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Abstract
Recent decades have seen an alarming increase in the incidence of cardia gastric 
adenocarcinoma (CGA) while noncardia gastric adenocarcinoma (NCGA) has de-
creased. In 2012, 260 000 CGA cases (age‐standardised rate (ASR); 3.3/100 000) and 
691 000 NCGA cases (ASR; 8.8/100 000) were reported worldwide. Compared with 
women, men had greater rates for both the subsites, especially for CGA. Recently, 
four molecular subtypes of GC have been proposed by the Cancer Genome Atlas 
(TCGA) and the Asian Cancer Research Group (ACRG); however, these classifica-
tions do not take into account predisposing germline variants and their possible in-
teraction with somatic alterations in carcinogenesis. The etiology of adenocarcinoma 
of the cardia and the gastroesophageal junction (GEJ) is not known. It is thought that 
CGA is distinct from adenocarcinomas located in the esophagus or distal stomach, 
both epidemiologically and biologically. Moreover, CGA is often identified in the 
advanced stage having a poor prognosis. Therefore, understanding the risk and the 
role of predisposing factors in etiology of CGA can inform clinical practice and 
counseling for risk reduction. In this paper, we showed that GC family history, life-
style, demographics, gastroesophageal reflux disease, Helicobacter pylori infection, 
and multiple genetic and epigenetic risk factors as well as several predisposing con-
ditions may underlie susceptibility to CGA. However, several genome‐wide associa-
tion studies (GWASs) should be conducted to identify novel high‐penetrance genes 
and pathways as well as causal germline variants predisposing to CGA. They must 
include different ethnic groups, especially from high‐incidence countries for CGA, 
because some risk loci are ancestry‐specific. In parallel, statistical methods can be 
developed to identify cancer predisposition genes (CPGs) from tumor sequencing 
data. It is also necessary to find novel long noncoding RNAs related to the risk of 
CGA. Taken altogether, new cancer risk prediction models, including all genetic and 
nongenetic factors influencing risk, should be developed to facilitate risk assessment, 
disease prevention, and early diagnosis and intervention of CGA in the future.
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1  |   INTRODUCTION

Gastric cancer (GC) is the fifth common cancer (6.8%) in the 
world and the third leading cause of death related to cancer 
(8.8%) worldwide.1 In fact, the complicated interaction be-
tween Helicobacter pylori (H pylori) infection and genetic, 
epigenetic, and environmental factors results in GC.2 Gastric 
adenocarcinoma is the prominent type of GC, which is clas-
sified into two major histological subtypes of intestinal and 
diffuse adenocarcinoma according to Lauren's classification, 
reflecting its pathogenesis.3 There are two GC subtypes, car-
dia (occurring in the 1‐cm (cm) proximal and 2‐cm distal area 
of the esophago‐gastric junction) gastric adenocarcinoma 
(CGA) and noncardia (distal: involving the distal and mid-
dle parts of the stomach) gastric adenocarcinoma (NCGA).4 
In 2012, 260 000 CGA cases (age‐standardised rate (ASR) 
3.3 per 100 000) and 691 000 NCGA cases (ASR 8.8) were 
reported all over the world. The greatest regional rates of 
both GC subsites were in Eastern/Southeastern Asia (in 
men, ASRs: 8.7 and 21.7 for CGA and NCGA, respectively). 
NCGA was observed more commonly than CGA with a mean 
ratio of 2:1 in most countries, but in some populations, the 
rates of NCGA incidence were less than the global mean.5 
Ardabil Province in Northwest of Iran has the highest CGA 
rates in the world. In Ardabil, over one‐third of the GC occurs 
in the cardia region of the stomach having only 5%‐10% of 
the whole stomach, and the ASRs for CGA are 26.4 and 8.6 
for males and females, respectively.6

The etiology of adenocarcinoma of the cardia and the gas-
troesophageal junction (GEJ) is not known and is doubted. 
It is thought that CGA is distinct from adenocarcinomas lo-
cated in the esophagus or distal stomach, both epidemiologi-
cally and biologically.7 Moreover, CGA is often identified in 
the advanced stage having a poor prognosis. In this paper, we 
would like to ascertain the possible role of GC family history, 
lifestyle, demographics, gastroesophageal reflux disease, H 
pylori infection, and multiple genetic and epigenetic risk fac-
tors as well as several predisposing conditions in suscepti-
bility to CGA. Therefore, understanding risk and the role of 
these factors in etiology of CGA can inform clinical practice 
and counseling for risk reduction.

2  |   FAMILY HISTORY

Most GCs are sporadic; however, nearly 10% represents fa-
milial aggregation with an unclear molecular basis. Hereditary 
cancers constitute less than 3% of all stomach cancers and 
are recessed into the three autosomal dominant syndromes: 
hereditary diffuse GC (HDGC), familial intestinal GC, and 
gastric adenocarcinoma and proximal polyposis of the stom-
ach.8 HDGC is the most commonly known familial GC and 
is characterized by CDH1 deletion. However, it is rare, not 

taking into account a large proportion of family clustering.9 
The incidence rate of HDGC in the cardia and noncardia sub-
sites of the stomach is also not clear.

Family history of GC raises the risk of its development, 
with risks ranging from 1.3 to 3.0 for the first‐degree rela-
tives of GC cases. GC development under 50 years of age is 
probably followed by family history.10 People with a positive 
paternal family history were at higher risk of GC compared 
to positive maternal family history.11 Coexistence of two risk 
factors including a positive family history and infection with 
a CagA‐positive H pylori isolate could increase more than 
16‐fold risk of NCGA and eightfold total risk of CGA.12 
Thus, identifying inherited parameters among subjects with 
GC family histories is an important step for due diagnosis and 
management of the disease.

3  |   DEMOGRAPHIC AND 
BEHAVIORAL FACTORS

The GC incidence increases with age. The median age for GC 
diagnosis is 70.13 Compared with women, men had greater 
rates for both the subsites, especially for CGA (male‐to‐fe-
male ratio 3:1).5 This marked difference is likely to be due to 
endogenous factors, such as reproductive hormones, different 
prevalence of central obesity between two sexes, or different 
premenopausal iron status. However, it cannot be explained 
by different smoking histories.14 Estrogen—the female sex 
hormone—is a suppressor of the inflammatory response and 
cytokine production in certain tissues, thus likely having sim-
ilar effects in the upper gastrointestinal (GI) tract. In addition, 
lower body iron stored during their reproductive years in fe-
males might change the degree of DNA damage caused by 
chronic inflammation. Male predominance of upper GI ad-
enocarcinomas is also related to the intestinal subtype rather 
than tumor subsite because of delayed development of this 
subtype in females before 50‐60 years.15

A meta‐analysis study revealed that smoking was associ-
ated with CGA and the relative risk (RR) was 1.87. RR rose 
from 1.3 for the lowest intake to 1.7 for about 30 cigarettes 
per day.16 Risks of CGA were higher than those of NCGA 
in former, moderate, and high‐intensity cigarette smokers.17 
It also relates opium use to a higher risk of GC18 with an 
augmented CGA risk (OR = 2.8).19 The obesity prevalence, 
indicated by body mass index (BMI ≥30  kg/m2), has in-
creased over the past two decades. Fat is metabolically ac-
tive and generates many compounds that move in the body. 
These products (eg, insulin‐like growth factor and leptin) are 
related to malignancies, probably via inducing pro‐growth 
changes in the cycle of a cell, declined cell death, and pro‐
neoplastic cellular variations.20 Meta‐analysis showed that 
risen BMI correlated with the CGA risk (CGA, summary rel-
ative risk, SRRs = 1.21 and 1.82 for overweight and obesity, 
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respectively, but not with NCGA (NCGA; SRRs = 0.93 and 
1.00 for overweight and obesity, respectively.21 A meta‐anal-
ysis revealed a 21% decline in GC risk, in those having higher 
physical activity compared to the least active ones. This risk 
decline was reported for both NCGA (37% risk reduction) 
and CGA (20% risk reduction).22

4  |   GASTROESOPHAGEAL 
REFLUX DISEASE

Gastroesophageal reflux disease (GERD), troublesome and 
recurrent heartburn and regurgitation, is known as a primary 
risk factor for upper gastrointestinal cancers. Significant as-
sociations have been found between CGA and GERD, with 
two‐ to fourfolds of increased risk in many studies; however, 
not all studies confirm it.23,24 The increase in the occurrence 
of CGA in the Western world was elaborated by increasing 
GERD incidence and obesity.25 CGA was related with gas-
tric atrophy (OR = 3.92) and GERD symptoms (OR = 10.08), 
hence results show two different etiologies of CGA, one re-
sulting from intense atrophic gastritis (intestinal or diffuse 
subtype) as NCGA and another from GERD (intestinal sub-
type).23,26 Endoscopic screening of men with chronic GERD 
symptoms (≥5 years) who have at least two additional risk 
factors (eg age >50 years, central obesity, past or current his-
tory of smoking, White race, or family history of Barrett es-
ophagus) is suggested by current guidelines.27 However, there 
are junctional cancers in patients who never had typical reflux 
diseases, largely explained by two entities of partial hiatus 
hernia and intrasphincteric reflux.28 Hiatal hernia (HH) is a 
significant independent risk factor for CGA and esophageal 
adenocarcinoma. HH in combination with reflux symptoms 
was strongly associated with the risk of esophageal adeno-
carcinomas (OR = 8.11). This association was more modest 
for CGA (OR = 2.93).29 It has also been shown that in the 
asymptomatic, moderately overweight population with no re-
flux, there are cardiac mucosal lengthening and proximal ex-
tension of gastric acid within the lower esophageal sphincter, 
thus likely causing the observed change in the cardiac mucosa. 
These changes may be related to the etiology of CGA and GEJ, 
often seen in people without a history of reflux disease.30,31

5  |   HELICOBACTER PYLORI 
INFECTION

The main risk factor of intestinal metaplasia, chronic atrophic 
gastritis, and gastric adenocarcinoma is H pylori that colo-
nizes the human stomach.32 Studies on Asian countries have 
revealed a higher positive association between H pylori infec-
tion and CGA, while some other studies of Western countries 
have reported no association or even inverse association.33,34 

The meta‐analysis provided evidence for a positive association 
between CGA and H pylori infection. For CGA, summary RR 
was 1.08 (95% CI 0.83‐1.40), greater in high‐risk (RR = 1.98; 
95% CI 1.38‐2.83) than in low‐risk situations (RR  =  0.78; 
95% CI 0.63‐0.97).35 Individual antigen testing has revealed 
that CagA positivity is associated with an increased risk of 
CGA and NCGA, which is in line with other studies con-
ducted in Asian populations.36 The vacA c1 genotype of H 
pylori has strongly increased the risk of CGA (OR = 14.11). 
H pylori vacA c1 genotype is also thought to be the primary 
bacterial biomarker for the prediction of CGA risk in Iranian 
males aged >55.37 In contrast, the vacA c2 genotype, particu-
larly in combination with cagPAI genotypes (ie cagH, cagL, 
cagG, and orf17), showed strong inverse associations with the 
risk of CGA and non‐CGA, indicating a coordinated relation-
ship between the vacA c2 and cagPAI genotypes.38

6  |   GENETIC RISK FACTORS

6.1  |  New molecular subtypes of GC
Recently, four molecular subtypes of GC have been deter-
mined by the Cancer Genome Atlas (TCGA) project, which 
include Epstein‐Barr virus (EBV), microsatellite instability 
(MSI), genomically stable (GS), and chromosomal instabil-
ity (CIN).39 CIN subtype, which mostly occurs in the es-
ophago‐gastric junction (EGJ)/cardia, represents at least 50% 
of GCs.40 It is related to intestinal‐type histology, showing 
elevated frequency in the EGJ/cardia, according to TCGA 
characterization (65%).41 Furthermore, the Asian Cancer 
Research Group (ACRG) has proposed other molecular clas-
sification, including mesenchymal subgroup (MSS/EMT), 
microsatellite instability subgroup (MSI), Microsatellite 
Stable TP53‐positive (MSS/TP53+, corresponding to EBV+ 
subtype by TCGA), and Microsatellite Stable TP53‐nega-
tive tumors (MSS/TP53−, corresponding to CIN subtype by 
TCGA). Microsatellite‐unstable tumors, which occur in the 
antrum, are hypermutated intestinal‐subtype tumors having 
the best prognosis and the lowest frequency of recurrence 
(22%) of the four subtypes. The mesenchymal‐like type, in-
cluding diffuse‐subtype tumors, which have the tendency to 
occur at an earlier age, shows the worst prognosis and the 
highest recurrence frequency (63%) of the four subtypes.42

These classifications open new horizons for identification 
of relevant genomic subsets for precision oncology using 
highly complex methodologies, including genomic screening 
and molecular, epigenetic, and functional characterization. 
However, the two classifications have some limitations. They 
lack a prospective validation on a large scale, including pa-
tients from other geographic regions of the world. The dif-
ferences between them are greater than similarities, which 
include differences in molecular mechanisms, relation to 
prognosis, and the distribution of Lauren's diffuse subtype 
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among the four subgroups. Neither of them considers active 
and nonmalignant stromal cells. Stromal gene expression pro-
files may influence assignment to a specific subtype. On the 
other hand, novel stromal‐based signatures have been related 
to the dominant cancer phenotypes. Thus, the classification 
of GC can be improved from a tumor stroma perspective.43-45

Although these subtypes may be related to the prognosis of 
GC patients and determine the patient's benefits from adjuvant 
chemotherapy after large‐scale validation trials, they do not 
take into account predisposing inherited germline variants for 
cancer. Recent data have shown that somatic cancer genes also 
show recessive rare, damaging germline variants (RDGVs) 
that predispose to cancer via a two‐hit mechanism.46 This 
indicates a possible interaction of the germline variants with 
somatic driver alterations in carcinogenesis. For example, ger-
mline variants in RBFOX1, a gene encoding an RNA‐binding 
protein involved in splicing, increase the incidence of SF3B1 
somatic mutation by eightfold. Similarly, 19p13.3 variants are 
associated with a fourfold increase in somatic mutation rate of 
the PTEN tumor suppressor gene.47 However, the impact of 
large‐scale tumor sequencing has been limited in identifying 
cancer predisposition genes (CPGs).

6.2  |  Single‐nucleotide polymorphisms 
in CGA
Single‐nucleotide polymorphisms (SNPs) are natural genetic 
changes occurring with different frequencies in various pop-
ulations. Some SNPs may change the gene expression profile 
and influence function of the gene, leading to risen suscepti-
bility risk to the range of some disorders, like cancer. There 
are many instances of polymorphic genes, which raise the 
susceptibility to GC.

6.2.1  |  PRKAA1
One SNP, rs10074991 in PRKAA1 at 5p13.1, reached ge-
nome‐wide significance for CGA. PRKAA1 protein is a 
catalytic subunit of AMP‐activated protein kinase (AMPK), 
crucial for the regulation of cellular energy metabolism. To 
respond to the decline of intracellular ATP levels, AMPK 
stimulates energy‐production pathways and prevents pro-
cesses of energy consuming leading to the inhibition of bio-
synthesis of protein, carbohydrate, and lipid, and prevention 
of cell growth and proliferation.48

6.2.2  |  MUC1 and PLCE1
The glycoprotein Mucin 1 is aberrantly glycosylated and 
overexpressed in epithelial cancers, and plays an important 
role in disease progression.49 Phospholipase C epsilon‐1 
(PLCE1) is a phospholipase C isoenzyme encoded by PLCE1 
gene, it interacts with the proto‐oncogene Ras among other 

proteins. PLCE1‐related signaling network affects many 
critical carcinogenetic processes like metabolism, prolifera-
tion, survival, and tumor growth. In a genome‐wide asso-
ciation study (GWAS) conducted among Chinese people, 
positive correlations among SNPs in MUC1 and CGA and 
NCGA were similar. Two independent GWAS datasets in 
Chinese showed associations between multiple variants at 
10q23, on gene PLCE1, and CGA risk.50,51

6.2.3  |  NF‐κBs
NF‐κBs are stimulated in many cancers, the equivalent of 
“nonclassical oncogene.” The combined effect analysis re-
vealed that when carrying the NFKBIA gene polymorphism 
site of rs696 (AA) and NFKB1 gene polymorphism site of 
rs3755867 (GG), the CGA incidence risk was more than the 
time the adverse genotype (OR = 5.22) was not carried.52

6.2.4  |  IL1B‐31C, IL1B‐511T, and IL1RN2
Non‐Asian populations also showed augmented risks among 
IL1B‐31C, IL1B‐511T, and IL1RN2 carriers for CGA, but 
this was not significant in Asian populations.53

6.2.5  |  P27 (kip1)
The p27kip1 expression is an early event in gastric tumori-
genesis, and is regarded as a candidate molecular biomarker 
for early GC.54 P27 (kip1) polymorphisms may be associated 
with the CGA susceptibilities in North China.

6.2.6  |  MTHFR
The enzyme methylenetetrahydrofolate reductase (MTHFR) 
has an important role in the regulation of methionine 
and homocysteine concentrations in folate metabolism.55 
Individuals with the MTHFR 677TT variant genotype pos-
sessed a twofold increased CGA risk (OR = 2.04).56

6.2.7  |  ADPRT
A study showed ORs of 2.17 and 1.61 for CGA in the ADPRT 
(Adenosine diphosphate ribosyl transferase) Ala/Ala or 
XRCC1 (X‐ray repair cross‐complementing 1) Gln/Gln geno-
type carriers, respectively, compared to noncarriers. Gene‐gene 
interaction of XRCC1 and ADPRT polymorphisms raised the 
OR of CGA in a hasty manner (OR for the combined XRCC1 
Gln/Gln and ADPRT Ala/Ala genotypes was 6.43).57

6.2.8  |  COX‐2
COX‐2, a major enzyme converting arachidonate to pros-
taglandins, is not present in normal cells unless quickly 
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stimulated by different carcinogens. The level of COX‐2 
was considerably increased in gastrointestinal cancer.58 
Multivariate logistic regression analysis showed that 
the −1195AA, −765GC, and 587Arg/Arg genotypes of 
COX‐2 were related with increased CGA risk (OR = 1.50, 
OR  =  2.06, and OR  =  1.67, respectively). These results 
showed that the functional polymorphisms of COX‐2, 
when interacting with smoking, have an influential impact 
on developing CGA.59

6.2.9  |  MDM2
Some epidemiological studies have found an association 
between murine double minute 2 (MDM2) SNP309 and 
the risk of different cancer types. TP53 induces intracel-
lular expression of MDM2, whereas the latter induces 
the downregulation of TP53, the auto‐regulatory feed-
back loop between TP53 and MDM2. The relationship 
between MDM2 SNP309 and GC risk was meaningful, 
especially in CGA for the H pylori‐positive population 
group.60 Genotype analyses demonstrated that increased 
risk for development of CGA was correlated with the 
MDM2 309G and the P53 72Pro allele compared to the 
P53 72Arg allele and the MDM2 309T in an allele dose‐
dependent manner.61

6.2.10  |  RANK
Overexpression of receptor activator of nuclear factor κ B 
(RANK) directly induces epithelial‐to‐mesenchymal tran-
sition and stem‐like phenotypes in tumor cells and normal 
mammary epithelial cells. The RANK/ RANKL/OPG sys-
tem, mechanistically, affects tumor cell invasion and migra-
tion.62 RANK rs1805034 T>C correlates with susceptibility 
to CGA, which is more obvious in elderly patients, male pa-
tients, smokers, and patients with no alcohol consumption.63

6.2.11  |  PD‐1
Programmed cell death‐1 (PD‐1) is a major preventer of an-
titumor responses; it is a cogent candidate for genetic risk 
of subjects to many malignancies. Two ligands of PD‐1, 
programmed death‐1 ligand 1 (PD‐L1) and PD‐L2, inhibit 
activation and proliferation of T cells, leading to tumor es-
cape from immune surveillance.64 A considerable increased 
risk of CGA related with the PD‐1 rs2227982 C>T polymor-
phism was observed among ever drinking subjects (TT vs 
CC: OR = 2.53, TT+CT vs CC: OR = 2.04).65 According to 
TCGA, PD‐L1 gene was frequently amplified in EBV‐posi-
tive GC, probably indicating the higher immunogenicity of 
this GC subclass. Amplification of a chromosomal region 
9p24.1 (locus of PD‐L1 and PD‐L2) has been seen at 15% of 
EBV‐positive GC.66

6.2.12  |  MYT1
MYT/NZF family transcription factors include two major 
members, myelin transcription factor 1 (MYT1, or neu-
ral zinc finger 2 (NZF2)) and its homologue MYT1‐like 
(MYT1L or NZF1); each of them has six copies of a ZnF 
including a C2HC consensus sequence. MYT1 is also related 
with carcinoma.67 MYT1L rs17039396 variants could be a 
suitable prognostic indicator for GC, especially among the 
CGA.68

6.2.13  |  XPG
XPG gene (or ERCC5) affects the excision of an *24‐32 bp 
DNA segment having the bulky adduct in nucleotide excision 
repair (NER). The T/T genotype of XPG and rs751402 C/T 
SNP T allele was correlated with an increased CGA risk in 
younger subjects (≤61 years; OR = 1.33). The T/T genotype 
carriers must receive periodic upper gastrointestinal endos-
copy to facilitate the early diagnosis and cure of CGA.69

6.2.14  |  MMP‐2
Matrix metalloproteinase‐2 (MMP‐2) is mainly responsi-
ble for regulating inflammatory response.70 People with 
the CC genotype of MMP‐2 had >threefold augmented risk 
(OR = 3.36) for development of CGA in comparison to those 
with the variant CT or TT genotype.71 MMP‐2 C−1306T 
polymorphism is a risk factor for CGA and the multifactor 
interactions among polymorphisms in FASL, MMP‐2, and 
FAS affect the CGA development.72 The detailed informa-
tion regarding the genetic factors of CGA are indicated in 
Table 1.

7  |   EPIGENETIC RISK FACTORS

Promoter CpG island hypermethylation is popular in 
human cancers and correlates with transcriptional si-
lencing of the associated gene.73 RASSF1A is placed on 
3p21.3 and regulates apoptosis, cell cycle, microtubule 
stability, and other physiological activities. Epigenetic si-
lencing of RASSF1A gene expression through promoter 
hypermethylation affects CGA. The RASSF1A gene's 
promoter methylation increased the CGA risk signifi-
cantly (OR = 7.50).74 The CpG island hypermethylation 
at the promoter region of HLTF has also been found in 
the colon and stomach cancers, manifesting that aberrant 
methylation of HLTF affects carcinogenesis. HLTF meth-
ylation may be present in gastric cardia dysplasia phases 
and may affect the CGA development in subjects with a 
family history of UGIC.75 The impact of TSP1 on cancer 
progression is still controversial and shows stimulatory 
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and inhibitory effects. Epigenetic silencing of TSP1 
gene via promoter hypermethylation can affect CGA.76 
CAV1 may regulate multiple intracellular signaling path-
ways. CAV1 expression loss with aberrant promoter 

methylation was detected in some human cancers. The 
CpG island shore methylation of CAV1 possibly affects 
the CGA progression and is a prognostic methylation bio-
marker for CGA cases.77

  Case/control P‐value OR (95% CI) Ref.

PRKAA1 (rs10074991) 3042/7548 7.36 × 10−12 0.83 (0.79‐0.88) [48]

MUC‐1       [50]

rs4072037 (A>G) 1213/3302 9.5 × 10−5 0.75 (0.62‐0.87)  

rs4460629 (C>T)   1.3 × 10−4 0.74 (0.64‐0.86)  

PLCE1       [50,51]

rs2274223 (A>G) 2766/ 11013 1.7 × 10−39 1.55 (1.45‐1.66)  

rs2274223 (A>G)   4.2 × 10−15 1.57 (1.40‐1.76)  

rs3765524 (C>T) 1213/3302 7.4 × 10−15 1.56 (1.40‐1.75)  

rs3781264 (T>C)   1.1 × 10−13 1.60 (1.41‐1.81)  

rs11187842 (C>T)   7.1 × 10−12 1.63 (1.42‐1.87)  

rs753724 (G>T)   8.0 × 10−12 1.63 (1.42‐1.87)  

NFKBIA (rs696 AA) NA <.05 5.22 (1.10, 24.92) [52]

NFKB1 (rs3755867 GG)        

P27(kip1) V/V 256/437 <.05 2.56 (1.06‐4.78) [54]

MTHFR‐ 677TT 217/468 <.05 2.04 (1.28‐3.26) [56]

ADPRT (Ala/Ala) 500/1000 .017 2.17 (1.55‐3.04) [57]

XRCC1 (Gln/Gln)   <.0001 1.61 (1.06 ‐2.44)  

COX‐2       [59]

1195AA 357/985 .038 1.50 (1.05‐2.13)  

765GC   .009 2.06 (1.29‐3.29)  

587Arg/Arg   .033 1.67 (1.04‐2.66)  

MDM2 ‐309       [60]

GG vs TT 999/2322 <.05 2.00 (1.61‐2.50)  

GT vs TT     1.50 (1.20‐1.88)  

RANK (rs1805034 T>C)       [63]

TC vs TT 323/592 .026 NR  

CC vs TT   .0003 NR  

TC/CC vs TT   .0019 NR  

CC vs TT/TC   .002 NR  

PD‐1 (rs2227982 C>T)       [65]

TT vs CC 330/608 .028 2.53 (1.11‐5.79)  

TT+CT vs CC   .047 2.04 (1.01‐4.13)  

MYT1L (rs17039396 GG) 174/90 .001 NR [68]

XPG (rs751402)       [69]

C/T 212/216 <.05 1.33 (1.00‐1.76)  

T/T   .05 1.77 (1.12‐3.30)  

MMP2 −1306CC 356/789 <.05 3.36 (2.34‐4.97) [71]

MMP‐2 −1306CC        

FASL‐ 844TT or TC 344/324 <.05 4.58 (2.07‐10.14)  

FAS‐ 1377AA       [72]

Abbreviations: NA, not available; NR, not reported; SNP, single‐nucleotide polymorphism.

T A B L E  1   Role of genetic factors in 
CGA
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The loss of p16 (INK4A) protein expression can be 
detected in 45% of cardiac, esophageal, and gastric ade-
nocarcinoma and correlates with p16 (INK4A) gene hyper-
methylation. Methylation of CpG in the EBV‐positive class is 
even greater than that in the MSI class. Moreover, viral can-
cers have a unique pattern of downregulation‐related methyl-
ation of CDKN2A (p16). Hypermethylation of p16 (INK4A) 
is a common research outcome in CGA.78 The proximal pro-
moter aberrant hypermethylation and MEG3 enhancer region 
were seen in tissues of CGA. Also, the enhancer region and 
proximal promoter hypermethylation and dysregulation of 
MEG3 and miR‐770 were correlated with a survival of poorer 
CGA patients.79 Aberrant hypermethylation‐mediated down-
regulation of C5orf66‐AS1 may play critical roles in CGA 
tumorigenesis and C5orf66‐AS1 can be a prognostic marker 
in the prediction of CGA patients' survival.80 Epigenetic si-
lencing of Wnt‐antagonist gene expression via promoter hy-
permethylation can influence CGA.81

Being land of E‐cadherin gene, high methylation status 
of 5' CPG may be a mechanism in developing CGA.82 A 
recent study indicated that there were a lot of males with 
CGA characterized by higher GATA5 DNA methylation 
values.83 FBXO32 (atrogin‐1) is an Fbox protein family 
member and has one of the four subunits of the ubiquitin 

protein ligase complex, contributing to muscle atrophy.84 
Aberrant hypermethylation of FBXO32 is a mechanism 
resulting in loss or downexpression of the gene in CGA. 
FBXO32 is assumed as a functional tumor suppressor, and 
FBXO32 gene reactivation may have a therapeutic poten-
tial, indicating its role as a prognostic marker for CGA 
cases.85 It is demonstrated that the loss of RKIP expression 
and hypermethylation can be regarded as a marker to an-
ticipate clinical result of CGA. It is suggested that RKIP 
is a new candidate gene among metastasis suppressors.86 
The detailed information regarding the epigenetic factors 
of CGA are indicated in Table 2.

8  |   LONG NONCODING RNAS

Long noncoding RNAs (lncRNAs) are transcribed RNAs 
longer than 200 nt which lack an open reading frame of 
considerable length. lncRNAs are expressed at lower lev-
els compared to mRNAs. lncRNAs’ ectopic expression 
influences the GC development.88 There are not many ar-
ticles on the variations of lncRNAs and the risk of CGA 
development. Notable downregulation of LOC100130476 
was observed in primary CGA tissues, and SGC‐7901 and 

  Case/control P‐value OR (95% CI) Ref.

RASSF1A 92/30 <.001 7.50 (2.78‐20.23) [74]

HLTF 96/96 <.05 NR [75]

TSP1 96/96 <.001 NR [76]

CAV1 172/172 <.001 NR [77]

p16INK4A 50/50 .002 NR [78]

MEG3 134/134 <.001 NR [79]

C5orf66‐AS1 125/125 <.001 NR [80]

Wnt‐antagonist genes
sFRP1 94/94 .000 NR [81]

sFRP 2   .001 NR  

sFRP 4   .000 NR  

sFRP 5   .000 NR  

Wif‐1   .000 NR  

Dkk3   .000 NR  

E‐cadherin 92/92 <.001 NR [82]

GATA5 105/105 <.05 NR [83]

FBXO32 139/139 <.001 NR [85]

RKIP 145/145 .000 NR [86]

miR‐25/miR‐93/miR‐106b
rs1534309 107/1284 5.38 × 10−3 0.56 (0.37‐0.86) [87]

rs2070215   .0421 1.37 (5 1.02‐1.85)  

Abbreviations: NA, not available; NR, not reported; SNP, single‐nucleotide polymorphism.

T A B L E  2   Role of epigenetic factors 
in CGA
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T A B L E  3   Role of ncRNAs in promoting CGA

  Expression changes Case/control P‐value Fold change (log2) Ref.

LncRNAs

C5orf66‐AS1 Downregulated 125/125 <.01 NA [80]

LOC100130476 Downregulated 121/121 .013 1.907 (1.148‐3.166)a  [89]

ASHG19A3A028863 Upregulated 12/12 <.05 169.6730934 [90]

ASHG19A3A040903 Upregulated     41.90954829  

ASHG19A3A041865 Upregulated     39.16918169  

ASHG19A3A018727 Upregulated     28.88943866  

ASHG19A3A052295 Upregulated     24.55914831  

GUST‐20‐P1426265844 Upregulated     22.40102966  

ASHG19A3A041043 Upregulated     20.64951965  

ASHG19A3A033911 Upregulated     15.82403426  

ASHG19A3A026346 Upregulated     15.43079683  

ASHG19A3A007184 Downregulated     59.38580626  

ASHG19A3A018598 Downregulated     15.16286445  

ASHG19A3A038967 Downregulated     9.499758688  

ASHG19A3H0000023 Downregulated     9.473660683  

ASHG19A3A018662 Downregulated     9.338922844  

ASHG19A3A007413 Downregulated     8.588461452  

ASHG19A3A011053 Downregulated     7.817390602  

ASHG19A3A035937 Downregulated     7.2417301  

ASHG19A3A055173 Downregulated     5.954896947  

ASHG19A3A0001119 Downregulated     4.960711075  

Micro RNAs

miR‐770 Downregulated 134/134 <.01 NR [79]

miR‐141 Downregulated 41/41 <.05 NR [91]

miR‐203a Downregulated 127/127 .033 1.77 (1.046‐3.011)a  [92]

miR‐107 (rs2296616 TC/CC) Upregulated NA NR 1.49 (1.01‐2.20)b  [93]

miR‐3656 Downregulated 21/21 1.89E−16 −3.29535 [94]

miR‐378c Downregulated   8.96E−14 −1.80765  

miR‐628‐3p Downregulated   2.23E−13 −2.03238  

miR‐US33‐3p Downregulated   2.67E−13 −2.25544  

miR‐148a‐3p Downregulated   2.67E−13 −1.63085  

miR‐H10 Downregulated   4.43E−13 −2.84551  

miR‐638 Downregulated   8.99E−13 −1.55968  

miR‐483‐5p Downregulated   2.20E−12 −1.35334  

miR‐675‐5p Downregulated   5.11E−12 −1.70156  

miR‐1184 Downregulated   2.67E−11 −1.00147  

miR‐299‐5p Downregulated   3.05E−11 −1.66357  

miR‐4285 Downregulated   4.74E−11 −1.06365  

miR‐3665 Downregulated   9.57E−11 −1.95478  

miR‐H25 Downregulated   1.04E−10 −1.61128  

miR‐H17 Downregulated   1.41E−10 −1.53334  

miR‐3195 Downregulated   1.41E−10 −1.28305  

miR‐518e‐5p Downregulated   1.41E−10 −0.97021  

(Continues)
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BGC‐823 cell lines. LOC100130476 can function as a 
tumor inhibitor gene in carcinogenesis of CGA. Aberrant 
methylation at the CpG sites next to the transcription start 
site within exon 1 might be important for gene silenc-
ing. LOC100130476 ectopic expression is considered a 
new biomarker for the early diagnosis of GC.89 C5orf66‐
AS1 was considerably downregulated in cell lines and 
CGA tissues, and the level of expression was correlated 
with lymph node metastasis, pathological differentiation, 
TNM stage, and distant metastasis or recurrence.90 Table 
3 shows the results obtained from microarray analysis of 
lncRNAs in CGA.

9  |   MICRORNAS

MicroRNAs (miRNAs) are single‐stranded small (20‐22  nt) 
ncRNAs which regulate gene expression and contribute to 
a broad spectrum of biological processes like cell prolifera-
tion, differentiation, apoptosis, endothelial cell migration, and 
angiogenesis.95 Some studies reported that miR‐141 was 

decreased and correlated with lymph node metastases in CGA 
and advanced TNM stage. Additionally, miR‐141 may stop 
cell proliferation and trigger apoptosis in adenocarcinoma 
gastric cell line. Also, miR‐141 may directly stop MACC1 
through binding to its 3'‐UTR. It can affect the signaling path-
ways of MEK/ERK and p38 MAPK. It is a potential therapeu-
tic goal for treating CGA cases.91 MEG3 and miR‐770 were 
notably downregulated in CGA patients and correlated with 
lymph node metastasis and TNM stage. The aberrant hyper-
methylation of the proximal promoter and MEG3 enhancer 
region was observed in CGA.79 Two tagSNPs of cluster 7.1 
(miR‐25/miR‐93/miR‐106b) were found to be related with the 
GC cardia localization, rs2070215 (OR = 1.37) and rs1534309 
(OR  =  0.56).87 Significant downregulation and proximal 
promoter methylation of miR‐203b and miR‐203a in CGA 
were observed in CGA tissue. CGA cases in stage III and IV 
with decreased expression or hypermethylation of miR‐203a 
showed weak survival. MiR‐203b and miR‐203a may act as 
tumor suppressive miRNAs,miR‐203a reactivation may be re-
garded as a prognostic marker for CGA subjects.92 MiR‐107 
is dysregulated in CGA pathogenesis, and the SNP rs2296616 

  Expression changes Case/control P‐value Fold change (log2) Ref.

miR‐3196 Downregulated   7.06E−10 −2.64801  

miR‐30d‐5p Downregulated   7.06E−10 −0.74407  

miR‐3124‐5p Downregulated   2.21E−09 −2.60563  

miR‐196a‐5p Upregulated   3.36E−14 4.111534  

miR‐135b‐5p Upregulated   2.67E−13 2.555514  

miR‐2355‐3p Upregulated   2.68E−13 1.517697  

miR‐4307 Upregulated   1.05E−09 2.371521  

miR‐1244 Upregulated   3.68E−09 2.409671  

miR‐892a Upregulated   1.05E−08 1.8554  

miR‐20a‐5p Upregulated   1.15E−08 1.501549  

miRPlusA1087 Upregulated   6.38E−08 2.115592  

miR‐93‐5p Upregulated   1.06E−07 1.5392  

miR‐455‐3p Upregulated   1.80E−07 1.568063  

miR‐105‐5p Upregulated   1.96E−07 1.755387  

miR‐764 Upregulated   2.58E−07 1.650002  

miR‐130b‐5p Upregulated   4.98E−07 1.660447  

miR‐506‐3p Upregulated   2.66E−06 1.605885  

miR‐454‐3p Upregulated   3.92E−06 1.515466  

miR‐142‐3p Upregulated   4.35E−06 1.524762  

miR‐3591‐3p Upregulated   1.19E−05 1.452323  

miR‐196b‐5p Upregulated   1.67E−05 1.682773  

miR‐3664‐5p Upregulated   4.36E−05 1.737875  

miR‐636 Upregulated   9.98E−05 1.557929  

Abbreviations: NA, not available; NR, not reported.
aOR (95% CI). 
bHazard ratio (HR). 

T A B L E  3   (Continued)
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may affect the process.93 It was found that four miRNAs (ie, 
miR‐3196, miR‐1244, miR‐135b‐5p, and miR‐628‐3p) were 
associated with differentiation of CGA. The miR‐196a‐5p was 
correlated with age of CGA onset. Survival analysis revealed 
that the miR‐135b‐5p expression level was correlated with 
survival of CGA.94 Table 3 presents the results obtained from 
microarray analysis of miRNAs in CGA.

10  |   CONCLUSION

CGA is a multi‐factorial ailment and most cases are sporadic, 
although familial cases have been reported. There is much 
difference between CGA and NCGA in terms of tumor fea-
tures, distinct etiological factors, and biological behaviors. 
Lifestyle, H pylori infection, GERD, and multiple genetic, 
epigenetic, and environmental risk factors have been related 
to an increased risk of CGA. However, several GWASs, fol-
lowed by a large‐scale GWAS meta‐analysis, should be con-
ducted to identify novel high‐penetrance genes and pathways 
as well as causal germline variants predisposing to CGA. 
They must include different ethnic groups, especially from 
high‐incidence countries for CGA, because some risk loci are 
ancestry‐specific.96,97 In parallel, statistical methods can also 
be developed to identify CPGs from tumor sequencing data. 
Then, it should be largely explored how the genetic germline 
variants and somatic alterations interact to develop CGA in 
populations with different ethnic backgrounds. A little ex-
periment has also been done on the impact of lncRNAs on the 
carcinogenesis of the CGA. Therefore, next‐generation high‐
throughput RNA‐sequencing techniques can enable us to find 
novel ncRNA biomarkers related to the risk of CGA. Taken 
altogether, new cancer risk prediction models, including all 
genetic and nongenetic factors influencing risk should be de-
veloped to facilitate risk assessment, disease prevention, and 
early diagnosis and intervention of CGA in the future.
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