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Dynamic decision-making was essential in the clinical care of surgical patients. Reinforcement learning (RL) algorithm is a
computational method to find sequential optimal decisions among multiple suboptimal options. This review is aimed at
introducing RL’s basic concepts, including three basic components: the state, the action, and the reward. Most medical studies
using reinforcement learning methods were trained on a fixed observational dataset. This paper also reviews the literature of
existing practical applications using reinforcement learning methods, which can be further categorized as a statistical RL study
and a computational RL study. The review proposes several potential aspects where reinforcement learning can be applied in
neurocritical and neurosurgical care. These include sequential treatment strategies of intracranial tumors and traumatic brain
injury and intraoperative endoscope motion control. Several limitations of reinforcement learning are representations of basic
components, the positivity violation, and validation methods.

1. Introduction

Dynamic decision-making was essential in the clinical care of
surgical patients. It is often difficult to determine treatment
dosage precisely or decide whether to start or stop treatment
in specific situations (e.g., fluid therapy in patients with elec-
trolytes disturbance or anticoagulation after surgery). Doc-
tors often made multiple sequential decisions according to
their medical experience. The unmet clinical need falls into
whether we can develop a sequential clinical decision-
making support system (dynamic treatment regime (DTR))
to better aid doctors such that it can improve patients’ out-
comes. A DTR comprises a sequence of decision rules, one
per stage of intervention, that recommends how to individu-
alize treatment to patients based on evolving treatment and
covariate history. For example, in the case of a patient with
traumatic brain injury (TBI) and intracranial hypertension
(Figure 1(a)), should we apply concentrated sodium? Should

the patient be put on mechanical ventilation later? Should the
patient be sedated to alleviate airway resistance? How can we
treat patients so that their outcomes are as good as possible?

The majority of comparative effectiveness studies com-
pared two treatment modalities on a single timepoint to find
better treatment and potential treatment modifications. For
sequential treatments in multiple stages (Figure 1(b)), recent
advances in statistical and computational science provided
the opportunity to identify the optimal strategy.

The reinforcement learning (RL) algorithm finds sequen-
tial optimal decisions among multiple suboptimal options,
which can solve the above problem [1]. Reinforcement learn-
ing was considered a third type of machine learning algo-
rithm besides supervised learning and unsupervised
learning, which has its own set of challenges and methods.
To integrate reinforcement learning into healthcare, it is
essential first to understand how the algorithm works. This
review is aimed at introducing the basic idea as well as the
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FIGURE 1: (a) A patient with traumatic brain injury and intracranial hypertension; sequential treatment includes concentrated sodium,
mechanical ventilation, sedation, and possible outcomes. (b) The trajectories (strategies) of three patients and their expected total reward

from all treatments performed.

pros and cons of reinforcement learning. We also reviewed
the literature of existing practical applications of reinforce-
ment learning and proposed several potential aspects where
it can be applied in neurocritical and neurosurgical care.

2. Principles of RL

In computer science, RL’s classic problem is to apply hori-
zontal forces (to the left or the right) on a cart that can move
left or right on a track to keep a pole hinged to the car from
falling off the initial vertical position. The computer starts
to experiment by giving the cart a force. If the pole was kept
hinged, the computer gets the reward (e.g., plus one). If a fail-
ure occurs, then the computer has to restart a new episode.
By doing this experiment repeatedly, the computer learns

how to achieve the goal finally [2]. The whole process is the
RL algorithm.

Several uniform conceptions are introduced in this sce-
nario: the state, the action, and the reward (Figure 2). The
state (S) is the status a patient is at a specific time point,
including vital signs, lab tests, physical examinations, intra-
cranial pressure, demographics, and the dosage of medica-
tions. The action (A) is the treatment physicians give, or
the patient receives at that time point, e.g., concentrated
sodium or mechanical ventilation. The reward (R) is the
response that the patient reacts to the action. Strategy is the
combination of sequential actions through time, e.g., how a
physician would treat a patient in the whole in-hospital dura-
tion. Environment is the external system with which the
patient interacts (that is the medical knowledge we have).
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F1GURE 2: Uniform conceptions in reinforcement learning: the state,
the action, and the reward. Physicians gave treatment (action, A) to
the patient (state, S) with some vital signs, lab tests, and physical
examinations at a specific time point. The patient responds to the
treatment (reward, R).

Then, we define the DTR as the treatment prediction
function that takes the current state and translates it into
action. The ultimate goal of reinforcement learning was to
find the optimal DTR (best treatment combination through-
out a patient’s trajectory) that maximizes the expected total
reward from all actions performed (e.g., keep the intracranial
pressure in the normal range, Figure 1(b)).

In the previous computer example, the computer can
repeatedly play the game and update the algorithm parame-
ters based on real-time outcomes [2]. In most medical prac-
tices, we cannot wait until we observe the previous patient’s
efficacy to decide the next patient’s treatments, except we
are doing an adaptive trial. Most of the reinforcement learn-
ing studies in the medical area are called batch reinforcement
learning or offline reinforcement learning, in which a fixed
dataset is all that is available, and a real-time environment
is not accessible.

3. Studies Using RL Algorithms

Reinforcement learning studies can be further categorized as
a statistical RL study and a computational RL study. The rea-
sons for using statistical RL and computational RL to classify
literature are that these two subgroups use different estima-
tion methods and are applied in different kinds of dataset.

3.1. Statistical RL. A statistical RL study extends a usual one-
stage two-treatment comparison into two stages, which was
first studied and implemented to reanalysis sequential multi-
ple assignment randomized trials (SMART) [3]. SMART
involves initial randomization of patients to possible treat-
ment options, followed by rerandomizing the patients at each
subsequent stage to other treatment options available at that
stage. Examples of studies using SMART design (or its pre-
cursors) include the Clinical Antipsychotic Trials of Inter-
vention Effectiveness (CATIE) for Alzheimer’s disease [4],
the Sequenced Treatment Alternatives to Relieve Depression
(STARD) trial [5], a 2-stage trial designed to reduce mood
and neurovegetative symptoms among patients with malig-

nant melanoma [6], several trials that evaluated immune
checkpoint inhibitors [7], and dynamic monitoring strategies
based on CD4 cell counts [8]. In nonrandomized observa-
tional studies, Moodie et al. extended this method to observa-
tional data in a breastfeeding research to investigate any
breastfeeding habits’ effect on verbal cognitive ability [9].
Chen et al. also used the RL method in observation data to
find the optimal dosage in warfarin treatment. They found
that the dose should be increased if patients were taking
cytochrome P450 enzyme inhibitors [10]. Statistical RL
studies were usually solved by fitting linear outcome models
in a recursive manner. More recently, some other methods
have been developed such as inverse probability weighted
estimator and augmented inverse probability weighted esti-
mator [11, 12].

3.2. Computational RL. Computational RL deals with prob-
lems in the realm with higher dimensions, which means mul-
tiple treatment options within multiple stages [13, 14].
Martin-Guerrero et al. used RL to learn a policy for erythro-
poietin prescription to maintain patients within a targeted
hemoglobin range and proposed a methodology based on
RL to optimize erythropoietin therapy in hemodialysis
patients [15, 16]. Parbhoo et al. proposed an RL algorithm
to assign the most appropriate treatment to HIV patients.
They found that the proposed algorithm had the highest
accumulated long-term rewards over five years [17]. Liu
et al. proposed a deep reinforcement learning framework to
prevent graft versus host disease [18]. The most recent pub-
lished RL study was by Komorowski et al., and they predicted
optimal fluid therapy and vasopressor usage in sepsis
patients, which was validated in an independent database
[19]. Other studies also suggested that computational RL
can be used in treatment optimization. Nemati et al. pre-
sented a clinical sequential decision-making framework to
adjust individualized warfarin dosing for stabilizing throm-
boplastin time [20]. Ribba et al. recommended a personalized
regime of medication dosage [21]. Zhu et al. developed a dou-
ble Q-learning with a dilated recurrent neural network for
closed-loop glucose control in type 1 diabetes mellitus [22].
Recently, Ge et al. integrated reinforcement learning and
recurrent neural network to explore public health interven-
tion strategies [23]. Computational RL requires large amount
of data during dynamic programming and thus is not suited
for randomized trials with limited sample. [24, 25]

4, Proposed Aspects of Neurosurgical and
Neurocritical Care

Effective chemotherapy dosing policies and automated radi-
ation adaptation protocols after surgical resection of the
intracranial malignant tumor could be solved using rein-
forcement learning. Similarly, in patients with benign
tumors, e.g., growth hormone secreting pituitary adenomas,
the optimal treatment sequences, including medication, radi-
ation, and surgery, were unknown.

The method proposed by Brett et al. that RL could manage
optimal control of propofol-induced hypnosis during anesthe-
sia practice [13] could potentially be applied during the
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FiGure 3: Illustration of a proposed reinforcement learning framework to find optimal dynamic treatment therapy in patients with traumatic
brain injury. P represents the probability of the outcome after treatment at each stage; r represents the reward after treatment at each stage.

anesthesia process in neurosurgeries. Moreover, researchers
were developing surgical robots using reinforcement learning,
including creating a colon endoscope robot that could adjust
its locomotion [26] and a gesture recognition algorithm for
hand-assisted laparoscopic surgery [27]. All these studies sug-
gested that reinforcement learning was an efficient approach
to solving control problems by interacting with the environ-
ment and acquiring the optimal control policy. A similar idea
could be applied to neuroendscope during transventricular
surgeries and transnasal surgeries.

Regarding the whole treatment process of a patient, two
recent papers also proposed using RL to design clinical
supporting tools for plastic surgery and gastric intestinal
surgeries [26, 28]. Similarly, in neurocritical care, reinforce-
ment learning can also be applied to determine optimal post-
surgical management, e.g., precise fluid volumes were
essential for electrolyte management in patients with electro-
lyte disturbance after surgery. Moreover, TBI'’s entire treat-
ment trajectory could be modeled by a reinforcement
learning framework, as depicted in Figure 3. An algorithm
interacts with its environment (data from electronic health
records) to represent states (disease acuity), actions (treat-
ment), and the ultimate goal (such as survival). This algorithm
applies to a patient presenting with TBI and estimates the clin-
ical utility of observation, intracranial pressure monitoring, or
craniotomy. The process identifies the best treatments at each
stage that are most likely to achieve the ultimate goal.

5. Limitations of Reinforcement Learning

Though reinforcement learning was promised to solve
dynamic treatment problems, several limitations hindered
extensive applying this special algorithm in clinical research.

The first step in applying reinforcement learning to a
healthcare problem is to collect and preprocess accurate medi-
cal data. Most existing work defines the states with raw physio-
logical, pathological, and demographic information. We should
bear in mind that unmeasured or unobserved states might also
affect clinical decisions, e.g., the surgeons’ preference. Moreover,
how to categorize treatment with continuous presentations, e.g.,
infusion volume, needs further discussion. The reward may be
at the core of a reinforcement learning process. Sometimes, it

was easy to define the reward both in the intermediate state
and the final state, e.g, INR in warfarin adjustment or blood
glucose in optimal diabetes mellitus control. While in most
medical settings, the outcomes of treatments cannot be natu-
rally generated and explicitly represented, e.g., the reward was
defined as a function of viral load, CD4+ count, and the number
of mutations in an HIV study [17]. The reward was defined by a
complex function of vital signs and intubation status in an intu-
bation weaning study [20].

Like any other casual inference studies, the violation of
positivity (the conditional probability of receiving each treat-
ment is greater than zero) is a major limitation in training
the reinforcement learning algorithm. For example, in patients
with severe hyponatremia, treatment options include “no
action,” “normal saline,” and “3% concentrated sodium,”
and physicians always treat these patients with concentrated
sodium. Generally, we know that we cannot do the “no action”
or the “normal saline” option because it makes no sense. How-
ever, some patients still had no improvement on serum
sodium despite optimal medical management by human clini-
cians. Since the reinforcement learning algorithm can learn to
avoid dosing patients or acting differently than the clinician in
severe cases to avoid being punished, the reinforcement learn-
ing algorithm might choose the “no action” or the “normal
saline” option in such cases. Omer et al. also mentioned in
their guideline that reinforcement learning algorithms’ quality
depends on the number of patient histories for which the pro-
posed and actual treatment policies agree [29].

It is essential to estimate how the learned policies might
perform on retrospective data before testing them in real
clinical environments. Current validations in reinforcement
learning literature were based on either the internal dataset
(where the algorithm was obtained) or the external dataset
(an independent dataset) [19]. The basic idea behind valida-
tion was to compare the total reward generated by the rein-
forcement learning algorithm and the total reward from the
actual treatment. Unlike other board/video games, in a clini-
cal setting, physicians cannot and are not allowed to play out
a large number of scenarios to learn the optimal policy. Fur-
ther validation of the algorithm needs randomizing patients
treated under the algorithm’s policy versus treated under
the clinician’s policy.
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6. Conclusion

In conclusion, reinforcement learning algorithm is an emerg-
ing method to find an optimal treatment regime during
clinical decision-making. Proposed neurosurgical and neuro-
critical applications include sequential treatment of intracra-
nial tumors and traumatic brain injury. Future aspects also
involve intraoperative motion control. Limitations of rein-
forcement learning warrant further collaborations of both
computational scientists and physicians.
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