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Abstract: The emerging 5G applications and the connectivity of billions of devices have driven the
investigation of multi-domain heterogeneous converged optical networks. To support emerging
applications with their diverse quality of service requirements, network slicing has been proposed as
a promising technology. Network virtualization is an enabler for network slicing, where the physical
network can be partitioned into different configurable slices in the multi-domain heterogeneous
converged optical networks. An efficient resource allocation mechanism for multiple virtual networks
in network virtualization is one of the main challenges referred as virtual network embedding (VNE).
This paper is a survey on the state-of-the-art works for the VNE problem towards multi-domain
heterogeneous converged optical networks, providing the discussion on future research issues and
challenges. In this paper, we describe VNE in multi-domain heterogeneous converged optical
networks with enabling network orchestration technologies and analyze the literature about VNE
algorithms with various network considerations for each network domain. The basic VNE problem
with various motivations and performance metrics for general scenarios is discussed. A VNE
algorithm taxonomy is presented and discussed by classifying the major VNE algorithms into three
categories according to existing literature. We analyze and compare the attributes of algorithms such
as node and link embedding methods, objectives, and network architecture, which can give a selection
or baseline for future work of VNE. Finally, we explore some broader perspectives in future research
issues and challenges on 5G scenario, field trail deployment, and machine learning-based algorithms.

Keywords: virtual network embedding; converged optical networks; network slicing; machine
learning; software-defined network

1. Introduction

The exponential growth of the emerging of dynamic applications and the billions of devices in
the Internet of Things (IoT) with sensing, computing, and communication capabilities have driven
the investigation of network architecture. Current network architectures fail to address the diverse
performance requirements in terms of latency, scalability, availability, and reliability [1]. To overcome
the issues and support more heterogeneous applications, network slicing is considered as a promising
technology formed by partitioning or combining a set of network resources, and abstracting it
to users [2,3]. Network virtualization and orchestration are key processes for network slicing,
where software-defined network (SDN) and network function virtualization (NFV) are the key enabling
technologies for network orchestration [4,5]. In addition, SDN can manage and deploy the service
requirements automatically by decoupling the transmitting layer and control layer [6,7]. It is specified
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to leverage the benefits of network virtualization to allow high flexibility among various mobile and
IoT services in multi-domain heterogeneous converged optical networks.

Infrastructure provider (InP) and service provider (SP) have been decoupled in the network
virtualization environment to enable multiple virtual networks (VNs) coexisting and sharing substrate
resources (e.g., node computing resources and link resources) [8,9]. Efficient resource allocation for
both virtual nodes and links is one of the major challenges which refers as virtual network embedding
(VNE) [10]. Many existing works have solved the VNE resource allocation problem by integer linear
program (ILP) [11–13]. Efficient VNE algorithms have been proposed in many works to improve the
performance [14,15], which include two-stage algorithms by efficient node ranking and link assignment
method, coordinated VNE approaches, and machine learning (ML)-based algorithms. Many existing
works have focused on specific domain network architecture of heterogeneous converged optical
networks for the VNE approaches, such as wireless network, fiber-wireless (FiWi) access network,
and optical data center network (ODCN).

Existing surveys and literature have considered various details and network features for
VNE under different network scenarios (e.g., elastic optical network) [16–18]. In [16], the authors
have focused on algorithmic aspects for VNE for cloud networks. However, these surveys have
not focused on VNE for multi-domain heterogeneous converged optical networks and the future
research issues on implementation and intelligent algorithms. In this paper, the representative
references in the latest popular top journals and conferences about VNE and network slicing are
discussed. Furthermore, multi-domain heterogeneous converged optical network architecture has
been described and the differences among them are discussed, e.g., radio resource for wireless channel,
spectrum characteristics for optical network, and various substrate nodes. Thereby, the characteristics
of specific single domain network for VNE have been discussed. We provide a brief survey of the basic
VNE problem formulas and a taxonomy of VNE approaches on existing works. Issues and challenges
have been discussed for the road on VNE in the future.

The organization of the paper is as follows. VNE in multi-domain heterogeneous converged
optical networks and key enabling technologies are discussed in Section 2. In Section 3, the basic
VNE problem and major metrics are presented. In Section 4, we give a VNE algorithm taxonomy
for existing works. The future issues and challenges on the road of VNE are discussed in Section 5.
Finally, we conclude the paper in Section 6.

2. Virtual Network Embedding in Multi-Domain Heterogeneous Converged Optical Networks

For emerging enhanced mobile broadband (eMBB), massive machine communications, and
ultra-reliable and ultra-low latency communications 5G scenarios, network slicing as a promising
technology can guarantee the requirements and efficient resource utilization. The diagram of
multi-domain heterogeneous converged optical network architecture in Figure 1 is composed
of wireless access network domain, metro network domain, core network domain, and edge
computing/data center domain. Wireless access networks have been architectured to support a
number of diverse vertical applications of end users and converged the requirements into metro
and core networks. Edge computing and data centers provide computing capacity to guarantee the
implementation of VNE. Many 5G research works and demonstration projects (e.g., 5GNORMA, 5GEx,
5GinFIRE, and 5G!Pagoda) have addressed the realization of 5G slicing mainly on wireless domain
through the combination of key enabling technologies of SDN and NFV [19]. Thereby, SDN and NFV
are described in the following as key enabling technologies to provide and guarantee the deployment
and implementation of VNE. Although there exist few researches about VNE for 5G multi-domain
networks, many of the existing works have focused on VNE for single domain. We review the VNE in
wireless network, FiWi access network, and optical network single domain in the following.
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2.1. Key Enabling Technologies

VNE implementation, resource allocation, and scheduling are key points in multi-domain
heterogeneous networks. SDN and NFV have been proposed as key enabling technologies to achieve
network slicing orchestration for many 5G researches and demonstration projects. SDN can decouple
the infrastructure layer and the control layer, which is considered a key enabling technology to
implement network virtualization (e.g., deployment VNE algorithms) and manage services for network
operators [20–22]. The SDN controller enables configuring network remotely to enhance the network
flexibility and service provisioning, which can provide a closer tie between application requirements
and the combination of resources (e.g., optical transport network, IP layer, computing, and storage) [23].
SDN is an ideal platform for implementation of network virtualization since it can flexibly offer
end-to-end network slices according to the requirements of different applications through hypervisors
such as Flowvisor, OpenVirteX, FlowN, and AutoVFlow [24].

Wireless Access Network Metro Network

Edge Cloud 

Core Network

Data Center

Figure 1. Architecture of multi-domain heterogeneous converged optical networks.

NFV plays an important role in the realization of virtual network functions and network services
by decoupling network functions from the dedicated physical devices, implementing them as software
on industrial standard high volume servers. Service chaining composed of virtualized network
functions can make both data and control plane functions flexible so that the traffic of certain users or
applications only traverses a particular set of functions [25]. Virtual network functions placement can
be regarded as a special VNE issue. Thereby, the complexity of VNE problem for network management
and deployment in 5G multi-domain network architecture has increased, especially in the context of
large number of VN requests. Management and orchestration (MANO) framework is leveraged as a
critical automatically solution to manage and orchestrate network virtualization [26,27].

2.2. Wireless Network

Due to the development of emerging 5G applications (e.g., IoT and Internet of Vehicles (IoV)),
the VNE problem in wireless network domain of 5G has gained more attention due to the growing
popularity of 5G applications. The implementation and efficient slicing of wireless domain are
essential to provide services for users as it is closed to the massive users side in 5G networks.
The concept of the cloud-radio access network (C-RAN) has been proposed to decouple digital
units (DUs) and radio units (RUs) of base stations (BSs) and centralize DUs into central offices [28].
C-RAN is supposed to increase the capacity by 1000x to handle the growing number of connected
devices and increasing data rates, which can ease the implementation of advanced radio coordination
techniques, e.g., coordinated multi-point (CoMP) Transmission/Reception. In addition, the revolution
of IoT is reshaping the modern industrial systems, where industrial wireless networks (IWNs) refer
to the pervasive deployment of devices with sensing, processing, and connecting capabilities [24].
The example of VNE in IWNs is shown in Figure 2, where massive devices deployed in the access
layer perform monitoring and controlling. Those OpenFlow-enabled access points (APs) with mesh
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topology compose the data plane for packet accessing and transferring to edge and cloud computing.
The substrate network is controlled by the controller of the control layer to satisfy the industrial virtual
network in the application layer.

According to the European Telecommunications Standards Institute (ETSI) [29], mobile edge
computing (MEC) is defined as “Mobile edge computing provides an IT service environment and
cloud computing capabilities at the edge of the mobile network, within the radio access network (RAN)
and in close proximity to mobile subscribers.” To extend cloud computing services to the edge of
networks leveraging mobile base stations, MEC is an emergent architecture which can be applied
to mobile, wireless, and wireline scenarios, using software and hardware platforms, located at the
network edge in the vicinity of end users [30].

Wireless sensor networks (WSN) are regarded as the basic constituents of IoT that can facilitate
the interaction of users (humans or machines) with their environment and react to real-world
events. To create large-scale sensor platforms, WSN virtualization is envisioned as an important
technology to satisfy efficient usage of network resources. The authors of [31] have analyzed the
importance and approaches for sensor node-level virtualization and network-level virtualization of
WSN. To facilitate the QoS provisioning for different applications with strict demands on latency and
reliability, an application-driven virtual network embedding scheme has been proposed for flexible
network resource allocation of industrial WSNs [32].

Application Layer

Control Layer

IVN1

IVN2
…

IVN3

Cloud

Edge Computing
Access Layer

Gateway 

OpenFlow-enabled AP  .   

Sensor
Actuator
PLC

Camera

Figure 2. Illustration of slice-based virtualization for industrial wireless networks (IWNs).

In addition, many unique characteristics of wireless networks need to be considered for
VNE [32–35]. Node mapping is only partially deterministic, as the AP is simply selected according to
the location of users, but gateway (GW) has to be determined based on throughput optimization [34].
Mobility for node (re-)mapping has been considered in [35]. Due to the broadcast nature of wireless
channels, link mapping needs to consider the specific multiple access mechanisms. The authors
of [32] propose an approach based on anypath routing technique to reduce the resources consumed by
re-transmission.
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2.3. Fiber-Wireless Access Network

The FiWi access network is a network converged by wireless and optical components, and is an
essential part of 5G networks as it guarantees the 5G service requirements and converges them into the
core network. It gains more popularity for its advantages of high capacity, long distance, and flexible
access ability [36–38]. Network virtualization for FiWi is required to overcome the bottleneck of joint
wireless and optical resource allocation.

Additional network characteristics of FiWi need to be considered, where the substrate nodes
include optical line terminal (OLT), optical network unit (ONU), wireless router, and wireless gateway.
The substrate links are composed of fiber link, cable, and wireless link. Additional link features
are supposed to be considered for link embedding, e.g., the channels of wireless radio interfaces.
The illustration of VNE in FiWi access network [39] is shown in Figure 3. Efficient resource management
for both optical and wireless resources of the SDN/NFV-based converged network has been discussed
in [40] to guarantee the specific delay and bandwidth requirements of the multiple services of network
slices. Furthermore, to centralize control and allocate network and computing resources of converging
edge computing over FiWi network, the authors of [41] propose two VNE algorithms to obtain higher
revenue and profit ratio.

OLT

VN 1 VN 2

Splitter

S

Wireless

 gateway
        Wireless router   

ONU

Figure 3. Illustration of virtual network embedding (VNE) in fiber-wireless (FiWi) access network.

2.4. Optical Network

Optical network is the fundamental part in 5G multi-domain heterogeneous network to ensure
the high bandwidth and low latency transmission. Many existing works have proposed efficient VNE
allocation schemes from various aspects to guarantee the converged massive 5G services performance
requirements for network virtualization [42–45]. A novel dynamic VNE approach based on an auxiliary
graph is proposed to improve network utilization and performance by adjusting the weights of the
edges of the auxiliary graph on fixed-grid DWDM network [43]. The proposed VNE algorithms for
migration in [44] have improved network utilization and energy consumption efficiently.

To facilitate the flexible allocation of the fiber spectrum, elastic optical network (EON) is an
emerging technology by leveraging finer-grained channel spacing, tunable modulation formats and
forward error correction overheads, and baud-rate assignment [46]. In [11,14,45], the authors have
proposed efficient approaches to solve VNE in EON for network slicing to guarantee the service
requirements. Spatial resources of optical network are also considered in some works [47–49],
which refer to fiber cores or modes in multi-core fibers or multi-mode fibers, or even single-mode
fiber bundles. The proposed genetic algorithm in [48] has obtained the optimal VNE schemes with
core allocation to efficiently by designing tailor-made encoding scheme, crossover, and mutation
operators. Some additional constraints for VNE should be considered for optical network domain
such as spectrum continuity, spectrum contiguity, and physical layer impairments [50–52].
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Data centers (DCs) have become an efficient and promising infrastructure to provide
data storage and computing capacity. Geographical distribution data center networks connected
with optical network guarantee the requirements of 5G network services and applications
(e.g., video streaming) [53–55]. Furthermore, network virtualization in ODCNs can be classified into
intra- [17,18] and inter-ODCNs [16,56–58]. Three provisioning schemes have been proposed in [59]
by constructing a virtual auxiliary graph that decomposes the physical infrastructure into several
layered graphs, according to the spectrum slot requirements of a virtual optical network request.
Network services deployment and orchestration for network slice in inter-ODCNs have been developed
in [60]. OpenStack-based orchestrator deploys the VMs for IT requirements by the path computation
engine and contacts with the OpenDaylight SDN controller to guarantee the network configuration.
The illustration of VNE in inter-ODCN and the network architecture are shown in Figure 4.

Data 
center Data center

Data 
center

Data 
center

Data 
center

OXCOXC

OXC OXC

OXC

Available slots
Occupied slots
Slots allocated to the virtual link request

Slots resources of the substrate link:

Available resources
Occupied resources
Resources allocated to the VN

Computing resources of the DC:

A

B C

DE

Figure 4. Illustration of VNE in inter-optical data center networks (ODCNs).

3. Virtual Network Embedding Problem

This section introduces the substrate network, virtual network, and general VNE problem
description and formulation with restrictions for resource allocation. Furthermore, the major
objectives and efficiency metrics are formulated to evaluate the performance of VNE problem for
resource allocation.

3.1. Substrate Network

Similar to the work in [13], the substrate network is described by an undirected graph
GS = (NS, ES, AS

N , AS
E), where NS is the set of substrate nodes and ES refers to the set of substrate links.

Substrate nodes and links are associated with their attributes, denoted by AS
N and AS

E, respectively.
For each substrate node n ∈ NS, the node attributes usually consider CPU capacity CS

n and location
LocS

n. For substrate link eS(m, n) between the substrate node m and n, the typical attribute is
bandwidth capacity bS

e [61] and wireless channel [37]. Additional link constraints (i.e., wavelength,
spectrum continuity, and spectrum contiguity) need to be considered when the substrate link is optical
fiber [51,52]. An important issue has to be taken into account while the actual effect of users mobility
for wireless networks [62].

3.2. Virtual Network

The undirected graph, GV = (NV , EV , AV
N , AV

E ), describes the set of virtual network requests [63],
where NV and EV refer to the sets of virtual nodes and links, respectively. The network topology,
(NV , EV), is a logical network that should be configured as a sub-network of the substrate network.
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Typically, the substrate network should satisfy the attributes associated with virtual nodes and
links described as AV

N and AV
E , respectively. In addition, for the virtual node v ∈ NV

r of the rth

VN, the requested node attributes for embedding are CPU capacity request cv
r , the location Locv

r ,
and maximum location distance ρv

r . For each virtual link er(v, u) ∈ EV
r , bandwidth requirement, BV

er , is
the major considered virtual link attribute.

3.3. Virtual Network Embedding

The problem of mapping virtual network to substrate network can be defined as a mapping M:
GV(NV , EV) → GS(NS, ES), from GV to a subset of GS [11,14,15]. Figure 5d shows the example of
VN embedding solution for virtual network requests in Figure 5a,b embedded in initial substrate
network shown in Figure 5c. The numbers over the links represent the link capacity and the numbers in
rectangles represent CPU resource of virtual network and substrate network. VNE can be decomposed
into two steps:

1. Virtual Node Embedding (VNoE): f : NV
r → NS.

Virtual nodes need to be embedded to different substrate nodes that satisfy the node resource
and location constraints, which are described by Equations (1)–(4), where δv,r

n ∈ {0,1}. If virtual
node v of rth VN is embedded into substrate node n, δv,r

n = 1. Equation (1) guarantees that all
virtual nodes that are accommodated by the substrate node n cannot exceed the total substrate
computing resource. Each virtual node v can only play host once to a unique substrate node
shown in Equation (2). Each substrate node n can only host one virtual node of the same VN
request described by Equation (3). The distance constraint for each virtual node is described by
Equation (4), where dis(·) refers the distance between the locations of substrate node n and virtual
node v.

∑
r∈R

∑
v∈NV

r

cv
r · δv,r

n ≤ CS
n ∀n ∈ NS (1)

∑
v∈NV

r

δv,r
n ≤ 1 ∀n ∈ NS, ∀r ∈ R (2)

∑
n∈NS

δv,r
n = 1 ∀v ∈ NV

r , ∀r ∈ R (3)

dis(Locv
r , LocS

n) ≤ ρv
r ∀n ∈ NS, ∀r ∈ R, v ∈ NV

r (4)

2. Virtual Link Embedding (VLiE): f : EV
r → ES.

Virtual links embedded to loop-free paths on the substrate network that satisfy the link bandwidth
resource requirements and the total virtual link requirements cannot exceed the bandwidth
resource of substrate link eS(m, n), as shown in Equation (5). Binary variable f (er(v, u), eS(m, n))
equals 1, if substrate link eS is embedded by virtual link er. Flow conservation constraint is shown
in Equation (6). According to features of substrate links, additional link constraints should be
considered, i.e., optical wavelength, spectrum continuity in EON [50–52], and wireless channel,
expected anypath transmission time of anypath [24].

∑
r∈R

∑
er∈EV

r

f (er(v, u), eS(m, n)) · BV
er ≤ bS

e , ∀eS ∈ ES (5)

∑
n∈NS

f (er(v, u), eS(m, n))− ∑
n∈NS

f (er(v, u), eS(n, m)) = δv,r
m − δu,r

m , ∀er(v, u) ∈ EV
r , ∀r ∈ R (6)
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Figure 5. Example of VN embedding solution.

3.4. Main Objectives and Metrics

The VNE problem needs to evaluate the performance for VNE approaches and satisfy the diverse
5G service requirements. Thereby, one or some metrics are considered as objectives according to the
motivation of literatures. In this section, the major objectives and metrics are described and analyzed.

3.4.1. Profit

Similar to work in [64,65], the revenue of serving a VN request is defined by summing up the
required CPU and bandwidth resource for VN requests as shown in Equation (7), where α and β are
the weights. Although revenue is the metric that InP will gain by accepting VN requests, it is not very
considerable without knowing the cost of InP. The cost of VNE is defined by summing up all CPU and
bandwidth resources of the substrate network resources allocated for VN requests. The embedding
cost for VN request r is described by Equation (8), where αc and βc are the weights for CPU and
bandwidth costs, respectively. In addition, the whole profit for InP for serving all the VN requests is
defined by Equation (9). The revenue/cost ratio described by Equation (10) indicates the percentage
between revenue and cost, where it also can reflect the profit for InP.

Revenue(GV
r ) = α · ∑

v∈NV
r

cv
r + β · ∑

er∈EV
r

BV
er (7)

Cost(GV
r ) = αc · ∑

v∈NV
r

cv
r + βc · ∑

er∈EV
r

∑
eS∈ES

f (er(v, u), eS(m, n)) · BV
er (8)

Pr f (GV) = ∑
r∈R

Revenue(GV
r )− ∑

r∈R
Cost(GV

r ) (9)

Revenue/Cost Ratio =

∑
r∈R

Revenue(GV
r )

∑
r∈R

Cost(GV
r )

(10)

3.4.2. Acceptance Ratio

The acceptance ratio is also related with profit, as the revenue is calculated if the VN request
is accepted [64]. As described in Equation (11), it measures the number of VN requests which are
completely embedded, where AccV

r ∈ {0, 1} refers VN request r is accepted or not. For some online
problem, usually blocking ratio is considered, where Blocking Ratio = 1− Acceptance Ratio.
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Acceptance Ratio =
∑GV

r ∈GV AccV
r

|GV | (11)

3.4.3. Resource Utilization

Resource utilization is defined by summing the occupied substrate resources (node and link) for
the embedded VN requests divided by the total amount of resources. This metric can take into account
the resource usage. Node resource utilization RUCom and link resource utilization RULink are shown in
Equations (12) and (13) by summing the requirements of the embedded node or link for VN requests
divided by the total node or link capacity of the substrate network [66]. For some online scenarios,
the lifetime of VN requests is considered.

RUCom =
∑n∈NS ∑r∈R ∑v∈NV

r
cv

r · δv,r
n

∑n∈NS CS
n

(12)

RULink =
∑eS∈ES ∑r∈R ∑er∈EV

r
f (er(v, u), eS(m, n)) · BV

er

∑eS∈ES bS
e

(13)

3.4.4. Latency

As the emerging 5G services (e.g., IoV) have strict latency requirements, the VNE problem must
guarantee these targets [67]. In the existing literature, latency requirements have been modeled as
constraints applied to the virtual links of VN (i.e., each virtual link is mapped to satisfy a given
latency target) [45]. The authors of [68–70] focus on latency-aware algorithms by considering the
time (e.g., propagation time or delay) from one embedded substrate node to another to satisfy the
requirements of virtual links. For simplicity, path length is used to represent the latency metric in [69],
which sums up the length of substrate links where a virtual link request is embedded. In connection
with the longer length of corresponding path, more resources are consumed in substrate network and
users will suffer longer latency.

Especially for 5G end users that require ultra-low latency services (e.g., video broadcast service,
gaming service), link latency should obtain more consideration. The authors of [71] have formulated
the end-to-end delay in a fronthaul network as De2e = Dproc + Dprop + Dlink + Dqueue. The total
processing delay Dproc is a fixed value required to forward a packet. Dprop is the propagation delay,
which is determined by the fiber length. The serialization delay Dlink is proportional to the frame size
and inversely proportional to the link bandwidth capacity. Queuing delay Dqueue is caused by the
competition among fronthaul packets. The authors of [45] focus on latency model in EON, where the
latency of lightpath is shown as Lp = Ln + len(p)Lprop + nampLamp + (|p|+ 1)Lroadm. Ln means the
latency at terminal node considering FEC modules and transponders. Propagation delay len(p)Lprop

is the major latency contribution for a lightpath, which Lprop amounts to ≈ 4.9 µs per kilometer of
fiber and len(p) is the physical length of lightpath. The latency of amplifiers nampLamp is considered,
where namp is the number of amplifiers on a lightpath p. The latency of component reconfigurable
optical add-drop multiplexer is shown by Lroadm and |p| is the number of substrate optical links on
the lightpath. The differences between the two equations mentioned above are based on the network
components of substrate links.

3.4.5. Energy Efficiency

Energy consumption of network infrastructures in network virtualization has been focused due
to the rising energy costs and ecological awareness. Without compromising the network performance
(e.g., InPs), switching off or sleeping power-consuming elements by consolidating requests is considered as
the primary approaches to minimize the energy consumption in [66,69,72]. Various network components
in network architecture (e.g., servers, routers, and transponders) are considered in [73–75]. In general,
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the ratio between running nodes and the total number of substrate nodes is taken into account as a
performance metric. The authors of [76] have considered migration to re-optimize the energy consumption
with consideration of interruption time and bandwidth waste of migration.

3.4.6. Survivability

Failures can affect a large number of VN requests, which can be divided into two categories:
node failure [77,78] and link failure [79]. VN survivability is the ability that a VN continuously provides
services in compliance with the given requirements in present failures and other events [79,80].
Link survivability can be classified into two categories: protection [81,82] and restoration [83].
The authors of [84,85] have focused on the link recovery in C-RAN.

To solve the issue, the proposed survivable algorithms should consider some performance metrics
as follows.

• Number of backups: The metric counts the number of backup resources that is reserved for a VN.
Additional substrate resources have to be reserved to serve the VN request when failures happen.
Path Redundancy measures the ratio between the number of backup paths to the number of direct
paths. Some redundancy algorithms set up backup paths that can be used in case some parts of
the network break down [86]. Therefore, the metric refers to the amount of additional resources
that are used to backup the embedded network.

• Migration frequency: For node failure, migration frequency shows the performance required to
achieve higher acceptance ratio and lower embedding cost of node migration [77]. The affected
task node will be migrated to one backup host after node failure to reduce the cost of node
migration and re-embedding the path. Link failure or path length constraint also can trigger
migrations. Therefore, migration frequency should be considered as a metric to show the
migration performance.

3.4.7. Traffic Prediction

Traffic prediction is not an objective or a metric; however, it is an important procedure to improve
objective or metric performance. In many 5G scenarios and applications, network traffic prediction
is playing an important role [87] for resource allocation and load balancing in management and
provisioning (e.g., network management, traffic (re)-routing). Autoregressive (AR), autoregressive
moving average (ARMA), autoregressive integrated moving average (ARIMA), and support vector
machine (SVM) are the most common models for network prediction problems [88]. Due to the
ability of processing the high-dimensional data, deep/convolutional/recurrent neural network models
are widely used in the network traffic prediction to improve the accuracy of prediction [88–92].
The accuracy of the predicted results based on the algorithms needs to guarantee the change of the
bandwidth explosion and service diversity. In addition, the accuracy is used to measure how efficient
VNE method impacts the number of VN requests or the profit ratio for InPs.

To evaluate the prediction accuracy, mean absolute error (MAE) [93], measure square error
(MSE) [94], and root mean square errors (RMSE) [88] are used to quantify the difference between the
forecasted values and the actual values. MAE is an average sum of the absolute errors described in
Equation (14), where yi and ŷi are the observed value and the predicted value, and N represents the
total number of predictions. MAE is a widely used prediction accuracy measurement and a small value
of it means that the predictor has high performance. MSE is a scale dependent metric by computing
the average sum of squared errors as shown in Equation (15). In addition, RMSE is the square root of
MSE as shown in Equation (16).

MAE =
1
N

N

∑
i=1
|yi − ŷi| (14)

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (15)



Sensors 2020, 20, 2655 11 of 22

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)2 (16)

4. VNE Algorithms Taxonomy

According to the VNE problem description and formulation in Section 3, ILP with various
objectives and constraints of network architecture features is an optimal VNE solution for many
existing research works [11,14,69]. However, the VNE problem is known as an NP-hard problem,
which cannot be solved in polynomial time when the substrate network topology or virtual network
requests are scaled through ILP. To overcome the issue, many existing research works have proposed
novel algorithms. The VNE problem is divided into two sub-problems as described in Section 3,
we review the methods for VNoE and VLiE. In this section, we classify the existing VNE algorithms into
three categories: two-stage VNE algorithms, coordinated VNE algorithms, and machine learning-based
VNE algorithms.

4.1. Two-Stage VNE Algorithms

Two-stage VNE algorithms execute VNoE according to node ranking strategy for virtual nodes.
The link assignment strategy of VLiE is executed for resource allocation after all the virtual nodes
embedded. This section reviews the representative node ranking strategies for VNoE and virtual link
assigment approaches for VLiE.

4.1.1. Virtual Node Embedding

For virtual node embedding, greedy strategy is the most common method for virtual node
resource allocation. The choice of method used in ranking the virtual node and substrate node
efficiently is essential for embedding. The most considered metric for node ranking is the CPU
capacity in decreasing order according to the requirement of virtual nodes and residual CPU capacity
of substrate nodes [76]. Available resource node ranking method is formulated as product of node
residual CPU capacity and sum of unoccupied bandwidth capacity of the neighbor links [12,95,96].
Instead of CPU capacity, the available resource method ensures that enough CPU capacity available
and also considers bandwidth capacity to prepare for the subsequent link mapping stage. The authors
of [97] propose a candidate-assisted algorithm by constructing candidate substrate nodes and candidate
substrate paths for a virtual network request to reduce the mapping execution time.

The Markov random walk (RW) topology-aware node ranking method is proposed inspired by
the PageRank algorithm [63], which is computed using a classic iterative scheme for the product of
the vector of all substrate nodes resource and a one-step stochastic transition matrix of the Markov
chain. To quantify the embedding potential of each node in the substrate network, the proposed
global resource capacity (GRC) takes the topological attributes resources of the entire network into
consideration [15]. The GRC value for each node is the sum of weighted normalized residual CPU
capacity and bandwidth resource of links connected with the node. GRC node rankings are computed
using an iterative scheme of the GRC vector which is composed of the calculated GRC for the nodes.
An additional attribute is considered in [69,98] for the formulated modified GRC method.

4.1.2. Virtual Link Embedding

After all nodes embedded in VNoE, virtual link embedding strategy is executed as fixed
source–destination link requirement assignment. The most common used strategies for wired network
are Dijkstra shortest path (SP) [76,95,98], K-shortest path (KSP) [12,14,36,63], and multi-commodity
flow (MCF) [99]. The authors of [36] have considered link availability for survivability. Additional link
restrictions of network (e.g., spectrum continuity, spectrum contiguity, and modulations) need to be
considered. The authors of [12] have considered path splitting to reduce link congestion for better
link resource allocation. The authors of [96,97] have proposed to construct satisfied the virtual link
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requirements candidate path set with reduction of mapping execution time, meanwhile without loss
of the main performance indices.

4.2. Coordinated VNE Algorithms

Coordinated VNE approaches have been proposed to improve network resource utilization
and solve the drawback and limitation of two-stage VNE approaches that it may cause embedding
failure due to inefficient link capacity after all vitrtual node embedded. In [15,99], the proposed
coordinated VNE algorithms consider node and link stage jointly to improve the performance metrics.
The proposed coordinated VNE algorithms execute virtual link embedding according to descending
order of the degree of virtual node for the virtual link [57]. Additional link restrictions (e.g., spectrum
continuity, spectrum contiguity, and modulations) have been considered in EON with multi-core
fiber. Due to the unique features of wireless networks, SP or MCF is not appropriate for mapping.
Taking advantage of the broadcast nature of wireless channels, authors have proposed an anypath link
mapping scheme to fulfill the diverse QoS requirements of VNs and reduce the resources consumed
by retransmissions [32].

In order to further improve the performance, metaheuristic-based coordinated VNE algorithms
are proposed. The authors of [48] propose an effective genetic algorithm for virtual optical network
mapping, core allocation, and spectrum assignment in EONs using multi-core fibers. The objective
is minimizing the maximum index of used frequency slots, which is regard as spectrum usage in
this section. Virtual nodes mapping population, routing population, and core allocation population
are used in proposed genetic algorithm. A periodical planning of embedding process is proposed
in [100], where profitable VN requests are selected through an auction mechanism to maximize the
revenue. The authors of [56,69] have proposed ant colony optimization (ACO)-based VNE algorithm
in inter-ODCN. The proposed multi-objectives VNE algorithm based on particle swarm optimization
(PSO) in [101] can improve the energy and revenue performance through the particle iteration.

4.3. Machine Learning Based VNE Algorithms

Two-stage and coordinated VNE algorithms will lead to a sub-optimal solution because of artificial
rules. Due to the development of ML [102,103] technologies, efficient VNE algorithms based on ML
have received greater concern in satisfying the increasing diversity of applications and demands and
to reduce search space. The authors of [104] formalize the virtual node mapping problem by using the
Markov decision process (MDP) framework and devise node mappings for the proposed MDP using
the Monte Carlo tree search algorithm.

Several works have appeared on the design of VNE solution using reinforcement learning (RL),
which focuses on how to interact with the environment to achieve maximum cumulative return.
The authors of [105] proposed a RL-based dynamic attribute matrix representation algorithm for VNE.
Substrate network node information and link information are represented by an attribute matrix
and an adjacency matrix. Furthermore, a novel approach, NeuroViNE, to speed up and improve the
existing VNE algorithms has been proposed in [106], where NeuroViNE relies on Hopfield network
to reduce search space and preprocess the problem. The Hopfield network is a form of recurrent
neural network, which can extract whole valuable subgraphs and compute a probability for each node.
The authors of [107] have developed a DRL-based VNE solution called DeepViNE. The key idea is to
encode substrate and virtual networks as two-dimensional images.

In IWNs, the dynamic link quality and time-varying workload of the forwarding nodes make it
intractable for the optimal anypath forwarding actions computation. To better learn the environment,
deep Q-learning by combining deep neural network with Q-learning is used to solve VNE in IWNs [24].
Based on the above literature review, we summarize the representative references and list typical VNE
algorithms in Table 1, arranged in different categories as given in section.
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Table 1. VNE algorithm taxonomy.

Algorithm Network Request Types Objectives Network Control ILP Node Ranking Link Assignment Reference

Two-stage

General Dynamic

Revenue N
Y Available resource KSP + splitting [12] Yu et al. (2008)

N RW KSP [63] Zhang et al. (2012)

Cost N Y Candidate node set Candidate path set [97] Cao et al. (2018)

Energy efficiency N Y
Residual CPU SP [76] Zhang et al. (2016)

Modified GRC SP [98] Cao et al. (2018)

FiWi Static Survivablility N Y Residual CPU KSP [36] Liu et al. (2019)

Inter—ODCN Dynamic
Cost N Y Available resource SP [95] Jiang et al. (2015)

Acceptance Y Y Available resource Candidate path set [96]Pagès et al. (2019)

EON Static Spectrum usage N Y Random KSP + splitting [14] Shahriar et al. (2019)

Coordinated

General Dynamic

Revenue N N GRC SP [15] Gong et al. (2014)

Cost N Y Available resource MCF + splitting [99] Chowdhury et al. (2012)

Energy efficiency+ Revenue N N Candidate node set SP [101] Shahin et al. (2015)

Revenue N Y N/A N/A [100] Jarray et al. (2015)

WSN Dynamic Revenue N N N/A anypath [32] Li et al. (2017)

EON Static
Cost N Y N/A SP [57] Lin et al. (2018)

Spectrum usage N N Random KSP [48] Xuan et al. (2017)

Inter—ODCN
Static Energy efficiency Y Y Modified GRC SP [69] Zong et al. (2018)

Dynamic Acceptance Y Y Residual CPU SP [56] Fajjari et al. (2014)

ML

IWN Static Latency Y N N/A Anypath [24] Li et al. (2019)

General Dynamic
Revenue + cost N N

Residual CPU N/A [106] Blenk et al. (2018)

N/A N/A [107] Dolati et al. (2019)

Profit N N MCTS MCF [104] Haeri et al. (2018)
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5. Issues and Challenges

Although VNE algorithms are currently undergoing a comprehensive research phase, there are
still numerous challenges and research problems to be addressed, especially for ML-based algorithms.
The existing works mainly focus on single network domain; furthermore, the VNE problem for
multi-domain networks still challenge. Similar to other emerging technologies, network slicing brings
forward a significant potential toward 5G, but introduces several technical and business challenges
by regarding as architecture and deployment. In this section, we discuss the future challenges and
experiences learned on the road of VNE approaches. Three main fields, but not limited to that, may
be focused in the near future are identified: 5G architecture network slicing, field trial deployment,
and ML-based approaches.

5.1. 5G Architecture Network Slicing

In comparison with the wireless network and optical network architectures, there are many
challenges in the 5G multi-domain heterogeneous network (e.g., signal propagation, interference,
user mobility, radio access technology, and optical signal). Network slicing towards 5G is envisioned
to support multi-domain heterogeneous network with a widely range diverse set of performance and
requirement services. Multi-domain 5G network orchestration has obtained more consideration in
network slicing. Slicing the physical network into multiple isolated logical networks to support various
VN requirements has emerged as a key solution to management the network resources. The authors
of [35] have considered the user mobility in 5G network scenario. Some survey works for wireless
network virtualization and 5G have been proposed [108,109], which have analyzed the state-of-the-art
and challenges.

To implement and manage network slices, spectrum slicing problem and efficient bandwidth
resources sharing among different slices should be solved according to the requirements. To solve
this issue, the authors of [110] have presented a prototype in the C-RAN using Open Air Interface
platform and SDN controller to validate the feasibility of configuring multiple slices on demands.
According to the presented documentation by organizations such as ETSI, the network slice manager
needs to follow the following features; services management, QoS, service composition, and service
sharing. The network slice manager has been developed and validated in the multimedia real-time
communications over optical network considering two network slices with different QoS [111].

In addition, due to the connectivity guarantee of the heterogeneous characteristics of the IoT
ubiquitous network, resource allocation and energy efficiency improvement are challenging for the
5G scenario. Intelligent VNE for IWNs pervasive devices with sensing, processing, and connecting
capabilities has been described in [24]. Furthermore, many 5G scenarios by regarding as IoV need to
be addressed and discussed in the future.

5.2. Field Trial Deployment

As many researchers have focused on the network slicing and VNE approaches by
simulation [4,24,112], how to evaluate the network performance using tools and experiment is one
of the challenges. Net2Plan (http://www.net2plan.com/) is an open source Java-based network
planning optimization software tool, which is designed with the aim to overcome the barriers
imposed by existing network planning tools to integrate customized algorithm of users. Net2Plan can
define a network representation, based on abstract concepts such as nodes, links, traffic demands,
routes, protection segments, shared-risk groups, and network layers [113,114]. The authors of [115]
have demonstrated an open source Net2Plan extension interfacing multiple OpenStack instances
for enabling multi-datacenter IT resource management, with multi-tenant slicing in an ETSI-OSM
orchestrated and ONOS-controlled IP over WDM transport network. However, intelligent functions
and modules are still need to be addressed in the future works for the deployment tools.

http://www.net2plan.com/
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As the growing of some enabling techniques (e.g., SDN), the deployment of network virtualization
has obtained more considerations [26,27], where OpenDaylight and OpenStack are the most common
tools to establish the platform for resource provisioning and demonstration [116–119]. To offer the
implementation of network virtualization according to the diverse requirements of applications, SDN is
an ideal platform through hypervisors such as Flowvisor, OpenVirteX, FlowN, and AutoVFlow [24].
The authors of [120] have focused on implementation of automatic network slicing for microservices,
where open source software Node-RED is modified and extended to design IoT services for
implementation. Open Air Interface platform and FlexRan controller are used for network slicing
implementation of C-RAN for eMBB and IoT slices [110,121]. For vertical services slicing and
orchestration solutions in 5G infrastructures, eMBB network slices instantiated interconnecting
physical and virtual functions, provisioned and configured on-demand have been proposed in [122].
The authors of [123] have described a programmable optical software-defined network testbed,
which has been upgraded to offer backhaul and fronthaul transport capabilities in support of C-RAN
functionalities with increased reliability. For the inter elastic ODCNs domain, proposed feasible
virtualized bandwidth variable transceiver (V-BVT) architecture for network slicing implementation
has been demonstrated by an experimental platform with SDN controller to maintain the coexisting
and isolation features in the physical layer in [124,125].

To implement and valid slicing in 5G networks, researchers should keep their eyes on the
implementation technologies and devices. Field trial deployment for network slicing on multi-domain
heterogeneous 5G architectures to support 5G services still have many challenges and should obtain
more concerns.

5.3. Machine Learning Based Management Algorithm

Due to high-bandwidth and low-latency applications increasing the burden of network, network
management and resource allocation need more dynamic and self-adaptive approaches to address the
problem. VNE has obtained more concerns due to its importance for 5G network slicing. Some existing
works [106,107] have addressed the issues by considering ML technique to learn how to allocate
resource and manage the service request itself automatically. However, more ML-based algorithms
for VNE need to be proposed in the future to obtain better performance metrics (e.g., profit, latency,
energy efficiency, and survivability) for network management dynamically [126].

To provide automatic embedding solutions, the authors of [127] have proposed a novel algorithm
combining reinforcement learning with a novel neural network structure for general network.
In [128], the authors have proposed an efficient VNE algorithm adopting parallel reinforcement
learning framework with graph convolutional network. Asynchronous advantage actor–critic-based
policy gradient method is selected to train the network parameters. Simulation results of the
proposed algorithm outperforms the typical VNE algorithms. However, majority latest ML-based
VNE algorithms are based on the general network architecture without consideration additional
characteristics such as optical network nodes and links. The generality of ML-based VNE algorithms
should obtain more consideration for multi-domain heterogeneous network architecture.

In addition, the analysis of traffic demands can reveal valuable information for the management
to gather information interacting with SDN to centralize control network. Traffic prediction strategy is
essential to predict future traffic matrix via its prior measurements, where services can be provisioned
taking into account future resource needs [129]. Some existing works have focused on ML-based traffic
prediction strategies [130,131]. Recurrent neural networks have been designed for sequence prediction
problem to optimize resource allocation of optical backbone network, where gate recurrent units (GRU)
in RNN have been considered to achieve great accuracy [93]. Convolutional neural network (CNN)
and long short-term memory (LSTM) are integrated for modeling and estimating the future network
traffic [131]. Furthermore, ML-based traffic prediction mechanisms for VNE need to be proposed in
the future.
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6. Conclusions

This paper has presented a survey of existing works on the VNE problem towards multi-domain
heterogeneous converged optical network, which have focused on the resource allocation optimization
of multiple virtual networks coexisting and sharing resource in substrate networks. We have pointed
out the features of the multi-domain heterogeneous 5G network architectures, where special constraints
have to be considered for VNE according to the features of various network architecture (e.g., wireless
network). The basic VNE problem with motivation and performance metrics has been described in
details for general network scenario. A VNE algorithm taxonomy has been proposed for analyzing the
existing VNE algorithms according to two-stage, coordinated, and machine learning-based algorithms.
We have analyzed the issues and challenges of VNE towards multi-domain heterogeneous network,
and pointed out some promising research directions: 5G architecture network slicing and field trail
deployment for VNE- and ML-based management algorithms for resource allocation.
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