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Abstract: Plants are sessile in nature and they perceive and react to environmental stresses such as
abiotic and biotic factors. These induce a change in the cellular homeostasis of reactive oxygen species
(ROS). ROS are known to react with cellular components, including DNA, lipids, and proteins, and
to interfere with hormone signaling via several post-translational modifications (PTMs). Protein
carbonylation (PC) is a non-enzymatic and irreversible PTM induced by ROS. The non-enzymatic
feature of the carbonylation reaction has slowed the efforts to identify functions regulated by PC in
plants. Yet, in prokaryotic and animal cells, studies have shown the relevance of protein carbonylation
as a signal transduction mechanism in physiological processes including hydrogen peroxide sensing,
cell proliferation and survival, ferroptosis, and antioxidant response. In this review, we provide
a detailed update on the most recent findings pertaining to the role of PC and its implications in
various physiological processes in plants. By leveraging the progress made in bacteria and animals,
we highlight the main challenges in studying the impacts of carbonylation on protein functions
in vivo and the knowledge gap in plants. Inspired by the success stories in animal sciences, we then
suggest a few approaches that could be undertaken to overcome these challenges in plant research.
Overall, this review describes the state of protein carbonylation research in plants and proposes new
research avenues on the link between protein carbonylation and plant redox biology.

Keywords: protein carbonylation; signal transduction; reactive oxygen species; redox biology;
proteasome-mediated degradation; proteome remodeling

1. Introduction

Plants are sessile in nature and they perceive and react to the abiotic and biotic factors
prevailing in their growth environment. Mechanistically, most environmental factors, such
as high or low temperature, high light, drought, UV/X-ray irradiation, soil salinity, and
nutrient deficiencies, induce a change in the cellular homeostasis of reactive oxygen species
(ROS). The most reactive ROS include hydrogen peroxide (H2O2), the superoxide radical
anion (O2

•−), singlet oxygen (1O2), and the hydroxyl radical (HO•). ROS have different,
short half-lives and they are endogenously produced during aerobic metabolism in plants.
However, under stressful conditions, plants generate an enormous amount of ROS in
their chloroplasts, peroxisomes, mitochondria and apoplasts. Although the enzymes that
generate or process the ROS are well-known and found in nearly all taxa, how ROS encode
the message from the environment is still elusive in plants. High intracellular levels of ROS
are known to trigger the oxidation of diverse cellular components, including lipids, DNA,
and proteins, and to contribute to cell and organismal ageing and death. Research findings
from the last two decades have also shown that ROS act as signal molecules that control
the expression of several plant genes involved in growth and development [1]. So far, well-
known ROS signaling mechanisms in plants involve the direct oxidation of key cysteine
residues in target proteins. ROS-mediated modification of proteins occurs through various
post-translational modifications (PTMs), including the formation of intra- or intermolecular
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disulphide bonds between two cysteine residues (S-sulfhydration, glutathionylation), or
one cysteine and nitric oxide or hydrogen sulfide (S-nitrosylation, persulfidation), and the
oxidation reaction of H2O2 with the cysteine thiolate anion, leading to the formation of
cysteine sulfenic acid (−SOH), sulfinic acid (−SO2H), and sulfonic acid (−SO3H) [2–4].
These modifications may activate or deactivate the target proteins or lead to their release
from an interacting protein partner. ROS have also appeared to achieve their biological
functions through the carbonylation of certain proteins [2]. In this case, ROS were shown
to introduce carbonyl groups into the side chains of Lys, Pro, and Thr via the Fenton
reaction or prompt the peroxidation of membrane lipids, which generate α,β-unsaturated
aldehydes. These lipid-derived aldehydes then form carbonyl adducts on the side chains
of Cys, His, and Lys in proteins in a non-enzymatic process [5]. Carbonylated proteins
have been found at all the stages of the plant life cycle. In comparison to the animal models
and to other ROS-mediated PTMs, little is known about their role in the regulation of gene
expression and during plant growth and development [5,6]. Exogenous application of α,β-
unsaturated aldehydes was found to trigger the expression of several genes implicated in
growth and defense response in humans, animal models, and plants [7–10]; furthermore, a
few studies have pointed to the role of protein carbonylation in diverse plant physiological
processes [11–14]. Many proteins were carbonylated in Arabidopsis thaliana seeds during
germination but these seeds successfully grew into highly vigorous seedlings and young
plants, thus indicating a role for protein carbonylation in seed dormancy release and ger-
mination [11]. Like protein ubiquitinylation, carbonylation triggers proteasome-mediated
degradation of proteins [15]. However, unlike protein ubiquitinylation or phosphorylation,
protein carbonylation cannot be undone. Although recent genetic studies pointed to the
transduction of ROS and phytohormone signals by protein carbonylation [16–19], it is
still unclear how cells would control protein carbonylation in time and space similarly
to ubiquitinylation or phosphorylation. The non-enzymatic feature of the carbonylation
reaction and the fact that various endogenous lipid peroxidation-derived molecules can
form adducts on proteins (see below) have considerably slowed the efforts to identify the
functions regulated by protein carbonylation in plants.

In this review, we first describe the most common types of stress-derived ROS, the sites
of their production in the cell, and the various PTMs that they trigger. Second, we focus on
ROS-mediated protein carbonylation and the biological effects of this in selected prokary-
otes and eukaryotes species. We discuss key aspects that need more attention in future
investigations in plant species. These include the potential role of protein carbonylation
in seed development and germination, protein quality control and proteome homeostasis,
the crosstalk with other ROS-mediated protein modifications, hormone signaling, and the
specificity of carbonylation targets. Finally, one important challenge in protein carbony-
lation research is the detection of carbonylated proteins by mass spectrometry. Based on
examples of successful characterization of carbonyl adducts and their biological effects in
bacteria and human cells, we present a few strategies that could also be implemented to
bring progress in the field of plant research.

2. ROS: Diversity, Reactivity, and Sites of Production in Plants

ROS are partially reduced or excited forms of atmospheric oxygen with various
levels of reactivity (Figure 1A,B) [20]. They are inevitable products of aerobic metabolism
generated in the mitochondria of mammalian cells and non-photosynthesizing plant cells
(Figure 1A). However, the main sources of ROS in photosynthesizing plant cells are the
peroxisomes and the chloroplasts [21]. Diverse species of ROS can be derived from the
transfer of sufficient energy capable of reversing the spin on unpaired electrons and thus
producing 1O2 or during a sequential single-electron reduction pathway of molecular
oxygen to produce O2

•−, H2O2 or HO• [22]. Under stress conditions, such as pathogen
attacks, diseases, toxicity, and nutrient deficiencies, ROS production generally plummets
and leads to oxidative modifications of macromolecules such as carbohydrates, unsaturated
fatty acids, DNA, and proteins. Despite their potential toxicity, ROS also regulate several
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biological processes [21,23–25]. The most reactive and studied ROS in the biological systems
include O2

•−, H2O2, HO•, and 1O2.

Figure 1. Environmental stress and ROS production in plants. (A) ROS are produced in the chloroplasts, mitochondria,
peroxisomes, plasma membrane, cell walls, and apoplasts under normal growth conditions. However, environmental
stresses exacerbate their production and may lead to oxidative stress. (B) The Fenton reaction and Haber–Weiss reaction.
ROS are partially reduced or activated forms of molecular oxygen. About 1–5% of molecular oxygen consumed by plants
leads to ROS generation. The different forms of ROS include superoxide radicals, singlet oxygen, hydrogen peroxide,
perhydroxyl, and hydroxyl radicals.

2.1. ROS Diversity and Reactivity

2.1.1. Singlet Oxygen (1O2)

Singlet oxygen is non-radical molecular oxygen that possesses one unpaired electron
in the π* orbital as a result of rapid decay of the free radical oxygen state with two unpaired
electron states (non-radical) [22]. 1O2 is a short-lived molecule with a half-life of about
1–4 µs and can diffuse within a small diffusion range of 30 nm. It can potentially cause
damage to lipids and proteins and induce cell death [26,27]. In plants, singlet oxygen is
largely produced in the photosystem II (PS II) reaction center by photodynamic activation
of the ground state oxygen that reacts with triplet chlorophyll [28]. Chloroplasts are thus
the main site for 1O2 production and several carotenoid-dependent quenching systems
can minimize the production of singlet oxygen, which dissipates as heat from excess light
energy [29]. When carotenoid-dependent quenching becomes insufficient, excess 1O2
further triggers lipid peroxidation, which is essentially the main cause of stress-induced
damage [27]. Despite its toxicity, singlet oxygen signaling is one of the important regulatory
mechanisms of cell fate and gene expression [30,31].

2.1.2. Superoxide Anion (O2
•−)

There are various means through which superoxides are formed in a living system.
The superoxide anion (O2

•−) can be generated as a byproduct of aerobic metabolism
during the sequential single-electron reduction pathway of molecular oxygen. Enzymes
like xanthine oxidase and NAD(P)H oxidase carry out an electron reduction of molecular
oxygen to form superoxide [32]. Since O2

•− has moderate reactivity and a short half-life
(1–4 µs) [33,34], it is less aggressive than singlet oxygen and can further be reduced to H2O2
through singlet valency reduction or dismutation by superoxide dismutases (SODs).

2.1.3. Hydrogen Peroxide (H2O2)

H2O2 lives longer than superoxide and has a half-life of about 1000 µs or more [35].
In plants, H2O2 is known to be a double-edged sword. At low cellular concentrations, it
controls several vital physiological processes, whereas, at a high concentrations, it becomes
harmful by causing oxidative damages to DNA and proteins [36].
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2.1.4. Hydroxyl Radical (HO•)

The hydroxyl radical is small, water-soluble, highly mobile, and well-known as the
most reactive species of activated oxygen. It has a single unpaired electron with the shortest
half-life of 1 µs [37,38] and, as a consequence, it is quick to irreversibly modify DNA,
RNA, lipids, and proteins [39–41]. Hydroxyl radicals are formed from the non-enzymatic
reaction of H2O2 in a process called the Fenton reaction (Figure 1A), where reduced metals,
including Cu2+ or Fe2+, provide the electron to reduce H2O2 to the hydroxyl radical. There
are no efficient enzymatic systems to scavenge toxic HO• and excessive accumulation
promotes programmed cell death [42]. The steady-state level of HO• in the cell likely
depends on the availability of H2O2 and metal ions and the rate of occurrence of the Fenton
reaction and the Haber–Weiss reaction. Iron plays a significant role in the Fenton reaction
in biological systems and is mostly present in its oxidized form (Fe3+). Only a small fraction
of the iron pool exists in the oxidized form (Fe2+) and participates in the Fenton reaction.
The Fenton reaction may be further enhanced by the Haber–Weiss reaction which generates
Fe2+ from Fe3+ stored in ferritins [43] (Figure 1B).

2.2. ROS Production Sites in Plants

Studies have shown that an estimated 1–2% of oxygen consumption in plants results in
the synthesis of ROS in different subcellular organelles, including mitochondria [44], chloro-
plasts [45], peroxisomes [46], apoplasts, and other possible compartments containing pro-
teins and/or molecules with high redox potential as ROS synthetic sites (Figure 1A) [47,48].

2.2.1. Chloroplasts

Chloroplasts are the major sites for ROS production in plants under illumination [45].
During photosynthesis, O2

•− and H2O2 are produced via the PS I [49] and the 1O2 in the
PS II [50]. Singlet oxygen (1O2) is generated constitutively in illuminated chloroplasts
and its synthesis is importantly enhanced under high or excess light or heat and short
or suboptimal temperature stress conditions, which also limit CO2 fixation [51,52]. This
results in the overloading of the electron transport chain (ETC), which eventually causes
the leakage of an electron from ferredoxin to molecular oxygen to form superoxides (O2

•−)
and damaging the Fe-S cluster in the PSI [53]. This process is known as PSI photo-inhibition
or the Mehler reaction. Superoxide dismutases present in the chloroplast convert O2

•−

to H2O2 while ascorbate peroxidase and glutathione (GSH) peroxidase scavenge H2O2
back to water [54,55]. The Mehler reaction is thus integrated into the so-called water–water
cycle, which may further enhance O2

•− production to H2O2 production.

2.2.2. Mitochondria

In plants, ROS generation also takes place in the respiratory chain of the mitochondria
at complex I (NADH dehydrogenase) and complex III (cytochrome b/c1 complex), which
harbor electrons with adequate energy to reduce molecular oxygen to O2

•− [44,56]. O2
•−

is produced from the single electron leak from complex I and III onto O2 in the ubiquinone.
O2
•− is then scavenged by matrix-localized manganese superoxide dismutase to H2O2 and

O2 [57]. About 1–5% of the oxygen used in the mitochondria results in the production of
H2O2 that may subsequently be converted to HO• via the Fenton reaction [58]. Under the
normal respiratory conditions, ROS produced by chloroplasts and peroxisomes are more
important than those produced in mitochondria. However, under stress conditions, ROS
production in mitochondria is significantly enhanced and may lead to the activation of
programmed cell death [59].

2.2.3. Peroxisomes

Peroxisomes represent an additional site for O2
•− and H2O2 production apart from

the chloroplasts and mitochondria. O2
•− are generated in the peroxisome matrix during

the oxidation of xanthine to hypoxanthine and uric acid by xanthine oxidase or in the
peroxisomal membrane during fatty acid beta-oxidation [46] and re-oxidation of NADH
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to yield NAD+ [60]. The concentration of H2O2 is two times higher in the peroxisomes
than in chloroplasts and 50 times higher than in the mitochondria, partly due to photores-
piration [61]. H2O2 is primarily produced in the peroxisomes by glycolate oxidase that
catalyzes the oxidation of glycolate to glyoxylate in green tissues with the use of O2 as an
electron donor [62,63]. Fatty acid β-oxidation, dismutation of O2

•− radicals, and enzymatic
reactions catalyzed by flavin oxidases are other sources of H2O2 in the peroxisomes [64].

2.2.4. Apoplasts (Plasma Membrane and the Cell Wall)

ROS are also produced in the apoplast, the compartment between the plasma mem-
brane and the cell wall. The plasma membrane-localized NADPH oxidases are a major
source of O2

•−. Plant NADPH oxidases are homologs of mammalian respiratory burst
oxidase homologs (RBOHs), and they possess an apoplastic oxidase domain that produces
O2
•− in the apoplast [65]. O2

•− generated in the apoplast is subsequently converted to
H2O2 by plasma membrane-localized superoxide dismutase [66]. Besides NADPH oxidase
apoplasts, ROS are also produced through some enzymes present in the plant cell wall,
including class III peroxidases, amine oxidases, lipoxygenases, and quinone reductase [67].

3. Common ROS-Mediated Post-Translational Modification (PTMs)

Despite their potential toxicity, ROS fulfill numerous biological functions in plants,
mostly by modifying lipids and proteins. In this section, we describe the most common
ROS-mediated post-translational modifications and protein carbonylation.

ROS can introduce covalent bonds into proteins by directly oxidizing amino acids
(Cys residues) or create carbonyl groups in the side chains of certain amino acids [68–70].
The latter is termed protein carbonylation (Figure 2). Direct modification of proteins by ROS
include nitrosylation or nitration of tyrosine residues, carbonylation of specific amino acids,
formation of disulphide crosslinks, glycoxidation adducts, and glutathionylation, whereas
indirect modification of a protein by ROS is prominently due to the conjugation of proteins
to the breakdown products of lipid peroxidation [71] (Figure 2A). The accumulation of ROS
in biological systems can result in either of these modifications, and they can be reversible
or irreversible, interconnected, and influence each other [72] (Figure 2B).

Figure 2. Overview of ROS-mediated post-translational modifications. (A) Most common ROS-mediated PTMs. The
thiol groups of Cys and Met are prominently modified by ROS. The modifications include nitrosylation, cysteinylation,
glutathionylation, methionine oxidation, persulfidation, and protein carbonylation. (B) Framework model of ROS-mediated
PTMs in cell signaling in response to environmental stress in plants.
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3.1. Methionine Oxidation

Methionine oxidation is a reversible modification that occurs when the sulfur atom of
methionine is oxidized to sulfoxide. Small heat shock proteins found in the chloroplasts
are inactivated by sulfoxidation of methionine but reactivated by its reduction. The re-
duction is catalyzed by peptide methionine sulfoxide reductase using thioredoxin as a
reductant [73]. Reports have suggested that methionine residues found in some peripherals
act as endogenous antioxidants, protecting the active site and other sensitive domains in
the protein while quenching ROS [74]. Reversible methionine sulfoxidation is deemed
an important regulatory mechanism [75]. Further oxidation of methionine to sulfonic is
irreversible and damaging to proteins [76].

3.2. Cysteinylation (Cysteine Oxidation) and Glutathionylation

Cysteine is readily oxidized by 1O2 and HO• to form a disulfide bond (R1-S-S-R2,
cystine) and this represents an important regulatory mechanism of the metabolism [77].
Initial oxidation of Cys by H2O2 typically leads to sulfenic acid, which can then form a
mixed disulfide bond with GSH or a disulfide bond with other thiols. Further oxidation
of sulfenic acid results in the formation of sulfinic acid and sulfonic acid. The sulfinic
acid group may be reduced by a sulfiredoxin enzyme in mitochondria or peroxiredox-
ins in the chloroplast [78]. Glutathionylation involves the transfer of GSH, a tripeptide
(Glu-Cys-Gly) available in plant cells in millimolar concentrations, to thiol groups in pro-
teins. GSH can also form a mixed disulphide bridge with an accessible free thiol on a
protein, a reaction termed protein S-glutathionylation. Several plant enzymes, typically
proteins in the mitochondria, chloroplast, and the cytosol, have been proved to undergo
glutathionylation [79].

3.3. Nitrosylation

This modification involves the covalent attachment of a nitrosyl radical (NO•) to a
cysteine thiol group. NO is a lipophilic gas produced during abiotic stress and is recognized
as an important regulator and signaling molecule in plants [80–83]. The thiol group in
proteins (and glutathione) interacts with NO• derivatives and results in a range of products,
including disulfides and sulfenic, sulfinic, and sulfonic acids, as well as S-nitrosothiols [84].
The most well-known NO•− derivative is peroxynitrite (ONOO−), which is a product of
the condensation reaction of NO• with O2

•−. However, NO• does not cause S-nitrosylation
by itself but does so through the involvement of S-nitrosothiols [85].

3.4. Persulfidation

Persulfidation has been proposed to derive from the interaction of H2S with cys-
teine sulfenic acid formed by H2O2 and to prevent further oxidation to sulfinic acids
(RSO3H) [86]. Persulfides can then return to thiols through the action of the thioredoxin
system. Recently, Aroca et al. proposed that signaling by H2S occurs by protein persulfi-
dation through the covalent addition of thiol groups to form persulfides (R-SSHs) [87,88].
Their studies revealed that protein persulfidation can be reversed by the reducing agent
dithiothreitol in vitro and can thus serve to modulate protein activities and enzymes in-
volved in the maintenance of ROS homeostasis and redox balance [88]. More recently, Shen
et al. reported on how ABA stimulates the persulfidation of L-cysteine desulfhydrase 1
(DES), an endogenous H2S-metabolizing enzyme. In their findings, DES was activated by
ABA through auto-persulfidation at Cys44 and Cys205, which led to the transient over-
production of H2S in an Arabidopsis guard cell. A sustainable level of H2S accumulation
triggered persulfidation of NADPH oxidase respiratory burst oxidase homolog protein
D (RBOHD) at Cys825 and Cys892 to potentiate ROS generation. Consequently, these pro-
cesses initiate a negative feedback loop that helps to fine-tune guard-cell redox homeostasis
and ABA signaling [89].
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4. Details of Protein Carbonylation
4.1. Direct and Indirect Reactions of Protein Carbonylation

Protein carbonylation is an irreversible PTM that involves the introduction of aldehyde
and ketone carbonyl groups into the side chains of certain amino acids [90]. It represents
the most frequent and irreversible chemical modification that affects protein [91]. The chem-
istry of protein carbonylation is complex due to the different biomolecules that are involved,
including lipid and sugar derivatives. Wong et al. proposed two major types of protein
carbonylation, primary protein carbonylation and secondary protein carbonylation, to
reflect how the modification occurs [92] (Figure 3). Primary protein carbonylation involves
metal-catalyzed oxidation (MCO) of the side chains of Lys, Pro, and Thr residues, leading
to aldehyde or ketone formation [93,94]. Primary protein carbonylation may also occur,
although to a much lesser extent, through α-amidation pathways or glutamyl side chains,
which leads to the synthesis of peptides with the α-keto derivative at the N-terminal [13,95].
Metal-catalyzed oxidation is one common mechanism of protein carbonylation in a bio-
logical cell [96–98]. It is triggered by HO• derived from the Fenton reaction between Fe2+

(or divalent metal ions) and H2O2 in any part of the cell [99] (Figure 1B). The hydroxyl
radical reacts with side chains of Lys, Pro, Arg, Thr, and sometimes Trp to cleave them and
form carbonyl groups. This results in the formation of aminoadipic semialdehyde from
Lys, glutamic semialdehyde from Pro and Arg, and 2-amino-3-ketobutyric acid from Thr,
respectively [100].

Figure 3. The reactions of protein carbonylation and the fates of carbonylated proteins. Metal-
catalyzed oxidation of the side chains of Arg, Thr, Pro, and Lys and addition of lipid peroxidation-
derived RCS to the side chains of Cys, His, and Lys represent the two types of protein carbonylation
in plants and result in carbonylated proteins. The fates of carbonylated proteins. The carbonylated
proteins may lose their activity, change their initial conformation, or aggregate. They are subsequently
degraded by the 20S proteasome system. The biological relevance of these changes is further
discussed in the text.
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Secondary protein carbonylation involves the addition of reactive carbonyl species
(RCS) to the side chains of Cys, His, and Lys (Figure 3). RCS are electrophilic com-
pounds that are referred to as reactive electrophile species (RES) in the literature. They
are generated by the peroxidation of membrane polyunsaturated fatty acids (PUFAs;
linoleic acid, linolenic acid, and arachidonic acid), particularly in the mitochondria and
chloroplasts [14,30,76]. The RCS belong to different chemical classes, as summarized in
Table 1: α,β-unsaturated aldehydes (4-hydroxynonenal (4-HNE) and acrolein (ACR)),
keto-aldehydes (4-oxo-nonenal), isoketals, dia-aldehydes (malondialdehydes (MDA) and
glyoxal), and cyclopentanones [101]. Protein and nucleic acids are the main targets of RCS
and their interaction with RCS mainly occurs through Michael adduction or Schiff-base
formation [101]. Examples of RES species frequently involved in protein carbonylation
include 2-propenal (acrolein), 4-HNE, and malondialdehydes (MDA) [102–104]. A large
number of carbonylated proteins have been detected and quantified in plants and non-plant
species using different techniques (see below) [92,104–107].

Table 1. Reactive carbonyl species (RCS) frequently implicated in protein carbonylation-mediated gene signaling.

Lipid Peroxide-Derived Reactive
Carbonyl Species Predominant PUFAs Preference of Amino

Acids for Modification
Type of Reaction

with Amino Acids References

4-Hydroxy-(E)-2-nonenal (4-HNE)
Linoleic acid
(LA: 18:2ω-6)

Arachidonic acid (AA: 20:4,ω-6)
Cys >> His > Lys Michael addition [108–113]

Malondialdehyde (MDA) Arachidonic acid (AA: 20:4,ω-6) Lys >> His > Arg Michael addition [7,113,114]

Acrolein Linoleic acid
(LA: 18:2ω-6) Cys >> His > Lys

Michael addition or
Schiff-base
formation

[108,115]

4-Oxo-nonenal (4-ONE)
Linoleic acid
(LA: 18:2ω-6)

Arachidonic acid (AA: 20:4,ω-6)
Lys >> Cys > His > Arg Schiff-base

formation [110,113]

Overall, increased protein carbonylation is associated with an increase in the cellular
ROS levels under stress conditions, making carbonylated proteins a good indicator of
cellular oxidative stress. It is noteworthy that carbonylated proteins are also found in
unstressed cells under optimal growth conditions. This points to the involvement of
protein carbonylation in cell physiological processes required for growth and maintenance.
Proteomic studies have revealed that protein carbonylation is not uniform across the
proteome and some proteins are more sensitive than others to carbonylation [5,108]. The
pattern of protein carbonylation in Arabidopsis thaliana (the flowering plant) differs from
that in non-photosynthetic eukaryotes. Carbonylation of proteins first increases with age
(the same as other species) but declines drastically before the transition from the vegetative
to the reproductive phase and independently of senescence [5]. This contrasts with the
situation in animals, where increased protein carbonyls are observed with ageing. These
observations indicate that protein carbonylation may serve different purposes in plants
and animals.

4.2. The Fates of Carbonylated Proteins

Carbonylation by RCS increases the hydrophobicity of proteins, which often become
partially unfolded. As a consequence, protein carbonylation usually deactivates the pro-
tein function [15]. Studies have shown that carbonylated proteins are degraded by the
proteasome system [15,116,117] (Figure 3). Hence, carbonylated proteins were deemed a
marker for proteolysis. In contrast to ubiquitinylated proteins that are degraded by the
26S proteasome system, the degradation of carbonylated proteins only requires the 20S
proteasome system [118]. It should be noted that the steady-state level of carbonylated
proteins depends not only on their formation but also on their degradation. Therefore,
increased carbonyl levels may also stem from a dysfunctional proteasome system. When
proteins are heavily carbonylated, they tend to accumulate as cytotoxic aggregates due
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to their increased hydrophobicity. Such aggregates are linked to age-related diseases in
humans and to the clogging of the proteasome system [13].

The turnover of the cellular proteome is also mediated by autophagy, and autophagy
mutants displayed delayed growth compared to the wild type [119–121]. Interestingly,
RNAi-AtATG18a transgenic lines of Arabidopsis that were impaired in autophagy were
found to accumulate significant levels of carbonylated proteins compared to the wild
type [122,123]. These findings indicate that autophagy also serves to degrade carbonylated
proteins in plants, but the mechanism that recognizes and directs the carbonylated proteins
to the autophagosome remains to be elucidated. In yeast and mammals, p62 and NBR1
(neighbor of BRCA1) act as cargo receptors to target protein aggregates derived from
extensive ubiquitination in order to achieve degradation by selective autophagy [124].
A hybrid protein of p62 and NBR1 has also been identified, which mediates ubiquitin-
dependent selective autophagy in plants [125,126]. It is still unclear whether protein
carbonylation represents a posttranslational modification sufficient to target proteins to the
autophagosome. If not, the cargo receptor that recognizes carbonylated proteins remains
to be uncovered. This would improve our understanding of the relevance of protein
carbonylation under normal growth conditions.

5. Importance of Protein Carbonylation in Seed After-Ripening and Germination

Fresh seeds of most temperate species are dormant and will not germinate at harvest.
Seed after-ripening refers to the period in which seeds are air-dried and stored. It is
associated with dormancy release and allows synchronized and faster seed germination
later, although seed after-ripening and loss of dormancy have been shown to be two distinct
physiological processes [127,128]. Dormancy release by environmental cues allows seed
germination. Though many proteins were carbonylated in Arabidopsis thaliana seeds during
germination, seeds successfully grew into highly vigorous seedlings and young plants, thus
indicating a role for protein carbonylation in seed dormancy release and germination [11].
Protein carbonylation could be involved in the transitions from seed dormancy to seed
germination and ageing [6]. Parallel to ROS increase, protein carbonylation during seed
storage was shown to alleviate dormancy in sunflower and Arabidopsis [129,130]. Reactive
oxygen species produced by the NADPH oxidase AtrbohB in Arabidopsis during after-
ripening induced protein carbonylation events in the seeds of the Brassicaceae model
species Lepidium sativum and A. thaliana [131]. Consistently, the mutation of the NADPH
oxidase genes AtRbohB and AtRbohD in Arabidopsis reduced protein carbonylation and
increased seed dormancy [131]. Furthermore, natural ageing of seeds or controlled heating
of seeds to mimic natural seed ageing led to abundant carbonylated proteins and complete
loss of germination in rice and Arabidopsis [132]. This suggests a balance between the
beneficial effect of protein carbonylation in breaking seed dormancy and the adverse effect
on seed viability. It remains unclear how such a balance is achieved and what determines
the specificity of protein carbonylation during seed after-ripening and germination.

6. Importance of Protein Carbonylation in Proteome Remodeling under Nutrient
Starvation and Stress Conditions

Protein degradation represents a key cellular process that assures a healthy proteome
and helps recycle amino acids during nutrient starvation or stress. As we know, the level of
carbonylated proteins rises in stressed cells. Prolonged abiotic stress often results in nutrient
starvation, the stress in plants causing a significant overlap between stress-induced genes
and sugar starvation-responsive genes [133,134]. Extended dark-induced sucrose starvation
is associated with an increase of genes involved in proteolysis [135–138]. The increased level
of carbonylated proteins under stress, therefore, coincides with a rise of proteolysis, which
provides cells with amino acids for respiration. This suggests that protein carbonylation
could be relevant to proteolysis associated with cell growth and maintenance, particularly
under stress. Indeed, nutrient starvation resulted in increased protein carbonylation
in a sub-population of an E. coli culture [139,140]. E. coli cells deficient in proteolysis
accumulated a high level of carbonylated proteins, indicating that carbonylated proteins
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are targeted for proteolysis [141]. Similarly, serum starvation of two cancer cell lines,
A549 and PC3, was found to increase the levels of carbonylated proteins revealed by a
benzocoumarin hydrazine in vivo labeling probe [142]. Carbon starvation was also found
to increase protein carbonylation and the activity of the 20S proteasome in maize root
tips [143]. Hence, like ubiquitination, protein carbonylation appears as an effective way
of remodeling the cellular proteome, particularly under stress conditions that challenge
energy metabolism. With regard to this, oxidative stress often causes the carbonylation
and deactivation of glycolytic and citric acid cycle enzymes and, accordingly, bacteria and
animal cells respond to oxidative stress with about a 50% decrease in intracellular ATP
levels [144,145]. Under this condition, cells must rely on ATP-independent processes to
counteract stress and recycle oxidized proteins. Low intracellular ATP levels were found to
decrease the 26S proteasome levels but to increase 20S proteasome levels [146]. In contrast
to ubiquitylation-dependent degradation by the 26S proteasome, protein carbonylation
does not require ATP and enzymes. The degradation of carbonylated proteins by the
20S proteasome system constitutes an energy-efficient way to quickly provide amino acid
building blocks for growth [96,147,148].

Protein carbonylation is traditionally deemed damaging to cells, but recent studies
in mammals and bacteria indicate that the oxidation of certain proteins turns them into
chaperones, which direct other proteins to the 20S proteasome system [148]. Several
proteins, including members of the heat shock protein 70 families, were found to turn
into ATP-independent chaperones that refold proteins or direct them to the proteasome
system [148]. The chaperone Hsp70 was shown to be essential for the stabilization of
the 19S particle and the reassembly of the 26S proteasome system [117], whereas low
levels of Hsp90 led to the disassembly of the 26S proteasome and the increase of the 20S
particles [149]. Both the Hsp70 and HSP90 proteins are frequently identified as being
carbonylated in bacteria, animal, and plant species [150]. Their carbonylation results in
the destabilization of the 26S proteasome and increased 20S proteasome particles that
are required for degrading oxidized proteome [118,143]. The 26S proteasome is heavily
dependent on ATP, whereas the 20S is not but becomes particularly essential for the
cells under stress conditions [151]. An impairment of the 26S proteasome system has
been associated with an increase of 20S particle levels in plants [152]. Arabidopsis plants
deficient in the 26S proteasome system showed increased activity of the 20S system and
were more resistant to treatments that promote protein oxidation [152]. An increase in
the 20S proteasome contributed to enhancing oxidative stress tolerance in plants [153].
This antagonistic regulation of the 26S and 20S proteasome across bacteria, animals, and
plants likely assures the maintenance of a healthy proteome under both normal and stress
conditions. Overall, the rise of protein carbonylation might serve to maintain protein
turnover in a context of low ATP and contribute to oxidative stress tolerance. This is
particularly relevant in scenarios of short-term stress where the concomitant expression of
ROS- and RCS-detoxification enzymes quickly help the plant overcome the stress.

7. Protein Carbonylation Serves as a Signal Transduction Mechanism in Bacteria and
Mammalian Cells

Signal transduction is a process that converts one form of a signal into another type
within cells. ROS serve as the second messenger for signal transduction processes; however,
their molecular targets have not been fully identified [76]. Studies in prokaryotes and
humans have demonstrated the involvement of protein carbonylation as an ROS signal
transduction mechanism. To illustrate our point, we have chosen to describe only a few
examples before focusing on current evidence in plants.

7.1. Carbonylation of the Transcription Repressor PerR Facilitates H2O2 Sensing and the
Expression of Oxidative Response Genes in Prokaryotes

Bacteria adapt to an elevated level of ROS by increasing the expression of detoxifying
enzymes and repair proteins. The main ROS detoxification enzymes in bacteria include
catalases, catalase/peroxidases, alkyl hydroperoxide reductase (AhpR), peroxiredoxins,
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superoxide dismutases, and the organic hydroperoxide resistance protein (Ohr) [154–157].
In B. subtilis, iron derepresses oxidative stress genes via PerR, a transcription factor related
to the ferric-uptake repressor (Fur) family of the metalloproteins [158]. PerR was shown to
mediate H2O2- and metal-dependent induction of the genes katA (catalase), ahpCF (alkyl
hydroperoxide reductase), mrgA (nonspecific DNA-binding protein), and hemAXCDBL
(heme biosynthesis operon) [159,160]. The mechanism of H2O2 sensing is thought to be
mediated by a typical protein thiol (redox-active cysteine) [154,161–163]. Indeed, several
transcription factors have been identified in bacteria, yeast, and mammals, which use the
reversible oxidation of cysteine to sense H2O2 [76,124,162]. However, Lee and Helmann
have revealed that H2O2 sensing occurs by metal-catalyzed oxidation of PerR and leads
to the expression of oxidative defense genes (Figure 4A). PerR is a zinc-binding protein
with a regulatory site that coordinates either Fe2+ or Mn2+ metal ions. There are two His
residues present in the transcription factor PerR of B. subtilis, which coordinate with Fe.
Upon exposure of PerR to a low level of H2O2 (<10 µM), one or both His residues become
oxidized, presumably by the hydroxyl radical generated by the Fenton reaction involving
the bound iron [164]. This causes the loss of the DNA binding activity of PerR and the
derepression of the PerR regulon-encoding enzymes katA, ahpCF, mrgA, and hemAXCDBL
(heme biosynthesis operon) [159,160]. Hence, in the presence of iron (Fe2+), PerR mediates
strong induction of the PerR regulon in response to H2O2 (Figure 4A). PerR represents
the major regulator of the peroxide-induced stress response in both Gram-positive and
Gram-negative bacteria and its carbonylation constitutes a widespread mechanism of ROS
and peroxide sensing in the procaryotes [162].

7.2. In Animals: Mammalian Cell

Numerous cases in which protein carbonylation mediates ROS signaling have been
reported in animal cells [165]. Endothelin-1 (ET-1) is a potent vasoconstrictor and a mitogen
of smooth muscle cells of the pulmonary artery [166–168]. ET-1 is activated by receptors
ETA or ETB, which can induce the proliferation of pulmonary artery smooth muscle cells
through the production of ROS [169–171]. In an animal model of pulmonary hypertension,
the expression of endothelin-1 was high and further progression of the disease was blocked
by endothelin-1 receptor antagonists [172,173]. ET-1 induces ROS through NAD(P)H ox-
idase, and antioxidants were found to block endothelin-1-induced proliferation of the
smooth muscle cells in the fetal bovine pulmonary artery [169,170]. The idea that protein
carbonylation might play a role in ET-1 signaling arose is based upon observations that low
concentrations of H2O2 (500 nM) could induce protein carbonylation and that ET-1 trig-
gered protein carbonyl as early as 5–10 min in cultured bovine pulmonary artery smooth
muscle cells [168,174]. When pulmonary artery smooth muscle cells were pre-treated
with ET-1 receptor antagonists, hydrogen peroxide scavengers, or an iron chelator (defer-
oxamine), subsequent treatment with ET-1 was found to promote protein carbonylation
in an ET-1-receptor- and Fenton reaction-dependent manner [168,174]. Annexin A1 was
identified as one prominently carbonylated protein in response to ET-1 using 2D-PAGE
and mass spectrometry. Annexin A1 inhibits cell growth and promotes apoptosis but its
carbonylation and subsequent degradation in response to ET-1 led to cell proliferation [174]
(Figure 4B). These findings demonstrate that metal-catalyzed protein carbonylation could
be promoted in response to ligand–receptor interactions.
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Figure 4. Examples of the implication of protein carbonylation in ROS signaling in prokaryotes and humans. (A) Bacilius
subtilis uses metal-catalyzed oxidation of PerR for H2O2 and peroxides sensing. The transcription factor PerR possesses
two His residues that bind to Fe. Exposure of PerR to a low level of H2O2 is sufficient to trigger one or both His residues’
oxidation, presumably via the Fenton reaction that involves the bound iron. This causes the loss of the DNA binding activity
of PerR and the derepression of the PerR regulon-encoding enzymes, such as the genes katA (catalase), mrgA (nonspecific
DNA-binding protein), hemAXCDBL (heme biosynthesis operon), Fur (iron uptake regulator), and ZosA (zinc-transporting
ATPase), acting to detoxifying peroxides. The induced katA (catalase) removes the hydrogen peroxide to water, whereas
Fur suppresses the iron intake. (B) Mammalian annexin A1 undergoes carbonylation as a signal transduction mechanism
in response to endothelin-1 (ET-1) treatment to promote cell proliferation and apoptosis. ET-1 is known as a potent
vasoconstrictor and a mitogen of pulmonary artery smooth muscle cells. ET-1 activates the proliferation of pulmonary artery
smooth muscle cells through the production of ROS. ROS trigger metal-catalyzed oxidation of annexin A1 in response to
ET-1 treatment. The carbonylation of annexin A1 and its subsequent degradation of promote cell proliferation and survival.
The figures are based on data from the literature [154,157–160,162–164,168–173].

Similarly, the regulation of phase II antioxidant enzyme expression by the nuclear
factor (erythroid-derived 2)-like 2 (NRF2)–Kelch-like ECH-associated 1 (KEAP1) pathway
involves protein carbonylation [175]. KEAP1 is a Cullin3 ubiquitin ligase complex adaptor
protein. Under physiological conditions, KEAP1 binds to NRF2 in the cytoplasm and
sequesters it from the nucleus by targeting it for degradation by the proteasome system.
In response to oxidative stress, KEAP1 is modified with HNE (reactive carbonyl species)
through carbonylation at critical cysteine residues (Cys273 and Cys288); this releases



Plants 2021, 10, 1451 13 of 27

NRF2 that translocates into the nucleus where it forms a dimer with a variety of nuclear
factors, including MAF and NRF1 [176]. This complex binds to the antioxidant response
element (ARE), which triggers the expression of the antioxidant responsive genes. Fang
and Holmgren also reported that when thioredoxin (TRX) became carbonylated with HNE,
this modified the structure of TRX at the vicinal thiol groups of TRX (Cys32 and Cys35) and
triggered the release of apoptosis signaling-regulatory kinase 1 (ASK1) from the complex
in which it was sequestered. This facilitates its autophosphorylation at Thr813, Thr838, and
Thr842 and subsequent activation [177]. Additionally, TRX can be carbonylated at Cys72,
a residue distal to the catalytic site resulting in TRX inactivation, but this did not trigger
the release of ASK1. Activation of ASK1 triggers a cascade of phosphorylation of SEK
and c-Jun N-terminal kinase (JNK), leading to nuclear factor-kβ activation [178] and the
development of insulin resistance [165,179,180]. These signaling events illustrate a negative
feedback loop in which lipid peroxidation-induced protein carbonylation transduces the
ROS signal to allow the expression of antioxidant response genes and phase II metabolic
enzymes in response to oxidative stress.

8. The Implication of Protein Carbonylation in Phytohormone Signaling Pathways

The phytohormone abscisic acid (ABA) is known to induce the production of ROS
by NAD(P)H oxidases AtrbohD and AtrbohF located on the plasma membrane in the
Arabidopsis guard cells. ROS-induced lipid peroxidation products, including MDA and
HNE, are commonly identified as RES or RCS as a result of the presence of an electrophilic
α,β-unsaturated carbonyl group [14,30]. Islam et al. demonstrated that RCS function
downstream of H2O2 production in ABA signaling for stomatal closure in guard cells
using transgenic tobacco plants overexpressing 2-alkenal reductase [18]. In the epidermal
tissue treated with ABA, RCS levels increased within 30 min and remained high up to
120 min. Both ABA and H2O2 induced the production of RCS [18]. Treatment of the
epidermal tissues with either 50 µM ABA or 1 mM of H2O2 significantly increased the level
of acrolein and HNE content. The application of the RCS scavengers carnosine (1 mM) and
pyridoxamine (0.5 mM) did not affect the ABA-induced H2O2 production but inhibited the
ABA and H2O2-induced stomatal closure [181].

Similar to ABA-induced stomatal closure, the production of ROS by NAD(P)H oxi-
dases is also required by MeJA-induced stomatal closure in A. thaliana guard cells [182–186].
As with ABA, the application of MeJA induced the accumulation of RCS such as acrolein
and HNE in WT tobacco plants, thus implicating RCS in MeJA-induced stomatal clo-
sure [19]. A study by Akter and colleagues revealed that stomatal closure induced by
MeJA is accompanied by depletion in the level of intracellular GSH found in Arabidopsis
guard cells [187], but no effect of GSH was found in MeJA-induced ROS production [188].
GSH is thus required downstream of ROS. Consistently, RCS production triggered by
MeJA induced GSH depletion in guard cells [19], indicating that RCS targets likely lie
downstream of H2O2 production by RbohD and RbohF proteins in the guard cells.

The calcium ion plays a key role as a second messenger in ABA signaling and ABA-
induced stomatal closure in the guard cell [189–191]. An elevation of cytosolic free Ca2+

concentration ([Ca2+]cyt) was also associated with methyl jasmonate (MeJA)-induced
stomatal closure in guard cells [186]. The activation of Ca2+ permeable cation channels in
the plasma membrane triggers the elevation of the cytosolic free Ca2+ concentration through
Ca2+ influx from the apoplast and the intracellular stores [182,183,192]. H2O2 activates
Ca2+-permeable cation (Ica) channels to trigger the elevation of the [Ca2+]cyt level in the
guard cells [182]. The activation of the Ica channels was enhanced in the GSH-depleted
mutant cad2–1 [193], indicating that GSH negatively controls H2O2-mediated Ica channel
activation in Arabidopsis. Exogenous application of the RCS acrolein was more effective
at raising the level of [Ca2+]cyt and inducing stomatal closure than exogenous H2O2
application [181]. Similarly, RCS-mediated [Ca2+]cyt increase was negatively regulated
by GSH [19]. These suggest that GSH acts downstream of H2O2 and RCS most likely
by scavenging RCS to prevent them from reacting with protein targets. Collectively, the
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findings generated over the last decade by Mano’s group position RCS as signal mediators
downstream of H2O2 production by RBOHs and upstream of the elicitation of the Ca2+

signal in Arabidopsis guard cells for both ABA- and MeJA-mediated stomatal closure
(Figure 5). Treatment of guard cells with 100 µM acrolein and HNE induced stomata
closure incrementally for 4 h. Interestingly, the stomata closure could be reversed when
replacing the bathing solution with one without acrolein or HNE [181]. These observations
further point to an increased turnover rate of the proteins targeted by RCS, given that
protein carbonylation is irreversible.

Figure 5. A model of RCS-mediated carbonylation processes in the hormonal signaling pathway in guard cells. ABA or
MeJA induced the production of ROS by NAD(P)H oxidases (RbohD and RbohF) located on the plasma membrane in the
guard cells. The RCS derived from the oxidation of membrane lipids by ROS trigger the activation of Ca2+-permeable cation
channels in the plasma membrane, which initiates the elevation of the cytosolic free Ca2+ concentration through Ca2+ influx
from the apoplast and the intracellular stores. RCS likely induce the carbonylation of an unknown protein target upstream
of the calcium channels. CPK6 is a positive regulator of ABA- or MeJA-induced stomatal closure, whereas CDPK6, an
isozyme of CPK6, is responsible for the regulation of Ica channels in ABA- or MeJA-induced stomatal closure. The increase
in cytosolic Ca2+ is sensed by CDPKs and CPK6 and results in the activation of the S-type anion channels and stomatal
closure. GSH is a negative regulator of ABA or MeJA signaling in the guard cell-induced stomatal closure by depletion of
intracellular levels of GSH. This model is based on the previous studies from the literature [18,19,181,187,188,190,191,193].

ROS are also known to control several developmental processes, including leaf ex-
pansion and xylem differentiation, adventitious root formation, and root hair develop-
ment [194–197]. The involvement of ROS specifically in lateral root (LR) formation was
reported in soybean [198], rice [199], and Phaseolus vulgaris [200]. In these studies, H2O2
was found to accumulate at the initiation sites where the lateral root emerged from. Several
reports suggested that the LR formation might be modulated by the interaction between
auxin and ROS signals, with auxin stimulus inducing the production of ROS through
the activation of RBOHs in the LR-forming regions. Treatment of Arabidopsis roots with
auxin triggered the accumulation of H2O2 through RBOHs and promoted lateral root
formation, whereas RBOH-deficient mutants produce fewer LRs than the wild type in
Arabidopsis [172,201–204]. Despite these findings, the mechanism of action of ROS in
auxin signaling for LR emergence was still unclear until recently. By investigating this
mechanism, Biswas and colleagues established that RCS derived from ROS mediate auxin
signaling to promote lateral root formation [16]. The levels of RCS, including acrolein, HNE,
and crotonaldehyde, were elevated before the formation of LRs in Arabidopsis following
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auxin treatment, and supplementation of the carbonyl scavenger carnosine suppressed
auxin-induced LR formation (both in numbers and density) [16]. The action of the RCS
to promote LR formation depended on the presence of auxin receptors (TIR1 or AFB2)
and promoted the degradation of Aux/IAA proteins. RCS likely further auxin signaling
by triggering the degradation of negative regulators of the auxin signaling pathways via
protein carbonylation. A summary of the recent findings pointing to hormone signal
transduction by protein carbonylation in plants is provided in Table 2.

Table 2. Summary of RCS-mediated protein carbonylation in plants.

Hormonal
Signaling

Physiological
Processes

Forms of RCS Involved References

Auxin signaling Lateral root formation HNE, acrolein,
crotonaldehyde,
butyraldehyde

[16]

ABA signaling Stomatal closure HNE, MDA [17,18,183]
MeJA signaling Stomatal closure HNE, MDA [19]

9. Crosstalk Between Carbonylation and Other PTMs

Cys residues are primary targets for ROS-mediated PTMs. As described above, Cys
residues can undergo nitrosylation, glutathionylation, persulfidation, and direct oxidation
to sulfenic, sulfinic, or sulfonic acid derivatives. These PTMs on Cys are associated with
diverse biological effects [2]. Since Cys is also a substrate for carbonylation, it is very
likely that carbonylation interferes positively or negatively with these biological effects,
particularly at the onset of stress and in the early events of stress signaling in plants and
non-plant species. The carbonylation of Keap1 by RCS alters the adaptor function of Keap1
and prevents the ubiquitination of its specific partner NRF2 [123,205]. Mitogen-activated
protein kinases (MAPKs) form an important group of proteins that relay intracellular
and extracellular signals via a cascade of protein phosphorylation in eukaryotic cells. Re-
active carbonyl species were found to modify MAPKs to interfere with their signaling
functions [206,207]. Crosstalk between protein carbonylation and protein nitrosylation has
also been reported [6]. The analysis of the proteome of citrus plants (Citrus aurantium L.)
exposed to salt stress revealed an important overlap between the carbonylated proteins
and the nitrosylated proteins after pretreatment with H2O2 and sodium nitroprusside,
respectively [208]. Sodium nitroprusside is a donor of ˙NO required for protein nitrosyla-
tion. Interestingly, H2O2 and SNP pre-treatments before salinity stress lowered the levels
of both carbonylated proteins and S-nitrosylated proteins, indicating crosstalk between
H2O2 and ˙NO signaling pathways [208,209]. The irreversible carbonylation of proteins
may thus prevent reversible PTMs, such as S-nitrosylation and phosphorylation, from
occurring or vice versa. This is supported by observations in animals and the effects of
NO and HCN in alleviating protein oxidation in seeds [11,129,180,210,211]. Besides Cys,
carbonylation at Lys residues influences the effects of acetylation, methylation, mono- and
polyubiquitination, and SUMOylation of proteins. Histones are lysine- and arginine-rich
proteins that regulate chromatin structure and gene expression. Treatment of RKO cells
with either 4-HNE or 4-oxo-2-nonenal resulted in the carbonylation of histones at Lys and
His residues [212]. Complementary tests in vitro revealed that pre-treatment of H3/H4
tetramers inhibited nucleosome assembly similarly to lysine acetylation. Combined histone
acetylation and carbonylation may thus enhance gene activation in the cell. So far, crosstalk
between histone protein carbonylation and histone acetylation or phosphorylation has yet
to be demonstrated in plants. Progress brought about by studies in animals show that
much remains to be known in plants concerning the importance of protein carbonylation
in ROS, hormone signaling, and their crosstalk.
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10. Target Specificity in Protein Carbonylation

The answer to the question concerning specificity in protein carbonylation has long
been sought. Despite being nonenzymatic, protein carbonylation appears to bear some sub-
strate specificity according to the hundreds of studies in several prokaryote and eukaryote
species [150]. Enzymes are the most frequent targets identified in various species, probably
because of the enhanced nucleophilic reactivity of the residues in their active sites, namely
Cys, His, and Lys. Besides enzymes, heat shock proteins and cytoskeleton proteins are
often identified among carbonylated proteins [150,213]. Several orthologous or conserved
enzymes and proteins have been found to be carbonylated similarly across species and
kingdoms. A long list of such enzymes and proteins found in Escherichia coli, rats, humans,
and plants has been drawn up and constitutes a solid case in favor of the specificity of pro-
tein carbonylation [150]. However, how can one predict such specificity? From the analysis
of carbonylated E. coli proteins and bovine serum albumin (BSA) by mass spectrometry,
Maisonneuve et al. identified small peptide regions called RKPT-enriched regions contain-
ing several carbonylated residues. Based on these regions and surrounding residues, they
developed a computer model (available at http://www.lcb.cnrs-mrs.fr/CSPD/, accessed
on 27 May 2021) capable of predicting sites and proteins more susceptible to carbonylation
in E. coli [97]. The model, however, could only predict direct carbonylation products in E.
coli and failed to detect carbonylated proteins found in A. thaliana and yeast. To overcome
these limitations, another bioinformatics tool, named CarSPred, was developed later to
predict carbonylation in the human proteome [214]. Interestingly, these studies and several
others agreed upon the fact that RKPT-enriched regions in proteins are hot spots of protein
carbonylation in several species [214–217]. A similar or better bioinformatics tool is still
lacking for plants. An important step toward closing this gap is to further improve carbony-
lated proteome sequencing and develop new approaches to identify modified residues
unequivocally (see below).

11. Challenges and Approaches for Studying the Roles of Protein Carbonylation in
Plants: Lessons from Studies in Mammalians

Protein carbonylation is irreversible in most cases and carbonylated proteins can
remain in the cell for more than 4 h before degradation [218]. Several techniques have been
developed over the last two decades to analyze the profile of protein carbonylation or to
identify the carbonylated proteins within the cellular proteome. These methods range from
Western blot analyses to mass spectrometry-based protein sequencing. For a Western blot
analysis, carbonylated proteins are first labeled with a carbonyl-reactive compound, most
commonly 2,4-dinitrophenylhydrazine (DNPH), prior to the separation by electrophoresis
and then revealed using anti-DNP antibodies. DNPH reacts with the aldehyde or ketone
carbonyl group and forms hydrazone derivatives (DNP), thus enabling spectrophotometric
or antibody detection [219,220].

The aldehyde reactive probe (ARP; N′-aminooxymethylcarbonylhydrazino D- biotin),
a biotinylated hydroxylamine compound that forms an oxime derivative with the car-
bonyl group found in oxidatively modified proteins, is also frequently used [221,222].
A comprehensive description of the existing methods has been undertaken in previous
studies [150,223]. For mass spectrometry analysis, an enrichment step of carbonylated
proteins is often required, as for most PTM analyses [17,93,108,224–227]. A major drawback
of this approach though is the impossibility of revealing the sites of the modification and
quantifying the number of carbonylated proteins, particularly when the modified peptide
is not found and sequenced. Moreover, diverse RCS are generated in the cell, the majority
of which are unknown, and therefore the exact mass adducts brought by the RCS cannot
be determined precisely and accounted for in the mass search analysis. Although a few
hits can be found based on the known mass of the commonly found RCS in the cells (HNE,
MDA, acrolein), this approach still under-samples the carbonylated proteome. This is as
well as the fact that the mere identification of the carbonylated proteins does not suffice to
conclude about the biological effect of the modification in vivo. However, because of the

http://www.lcb.cnrs-mrs.fr/CSPD/
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enrichment step during the sample preparation, the approach still provides a list of putative
carbonylated proteins that can be further examined by top-down proteomics. Pioneer and
recent studies in mammal and plant cells adopted this strategy and were successful in
validating the biological effects of the carbonylation of candidate targets identified in a first
screening [225,228–230]. A more robust strategy to identify the site of modification consists
of profiling the carbonylated proteins based on their affinity to a given RCS. This approach,
called affinity-based proteome profiling (ABBP), has been successfully used in mammal
cells to identify cysteines that are highly reactive to RCS [231–233]. Genuine targets of
protein carbonylation in vivo have been identified using this method and the biological
effects of the modification in gene signaling were successfully characterized thereafter
by site-directed mutagenesis and mutant analysis [231,232]. Probes that are blind to the
nature of the target amino acid residues have also been developed to identify residues other
than Cys [234]. We are currently unaware of the use of these probes with plant samples.
Furthermore, one critical research challenge relates to the confounding feature of protein
carbonylation—in other words, how can we distinguish potential physiological effects of
protein carbonylation (protein quality control and recycling, crosstalk, and signaling) from
the fatality of severe oxidative stress where an unavoidable surge of protein carbonylation
leads to protein aggregation and cell death? A targeted proteomics approach could help.
More knowledge needs to be accumulated on single proteins to build up a global under-
standing of the effects of their carbonylation on the biological functions known for them.
Another powerful approach that allows the probing of protein carbonylation in vivo has
been developed for mammals [215,235]. Due to the proven efficacy and robustness of these
chemical and genetics tools, they could also be used in plants to bring progress in the field.

12. Conclusion and Future Perspectives

Redox biology has gained much attention in plant science over the last two decades.
The traditional view of ROS as deleterious compounds has evolved into the acknowledg-
ment of the importance of ROS in plant physiology, growth, and development [236–238].
ROS-mediated PTMs have emerged as signal transduction mechanisms that relay environ-
mental stress and hormone cues toward and within the cell. Of these PTMs, the importance
of protein carbonylation in redox biology has begun to surface through pioneering stud-
ies in plants and the recent findings on its implication in ABA, auxin, and JA signaling
pathways [13,76,239–243]. The proteins targeted by carbonylation for the transduction of
these hormone signals have yet to be identified. In contrast to protein ubiquitination and
phosphorylation, it is still unknown how protein carbonylation is controlled and what
other physiological processes are related to it. Moreover, diverse RCS are produced in the
cell and likely have different effects depending on their chemical nature and the proteins
that they modify [244]. As a consequence, the identification of the RCS responsible for the
modification in vivo remains challenging, as the timing, the location, and the nature of
the RCS mediating the modification can vary. However, a combined approach involving
screening for reactivity using arbitrary RCS substrates followed by targeted characteriza-
tion, as well as the use of ion mobility spectrometry, may be helpful [105,234]. For signaling,
a target protein must have a high affinity with the RCS and be able to translate the RCS
signal into a downstream protein via other modifications. For a target protein, the ratio of
the carbonylated forms to the non-carbonylated form is often unclear. As pointed out by
Poganik et al. [245], the carbonylation of a protein involved in ROS or hormone signaling
pathways is likely to have a dominant effect even when only a small fraction of the pool of
the target protein is carbonylated. We are very hopeful that the next few years will witness
ground-breaking findings and answers to these questions about the importance of protein
carbonylation in plant redox biology.

The analysis and summary of the findings provided in this review revealed the
emerging role of protein carbonylation in protein quality control, protein homeostasis,
and hormone signaling. As in prokaryotes and eukaryotes, these functions of protein
carbonylation could also be explored in plant research and redox biology. The findings
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could then be used in biotechnology to mitigate the effects of environmental stress on
crops.
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