manual mask. The points in the scatter plots of the proposed
method are more concentrated on the diagonal with R2

= 0.980
than those of RATS withR2

= 0.947 and SHERM withR2
= 0.978,

which indicates that the use of the 3D U-Net models for skull
stripping in the fMRI analysis pipeline could produce a more
consistent results of FC analysis to manual brain extraction.
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FIGURE 5 | Example results of ICA analysis for test data of D1. Two selected components extracted by group ICA matching the two regions in seed-based analysis
are shown in (A) (dStr) and (B) (S1BF). The left column illustrates the component maps with manual brain extraction and automatic skull stripping by RATS, SHERM
and the proposed method. The right column illustrates the scatters, where each point represents a pair of the two values from different component maps with
manual brain extraction and automatic skull-stripping methods at the same pixel location.

DISCUSSION

To the best of our knowledge, this is the first study investigating
the feasibility of 3D U-Net for mouse skull stripping from brain

functional (T2∗w) images and the impact of automatic skull
stripping on the final fMRI analysis. Results indicate that the
3D U-Net model performed well on both anatomical (T2w)
and functional (T2∗w) images and achieved state-of-the-art
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FIGURE 6 | Functional connectivity between the independent components extracted from group ICA analysis for the test data of D1. The first and second row
illustrate the average FNC matrix across 10 mice with manual brain extraction, RATS, SHERM and the proposed method. The third row illustrates the error maps
between two FNC maps using manual brain extraction and automatic skull-stripping methods. The fourth row shows the elements with significant difference of the
FNC correlations between manual brain extraction and each automatic skull-stripping method. Scatter plots are shown in the bottom row, where each point
represents a pair of the two different values from two average FNC matrixes with manual brain extraction and automatic skull-stripping methods, at the same pixel
location.

performance in mouse brain extraction. The fMRI results
with automatic brain extraction using 3D U-Net models are
highly consistent with those with manual brain extraction.
Thus, the manual brain extraction in the fMRI pre-processing

pipeline can be replaced by the proposed automatic skull-
stripping method.

The 3D U-Net models were tested on not only interior
but also exterior datasets. Notably, the exterior datasets were
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acquired with different acquisition parameters on a scanner
with different field strength from another MRI center. The
results show that 3D U-Net models had high segmentation
accuracy that is comparable between interior and exterior
datasets. This demonstrates that the developed method has high
reliability and excellent generalization ability. The 3D U-Net
models also outperformed two widely used brain extractions
for rodent (SHERM and RATS). SHERM tends to mistakenly
identifies non-brain tissues as brain tissues in both T2- and
T2∗w images (Figures 2, 3) and has higher mean values and
standard deviation of Hausdoff distance than RATS and our
proposed method. Although RATS has stable performance across
different datasets and modalities, its segmentation accuracy (Dice
< 0.945 in T2w images and Dice < 0.952 in T2∗w images)
is consistently lower than the segmentation accuracy of our
method (Dice > 0.984 in T2w images and Dice > 0.964 in
T2∗w images).

There are several related reports on using U-Net for mouse
skull stripping (Thai et al., 2019; Hsu et al., 2020; De Feo et al.,
2021). Compared with the model adopted by Hsu et al. (2020),
the segmentation accuracy of our models is relatively higher in
both T2w and T2∗w images. The first reason is that we used 3D
U-Net for mouse skull stripping, while Hsu et al., 2020 used 2D
U-Net. The second reason is that we trained the U-Net models
separately for T2- and T2∗w images. The performance of our 3D
U-Net model is comparable to that of the 3D model adopted by
De Feo et al. (2021) on T2w anatomical images. We also applied
the 3D U-Net for brain extraction from T2∗w functional images.
The multi-task U-Net developed by De Feo et al. (2021) can
hardly be applied to functional images, because it is difficult to
delineate different brain regions in functional images due to their
low spatial resolution, contrast, signal-to-noise ratio, and severe
distortion.

It is essential to guarantee that automatic skull-stripping
method does not alter fMRI analysis results. Thus, we not
only evaluated the segmentation accuracy, but also investigated
the effect of automatic segmentation on fMRI analysis results.
The fMRI analysis results with automatic skull stripping by 3D
U-Net models are highly consistent with those with manual
skull stripping. Especially, there is no statistical difference of
FNC correlations for each pair of regions between manual
brain extraction and the proposed method. These findings
demonstrate that the 3D U-Net based method can replace
manual skull stripping and facilitate the establishment of the
automated fMRI analysis pipeline for the mouse model. The
statistical difference of FNC correlations in some pairs of
regions have been found between manual brain extraction
and RATS or SHERM, which indicates that less accurate
mouse skull stripping will make the fMRI results deviate from
true results.

With respect to the computational cost, the 3D U-Net based
method proves to be time efficient. The computation time of the
3D U-Net method was approximately 3 s for a T2w volume data
with a size of 256 × 256 × 20, and 0.5 s for T2∗w volume data
with a size of 64 × 64 × 20. In comparison, the computation
time of SHERM is 780 s and 3 s for T2w and T2∗w images,
respectively; the computation time of RATS is 10 s for T2w images

and 3 s for T2∗w images. All test procedures were run on a server
with a Linux 4.15.0 system, an Intel(R) Xeon(R) E5-2667 8-core
CPU, and 256 GB RAM.

There are two limitations in our current work. First, the
segmentation accuracy of the developed 3D U-Net model
on functional images is still relatively lower than that on
anatomical images, because of the poor image quality of the
functional images. Utilizing the cross-modality information
between anatomical and functional images may further improve
the accuracy of skull stripping on functional images. Second,
the developed 3D U-Net model was only trained and validated
on adult C57BL/6 mice, and cannot be directly applied to brain
MR images from different mouse types and ages. To address
this problem, the model need to be retrained by including
more manually labeled data from mice with varying types and
ages. Labeling data is time-consuming and labor-intensive, and
another potential approach to reduce the amount of labeled data
is to utilize transfer learning (Long et al., 2015; Yu et al., 2019;
Zhu et al., 2021).

CONCLUSION

We investigated an automatic skull-stripping method based on
3D U-Net for mouse fMRI analysis. The 3D U-Net based method
achieves state-of-the-art performance on both T2w and T2∗w
images in terms of the segmentation accuracy. Highly consistent
results between mouse fMRI analysis using manual and the
proposed automatic method demonstrates that the 3D U-Net
model has a great potential to replace manual labeling in the
mouse fMRI analysis pipeline. Hence, skull stripping by the 3D
U-Net model will facilitate the establishment of an automatic
pipeline of mouse fMRI data processing.
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