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Abstract

Understandingthegeneticbasisofadaptationtoclimate isofparamount importance forpreservingandmanaginggeneticdiversity in

plants in a context of climate change. Yet, this objective has been addressed mainly in short-lived model species. Thus, expanding

knowledge tononmodel specieswith contrasting lifehistories, suchas forest trees, appearsnecessary. Touncover thegeneticbasisof

adaptation to climate in the widely distributed boreal conifer white spruce (Picea glauca), an environmental association study was

conducted using 11,085 single nucleotide polymorphisms representing 7,819 genes, that is, approximately a quarter of the

transcriptome.

Linear and quadratic regressions controlling for isolation-by-distance, and the Random Forest algorithm, identified several dozen

genes putatively under selection, among which 43 showed strongest signals along temperature and precipitation gradients. Most of

themwere related to temperature. Small tomoderate shifts inallele frequencies wereobserved.Genes involvedencompasseda wide

variety of functions and processes, some of them being likely important for plant survival under biotic and abiotic environmental

stresses according to expression data. Literature mining and sequence comparison also highlighted conserved sequences and func-

tions with angiosperm homologs.

Our results are consistent with theoretical predictions that local adaptation involves genes with small frequency shifts when

selection is recent and gene flow among populations is high. Accordingly, genetic adaptation to climate in P. glauca appears to

be complex, involving many independent and interacting gene functions, biochemical pathways, and processes. From an applied

perspective, these results shall lead to specific functional/association studies in conifers and to the development of markers useful for

the conservation of genetic resources.
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Introduction

One of the major aims of evolutionary biology is to unravel the

genetic basis of important biological processes such as adap-

tation. However, although evidence for local adaptation in

plants and animals continues to accumulate (Linhart and

Grant 1996; Leimu and Fischer 2008; Hereford 2009;

Weigel 2012; Luquet et al. 2015), its genetic basis remains

poorly understood. In the context of climate change, deci-

phering the genetic architecture of adaptive traits becomes

increasingly critical as it controls the ability of populations to

respond to natural selection (Etterson and Shaw 2001), which

may allow them to avoid extirpation. Genomics helps answer

fundamental questions related to the genetic architecture of

adaptation, such as determining the identity and the number

of genes involved, their effects, their interactions, their func-

tion, as well as the origin and fate of adaptive alleles, at the

genomic scale (Hendry 2013; Wray 2013). This is well illus-

trated by studies focusing on the model species Arabidopsis

thaliana (Fournier-Level et al. 2011; Hancock et al. 2011),

where genome-wide data were used to identify a set of eco-

logically relevant genes across the entire species native range.

They showed that most of these genes differed across envi-

ronments, which supports the view that local adaptation in-

volves alleles that are beneficial in one environment but
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neutral elsewhere (conditional neutrality), rather than alleles

that are beneficial in one environment and deleterious in an-

other (antagonistic pleiotropy) (Colautti et al. 2012). They also

identified several molecular functions and biological processes

that may be important for adaptation in A. thaliana. Thus,

such empirical studies in model and nonmodel species

(Prunier et al. 2011; Evans et al. 2014; Huber et al. 2014;

Yoder et al. 2014; see also Ellegren 2014) can lead to a

better understanding of the adaptation process, with regard

to genetic architecture, dynamics of selection at adaptive

genes, and biological processes involved.

Theoretical studies have also addressed the effects of the

complex interplay between selection and other evolutionary

forces, such as gene flow, on the genetic architecture of ad-

aptation (reviewed in Olson-Manning et al. 2012; Savolainen

et al. 2013). Specifically, Kremer and Le Corre (2012) and Le

Corre and Kremer (2012) have shown that under high gene

flow, adaptation should start to build up mainly from covari-

ance of alleles between populations, before allele frequency

shifts occur. Consequently, when selection is recent, little ge-

netic differentiation among populations should be expected at

most adaptive loci. However, selection acting in prolonged

periods under high gene flow should favor genetic architec-

tures characterized by fewer alleles with large effects, and

more tightly linked (Yeaman and Whitlock 2011). Empirical

studies in plants, including trees, have found a variety of ge-

netic architectures, from few large-effect alleles to many

small-effect alleles and combinations of both, depending on

the species and the trait considered (Bradshaw et al. 1998;

Beaulieu et al. 2011; Pelgas et al. 2011; Li et al. 2013; Prunier

et al. 2013). Despite the recent progress made on the theo-

retical ground, more empirical studies are needed to better

link theoretical predictions with empirical evidence.

Another key issue is the functional characterization of

genes involved in adaptation (Wray 2013). Theory predicts

that the selective constraints on genes will differ according

to their level of connectivity with other genes or their position

in cellular response pathways or gene networks, be they reg-

ulatory or metabolic (Olson-Manning et al. 2012). Empirical

studies on environmental response and genetic adaptation in

plants have found a great diversity of putative functions, from

enzymes to transcription factors, related to stress response,

development, phenology, and other adaptive traits (Seki et al.

2002; Namroud et al. 2008; Eckert et al. 2010; Prunier et al.

2011; Chen et al. 2012; McKown et al. 2014). This pattern is

consistent with the frequent cross-talks that occur between

different pathways and networks (Fujita et al. 2006).

Studies of adaptive traits in perennial plants such as forest

trees often revealed the presence of clinal variation in pheno-

types, as well as genetic differentiation among populations,

suggesting that local adaptation is pervasive in trees (reviewed

in Alberto et al. 2013; Kremer et al. 2014) despite high gene

flow, and despite that many species from temperate and

boreal biomes have relocated only recently in the Holocene.

White spruce (Picea glauca [Moench] Voss) is a coniferous tree

of the North American boreal forest with a large latitudinal

distribution. The species has colonized its current range during

the first half of the Holocene (Payette 1993). It is also an an-

emophilous species characterized by extensive gene flow

(Jaramillo-Correa et al. 2001; Namroud et al. 2008).

Evidence for local adaptation in relation to climate was previ-

ously found in white spruce populations, both at the pheno-

typic and molecular levels (Li et al. 1997; Jaramillo-Correa et al.

2001; Lesser and Parker 2004; Namroud et al. 2008), but

using a limited number of DNA markers.

In this study, we examined the genetic basis of adaptation

to climate for a large part of the white spruce transcriptome by

investigating associations between environmental variables

and frequencies of 11,085 single nucleotide polymorphisms

(SNPs) representative of 7,819 expressed genes. Based on the-

oretical grounds, we expect to find dozens to hundreds of

genes putatively involved in genetic adaptation to climate

with moderate differentiation, because gene flow is extensive

in white spruce and local climatic selection would be relatively

recent, given the postglacial recolonization of white spruce

and its long generation time (Bouillé and Bousquet 2005).

We also expect to find mostly small allele frequency shifts, if

adaptation occurs mainly through conditional neutrality, and if

adaptation builds up mainly from covariance, given that local

selection would be quite recent. Finally, because climate (and

environmental factors correlated to climate) may select several

traits linked to growth, phenology, and physiology (Alberto

et al. 2013; Franks et al. 2014), we expect to find a great

diversity of functions and processes involved in genetic adap-

tation to climate. In order to detect genes under selection

along temperature and precipitation gradients, we conducted

an environmental association study in P. glauca populations

from eastern Canada following a large latitudinal transect and

climatic gradient. Covariation between allele frequencies and

climatic variables, as well as decision trees obtained with the

Random Forest (RF) algorithm, were used to identify a limited

set of loci putatively under selection. Functional and ecological

annotations were used to characterize the functions and pro-

cesses encompassed by the statistically most robust adaptive

genes.

Materials and Methods

Sampling and Environmental Variables

Twigs were collected on 198 white spruce individuals sampled

in 41 populations from eastern Canada (1–13 individuals per

population; fig. 1 and supplementary table S1, Supplementary

Material online).

Mean annual temperature and total annual precipitation

were the two climatic factors retained for this study. Indeed,

temperature and precipitation regimes are expected to

change drastically with anticipated global warming and are
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likely to affect adaptation of white spruce populations (Andalo

et al. 2005). Moreover, white spruce traits related to growth

and phenology were shown to be well correlated with latitude

(Li et al. 1997; Jaramillo-Correa et al. 2001), which strongly

covaries with mean annual temperature in the studied region

(r =�0.89, N = 41, P<0.001). Some of these traits are also

correlated with longitude (Li et al. 1997; Jaramillo-Correa et al.

2001), which is correlated to total annual precipitation

(r =�0.52, N = 41, P<0.001) and mean annual temperature

(r =�0.47, N = 41, P = 0.002) in the studied region. Finally,

many other climatic variables are correlated to mean annual

temperature or total annual precipitation in the studied region

(Prunier et al. 2012), so that investigating these two variables

could give insights into adaptation to climate in general. Data

averaged over 30 years (1981–2010) were obtained for each

population by extrapolating data from nearby weather sta-

tions using the simulation model of Régnière (1996)

implemented in BioSIM. Across the populations sampled,

mean annual temperature and total annual precipitation

varied from �3.8�C to 6.8 �C and from 705 to 1587 mm,

respectively (fig. 1 and supplementary table S1,

Supplementary Material online). The two climatic variables

were moderately correlated across populations (r = 0.45,

P<0.01).

DNA Extraction and Genotyping

DNA was extracted from 100 mg of needles and buds using

the NucleoSpin 96 Plant II kit (Macherey-Nagel, Duren,

Germany) and the DNeasy 96 Plant Kit (Qiagen,

Mississauga, Canada). A minimum of 80 ng of template ge-

nomic DNA per sample was used for genotyping.

The 14,842 SNPs successfully genotyped were distributed

across 9,938 expressed genes. They were genotyped with two

FIG. 1.—Location of the 41 populations of Picea glauca sampled in eastern Canada. Numbers identify each population (supplementary table S1,

Supplementary Material online). Bold numbers indicate the 27 populations containing at least 4 sampled individuals (see text). Circle color represents mean

annual temperature, from warmer (red) to cooler (dark blue). Circle size represents total annual precipitation, from drier (small size) to moister (large size). The

green area represents the distribution range of P. glauca in the region.
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Illumina iSelect Infinium arrays (Pavy, Gagnon, et al. 2013) at

the McGill University Genome Quebec Innovation Center

(Montreal, Canada). SNPs that did not match all the following

criteria were discarded: call rate�90%, minor allele fre-

quency�5%, and absolute fixation index FIS� 0.5. A subset

of 11,085 SNPs located in 7,819 genes was retained, repre-

senting 24% of the estimated number of expressed genes in

white spruce (Rigault et al. 2011). Overall, there was less than

1% missing genotypes. The average number of SNPs per gene

was 1.4 (ranging from 1 to 11), with 6,218 genes (79.5%)

harboring only one SNP. Mean total expected heterozygosity

(HE) estimated over 7,819 SNPs (one random SNP per gene)

was 0.329, while mean observed heterozygosity (Ho) was

0.324.

Some of the studied genes were putatively involved in

wood formation, growth, and adaptation to biotic and abiotic

factors, and were selected based on previous studies (Pavy,

Deschênes, et al. 2013). An overview of biological processes,

molecular functions, and cellular components represented in

the 7,819 genes used here is provided in supplementary figure

S1, Supplementary Material online.

Data Analysis

Spatial Genetic Structure

Neutral population structure was investigated because it can

lead to the detection of false positives when identifying loci

under selection. Population structure was first tested using the

Bayesian algorithms implemented in STRUCTURE (Pritchard

et al. 2000; Falush et al. 2003) and BAPS (Corander et al.

2006) on a subset of 4,000 SNPs (one SNP per gene in

4,000 random genes) for computational reasons. This large

SNP subset is assumed to be largely representative of neutral

variation. STRUCTURE was run using the admixture model and

correlated allele frequencies for 500,000 iterations after a

burn-in period of 100,000 iterations. For each value of K ran-

ging between 1 and 10, 10 independent runs were performed

and population structure was assessed graphically using the

maximum-likelihood method and the �K method of Evanno

et al. (2005). For BAPS, 5 runs were performed for several

values of K between 1 and 41 (the actual number of popula-

tions sampled) and the partition yielding the highest estimated

probability was considered optimal. In both methods, the spa-

tial information on the origin of populations or individuals was

not taken into account.

Population structure was further assessed by estimating

FST, by using a Mantel test, and by performing principal

component analyses (PCAs). FST among the 27 popula-

tions carrying at least 4 individuals was estimated in

GenAlEx 6.5 (Peakall and Smouse 2012), using the same

subset of 4,000 SNPs previously mentioned. A matrix of

pairwise FST among populations was generated in

GenAlEx with the same data set. Next, a matrix of pairwise

geographic distances between populations was computed

from geographic coordinates and the correlation between

genetic and geographic matrices was estimated using 999

permutations in GenAlEx. PCA was applied separately to

individuals (198 individuals) and to populations (27 popu-

lations carrying at least 4 individuals), using the prcomp

function in R (R Development Core Team 2010), in order

to 1) summarize neutral genetic variation in the studied

region and 2) produce principal components useful to

correct for population structure in regression (which

uses genetic data at the population level) and RF (which

uses individual genotypes) analyses. Because population

scores and individual scores on the first components pro-

duced were further used in regression and RF analyses,

respectively (see below), all 11,085 SNPs were retained

to perform the PCA. Input genetic data were allele fre-

quencies within populations, and genotypes within indivi-

duals coded as 0 (homozygote), 0.5 (heterozygote), or 1

(alternate homozygote).

Detection of Loci Under Selection

Random Forest Analysis. The RF algorithm (Breiman 2001)

produces decision trees that recursively split observations

according to several predictor variables, resulting in a model

that may achieve a good predictive accuracy. Its particularity is

that it introduces two layers of randomness to improve model

accuracy: 1) each tree is grown from a bootstrap sample of the

observations and 2) at each node in a tree the best split is

selected based on a random subset of predictors. The con-

struction of one tree thus follows these steps: 1) take a boot-

strap sample of the observations (~2/3); 2) at each node,

select a random subset of size mtry of predictor variables

and split the data with the one that provides the best split

of the observations (based on residual mean square error

[MSE] in the dependent variable); and 3) recursively split the

data until each terminal node is pure or contains a minimum

number of observations (default value of 5 in this study). For

each tree, the ~1/3 of data that was not used to train the

model (out-of-bag data, OOB) was used to compute several

estimates. First, the constructed model was used to compare

the actual value of the dependent variable of the OOB samples

with the one predicted by the model. Across the forest of

decision trees, this procedure computes the variance in the

dependent variable that is explained by the model. Second,

the values of each predictor used in a given tree were per-

muted. The resulting change in global MSE enables estimating

the importance of the predictor in the model: if permuting the

values of a predictor does alter model accuracy and increases

error, then this predictor is important, and vice versa. Across all

the decision trees, this permutation procedure leads to an

importance measure (increase in % MSE) for each predictor.

Interaction between predictors is implicitly taken into account

during model training. For instance, if a SNP does not have a

good splitting power by itself, but splits the samples very well
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after another SNP had split them, its importance will be high

and this could reveal an interaction between these two SNPs

(fig. 2).

Regression trees (instead of classification trees) were used

because the dependent variable (temperature or precipitation)

was continuous. The objective of the analysis was to identify a

restricted set of SNPs that together explain most of the var-

iance in temperature or precipitation among individuals, indi-

cating that they may be under selection for these variables.

The RF analysis was performed in R with the randomForest

package (Liaw and Wiener 2002). The data set contained less

than 1% missing genotypes, which were imputed using the

rfImpute function. The default mtry value was used (number

of SNPs/3) and the number of decision trees ntree was set to

10,000. For the RF analysis with precipitation, one population

(population 25 in fig. 1 and supplementary table S1,

Supplementary Material online) was discarded because it

had an outlying precipitation value and led to many likely

false positive relationships. First, a full model including all

SNPs was computed to estimate the importance of each

SNP. Because few of them had a high importance in the full

model (see Results and Discussion), we considered the 100

most important SNPs in RF for each climatic variable, to

which we applied a backward elimination procedure aiming

at finding the most important ones (Diaz-Uriarte et al. 2006;

Holliday et al. 2012). The first step of this procedure was to

build a model with the 100 top SNPs, and discard the least

important one based on at least 5 independent runs of the

model. This procedure was iterated until the model contained

only two SNPs (the minimal model possible). For each model,

the proportion of explained variance was estimated. Null

models with 2, 5, 10, 15, 20, and 50 random SNPs were

run several times to estimate whether the backward elimina-

tion approach was efficient in selecting important SNPs

(Holliday et al. 2012).

A weak population structure related to isolation-by-

distance (IBD) was detected in the studied region, as indicated

by significant Mantel test (see Results and Discussion). Because

no option is implemented in RF to directly account for popula-

tion structure, the effect of genetic differences among indivi-

duals due to neutral processes was subtracted from the

dependent variable (i.e., temperature or precipitation) before

performing the analysis (Holliday et al. 2012). This was done

by regressing temperature and precipitation values on scores

of individuals on the first axis of a PCA performed on indivi-

duals (see Results and Discussion), and then using residuals as

the dependent variable in RF.

Linear and Quadratic Regression Analyses. Covariation

between allele frequencies and climatic variables was esti-

mated through linear and quadratic regressions taking into

account the weak population structure related to IBD.

Populations with less than four sampled individuals were dis-

carded to increase the reliability of regression models

Individual
Population mean 
temperature

SNP A SNP B

-3 AA GG

-2 AA AG

-1 TT GG

1 TT GG

2 TT AG

3 TT AG

A

B Node 1

Node 2 Node 3

Node 4 Node 5

SNP A = TT ?

noyes

SNP B = GG ?

noyes

FIG. 2.—Toy example of the detection of important SNPs in RF. (A) Toy

data set representing six individuals located in six populations with differ-

ent mean annual temperatures, genotyped at two loci. (B) RF splits the

individuals at the first node according to their genotype at SNP A, which

leads to two rather homogeneous child nodes in terms of temperature.

Splitting individuals at the first node according to their genotype at SNP B

would have led to more heterogeneous child nodes, so RF would rather

split the individuals using SNP A at the first node. Although SNP B had a

poor splitting power at the first node, it has a good splitting power at the

second node. Permuting the values of SNP A or SNP B would increase

heterogeneity (variance) in the child nodes, meaning that they are impor-

tant in the model. In this example, SNP A would thus have a main effect,

while the effect of SNP B would depend on genotype at SNP A, suggesting

an interaction. In regression, we would find SNP A as associated to tem-

perature, contrary to SNP B, whereas it might still be important in adapta-

tion to temperature through an interaction with another SNP. Note that in

the actual RF analysis using many more individuals, nodes are not split (and

thus considered terminal) when containing five individuals or less.
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estimation. The analysis was thus performed using data from

27 populations, represented by 171 individuals. The popula-

tion with an outlying precipitation value was also discarded in

regression analysis for precipitation (see above). In addition to

linear regression models, quadratic associations were assessed

because the relationship between allele frequency and envir-

onmental variables may not necessarily be linear, for instance

when an allele is only selected on a restricted part of the

gradient (Manel et al. 2010; Prunier et al. 2012).

Associations between allele frequencies and climatic variables

were tested with logistic regression using the glm function in

R. The weak population structure was accounted for by

adding a covariate in the regression model. Values of this

covariate were population scores on the first axis of a PCA

performed on population allele frequencies (see Results and

Discussion). The original variables were standardized to avoid

collinearity between the linear and the quadratic terms. First,

the best model (linear or quadratic) was selected using a like-

lihood-ratio test because the linear model is nested within the

quadratic model. Then, the significance of the linear and the

quadratic terms (when present in the model) were assessed

using a Wald test. To account for multiple testing, a false

discovery rate (FDR; Benjamini and Hochberg 1995) was

applied to P values of linear terms and P values of quadratic

terms. A SNP was considered associated with a given climatic

variable if at least one term of the model (linear and/or quad-

ratic) was significant after the correction. Both FDR = 0.10

(permissive threshold) and FDR = 0.05 (strict threshold) were

considered.

Gene Annotations

Although linkage disequilibrium (LD) is generally weak in

P. glauca, it is heterogeneous among genes and along the

genome (Namroud et al. 2010; Pavy, Namroud, et al. 2012;

Pavy, Pelgas, et al. 2012). Thus, we cannot firmly exclude that

the gene bearing a SNP showing a signature of selection is the

actual gene selected (as opposed to a nearby gene, if both are

located in a genomic region with high LD). In the following,

we assume that each gene harboring a SNP showing a selec-

tion signal is actually under selection. Given that we mainly

discuss classes (e.g., gene families, functional classes, biologi-

cal processes) rather than individual genes, and that LD is

generally weak in P. glauca, we trust that our conclusions

are not sensitive to this issue.

Several functional annotations were retrieved from public

databases to describe the studied genes: keywords from

Uniprot KB (Uniprot Consortium 2014), metabolic pathways

from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa et al. 2014), and A. thaliana homologs from The

Arabidopsis Information Resource (TAIR) (Lamesch et al.

2012). PFAM annotations, including protein families and

domains, were retrieved from the P. glauca gene catalog

(Rigault et al. 2011).

BLASTP was run against the protein database Uniprot-

SwissProt. Keywords associated with the best hit with an e-

value<1�10�10 were retrieved with the seqret program

from EMBOSS (Rice et al. 2000). Specifically, the keywords

corresponding to the widely used categories “biological

process,” “molecular function,” and “cellular component”

were used. Uniprot keywords could be assigned to 5,090

genes (~65% of the 7,819 genes), and represented diverse

biological processes (144 terms), molecular functions (35

terms), and cellular components (38 terms; supplementary

figure S1, Supplementary Material online).

Putative metabolic pathways were assigned to genes

based on annotations from the manually curated KEGG

database. First, the best KEGG Orthology number (KO)

was assigned to each gene using the KEGG Automatic

Annotation Server based on nucleotide sequence and

the single-directional best hit method against a database

including A. thaliana and poplar (Populus trichocarpa)

genes. Next, the Search Pathway tool was used against

poplar (rather than A. thaliana because poplar is a

tree) to find the pathways that included the retrieved

KO. Along with specific pathway terms (e.g., “galactose

metabolism”), the subcategory associated with each path-

way (e.g., “carbohydrate metabolism”), and the corre-

sponding broader category (e.g., “metabolism”) were

also retrieved. Among the 7,819 studied genes, 2,871

(~37%) were annotated with a KO. They encompassed

1,728 different KO terms, of which 853 corresponded to

a KEGG pathway term, representing a total of 121 poplar

KEGG pathways. In total, pathway annotations were

available for 1,462 of the 7,819 genes (~19%). These

pathways represented the major KEGG pathway

terms categories: “metabolism,” “genetic information

processing,” “cellular processes,” “environmental infor-

mation processing,” and “organismal systems.” Within

these categories, the major subcategories represented in

our data set were (excluding the noninformative “Global

and overview maps” term) as follows: “carbohydrate

metabolism,” “translation,” and “folding, sorting, and

degradation.”

Putative homologs between P. glauca and A. thaliana

genes was assessed using BLASTP (e-value<1�10�10)

against the TAIR database. A literature mining tool (EVEX)

(Van Landeghem et al. 2011) was then used to retrieve infor-

mation about gene regulation and interacting networks, for

each homologous gene described in public databases.

To search for ecologically relevant annotations, gene

sequences were compared with genes whose expression

under environmental stress or seasonal transitions has been

studied in angiosperms and in spruces: in rice in response to

drought (Zhang et al. 2012), in A. thaliana in response to cold,

drought, salt, or UV-B (Kilian et al. 2007) (at 1 and 24 h for

each stress, pooled between roots and shoots), in Eucalyptus

camaldulensis in response to water stress (Thumma et al.
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2012), and during bud set in Sitka spruce, Picea sitchensis

(Holliday et al. 2008) (between any time point and day 0).

Sequence data were retrieved from the supplementary mate-

rials of the cited articles, from online databases, or directly

from the authors. First, P. glauca genes that did not match

any sequence on the gene chip used by these authors in their

expression experiment were discarded. Then, the remaining

P. glauca genes were compared with the differentially

expressed genes (DEGs). When only raw data were available,

the DEG status of genes was determined using the same

criteria as those reported in the original papers (see supple-

mentary table S2, Supplementary Material online, for more

information regarding DEG datasets). For angiosperms, only

sequence pairs with at least 50% identity over at least 100

amino acids, and BLASTP e-value<1�10�10 were consid-

ered. For P. sitchensis sequences, the identity threshold was

set to 95% identity at the nucleic level.

Picea glauca transcriptome was analyzed during the

growth-to-dormancy transition by El Kayal et al. (2011) and

Galindo-Gonzalez et al. (2012). These studies relied on an

early version of the Arborea transcriptomic array (Pavy et al.

2008) and therefore did not include all the genes studied

herein. Thus, transcriptomic profiles were only available for

4,186 genes (~54%). Out of them, 2,258 (~54%) were

DEGs in forming buds (El Kayal et al. 2011), 1,415 (~34%)

were DEGs in whole stems (Galindo-Gonzalez et al. 2012),

and 1,085 (~26%) genes were differentially expressed in

both studies. Of the 5,832 genes matching a P. sitchensis

gene studied by Holliday et al. (2008), 1,098 (~19%) matched

a DEG with the above criteria. For the sake of simplicity, we

use “bud set” to refer to the transition from growth to dor-

mancy studied by Holliday et al. (2008), El Kayal et al. (2011),

and Galindo-Gonzalez et al. (2012), although many other

physiological states are related to this transition. Indeed, the

transition from growth to dormancy is characterized by the

cessation of growth, bud set, dormancy, and acquisition of

cold hardiness. The timing of these stages is of paramount

importance for fitness because early bud set might limit tree

growth while late bud set increases susceptibility to cold inju-

ries. All the above-mentioned transcriptomic studies used bio-

logical replicates, but used various combinations of fold

change thresholds and/or statistical thresholds (corrected or

uncorrected P values).

All these annotations were used to provide a description of

genes carrying SNPs likely under selection and to infer their

putative functional importance. Fisher’s exact tests were per-

formed to determine whether genes significantly matching a

given annotation were enriched within the set of genes under

selection compared with the remaining genes. Finding signifi-

cant enrichments would mean that the set of genes putatively

under selection is different from a random set of genes of the

same size. Enrichment tests were only performed on terms

represented by at least five members in the whole data set.

Results and Discussion

Spatial Genetic Structure

According to BAPS, all 198 individuals belonged to a single

genetic cluster (log(likelihood) =�798,380; P = 1).

STRUCTURE revealed a similar trend, although the optimal

partition was K = 2 (supplementary fig. S2, Supplementary

Material online). The detected population structure was

weak and had little biological meaning, with only four indivi-

duals being assigned to the second genetic cluster identified

(supplementary fig. S3, Supplementary Material online). These

individuals were not misidentified given that they had similar

rate of missing data than for the rest of the trees (less than

1.5%) and given that their heterozygosity rate was similar to

that of other trees (0.18–0.34 vs. 0.17–0.35, respectively). A

drastic decrease in heterozygosity would have been expected

if these individuals belonged to the sympatric but

nonhybridizing and phylogenetically distantly related black

spruce (Picea mariana) (Bouillé et al. 2011), given the low

level of SNP sharing between white spruce and black spruce

(Pavy, Gagnon, et al. 2013). Three of these four individuals

belonged to the same population, located at the western end

of the studied region (population 8 on fig. 1), while the fourth

individual belonged to another population (population 15 on

fig. 1). The overall pattern is thus consistent with the fact that

all populations were sampled across a single white spruce

glacial lineage.

Consistently, overall genetic population differentiation was

weak, although significantly different from zero (FST = 0.021,

P = 0.001, 999 permutations). Mantel test revealed that

genetic and geographic distances between populations were

weakly correlated (r = 0.27; P = 0.02, 999 permutations): pairs

of populations farther away tended to be more genetically

differentiated, likely due to slight IBD.

Although the first axis of the PCA analysis on individuals

only explained 1.3% of the total genetic variation among

individuals (supplementary fig. S4A, Supplementary Material

online), it summarized well the genetic structure detected

with the population structure analyses. Indeed, it clearly sepa-

rated the four individuals detected in STRUCTURE from the

rest of the samples, as their score was greater than 48, while

all remaining individuals had scores comprised between �13

and 12. The first principal component primarily separated

individuals according to longitude: the correlation between

individuals scores on the first principal component and long-

itude was strong and significant (r =�0.42, P< 0.0001). This

correlation was even stronger when removing the four out-

lying individuals (r =�0.68, P< 0.0001). The first axis of the

PCA analysis on populations explained 6.8% of the genetic

variation among populations (supplementary fig. S4B,

Supplementary Material online) and effectively summed up

the IBD pattern observed. Indeed, the pairwise differences in

population scores on this component were correlated to geo-

graphic distances between populations (Mantel test, r = 0.27;
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P = 0.02, 999 permutations). This component also separated

populations according to longitude: the correlation between

populations scores on the first principal component and long-

itude was strong and significant (r =�0.52, P = 0.005).

Populations having the highest scores on the first principal

component were the westernmost populations, which

included population 8 (which carried most individuals belong-

ing to the STRUCTURE small second cluster) (supplementary

table S1, Supplementary Material online).

Altogether, these results suggest that there is a weak spatial

genetic structure in the studied region, likely driven by IBD. From

a phylogeographical perspective, these results indicate that only

one glacial lineage occurs in the studied region, which would

have colonized eastern Canada from an Appalachian refugium

following the last glacial maximum (de Lafontaine et al. 2010).

From a methodological point of view, these results show how

genotyping thousands of SNPs might reveal cryptic population

structure, even in species with high gene flow. Because selec-

tion could result in small genotype or allele frequency shifts

among populations in such species, it is necessary to control

for neutral genetic structure to minimize the detection of false

positives. In this respect, principal component scores proved to

be good proxies for population structure.

Detection of Genes Under Selection

Figure 3 illustrates examples of significant linear and quadratic

relationships between allelic frequencies and climatic vari-

ables. The results of the two approaches (regressions and RF

controlling for population structure using PCA scores) are

summarized in table 1. Out of the 11,085 SNPs tested, regres-

sion analyses identified 33 polymorphisms (0.3% of tested

SNPs) significantly correlated to variations in mean annual

temperature and/or total annual precipitation at FDR = 0.05,

with only two of them being associated to precipitation.

Several of these SNPs showed a quadratic relationship with

no significant linear term, which means that they would not

have been detected by testing a linear regression model alone.

Using the less stringent FDR of 0.10 led to the detection of

roughly four times more SNPs (1.2% of tested SNPs), mainly

for temperature (table 1).

In the RF analysis, relatively few SNPs had a high impor-

tance value in the full models (i.e., models including all 11,085

SNPs): only four and five SNPs had an importance value

greater than 10% (percentage increase in MSE), for tempera-

ture and precipitation, respectively. The full models explained

19% and 9% of temperature and precipitation variance,

respectively. To identify the most significant SNPs, a backward

elimination procedure was performed (see Materials and

Methods). For both climatic variables, the proportion of

explained variance increased when adding SNPs into the mini-

mal RF model (i.e., containing only the two best SNPs), reach-

ing a plateau at around 10 SNPs (~50–55% variance

explained; fig. 4). In both cases, null models including

between 2 and 50 random SNPs explained near zero variance

(fig. 4), indicating that the procedure was efficient in selecting

SNPs related to temperature and precipitation variations.

Thus, the 10 most important SNPs identified by RF (repre-

senting 10 genes for temperature and 9 genes for precipita-

tion, with one gene common to both variables) were

considered highly significant.

In order to minimize the impact of false positives on subse-

quent analyses, we retained only the most significant SNPs

detected with each approach. This subset included the 33

SNPs associated to temperature and/or precipitation in regres-

sions at FDR=0.05, and the 19 SNPs identified as the top 10 in

RF for temperature and precipitation (table 1). Altogether, this

subset contained 46 SNPs located in 43 genes. It should be

noted that discarding the four individuals which were found

to be genetically divergent according to the STRUCTURE analysis

had little impact on the detection of significant SNPs and their

genes. In this scenario, 36 of the 43 genes detected were still

significant. The remaining 7 genes carried SNPs strongly asso-

ciated to climatic variables, although their significance was just

above the thresholds (2 were significant in regression at
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FIG. 3.—Examples of significant relationships between climatic vari-

ables and SNP allele frequencies. (A) Linear relationship between tempera-

ture and SNP allele frequency (in a b-tubulin gene). (B) Quadratic

relationship between precipitation and SNP allele frequency (in an ATP-

binding cassette transporter gene). Note the typically low R2 values

observed.
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FDR=0.10, 5 were in the top 15 in RF, and 1 was in the top 30

in RF). This is likely a result of slightly reduced statistical power.

Thus, most of the results discussed in the following sections

apply to this strict set of 43 genes detected with all trees con-

sidered. This set is assumed to include true adaptive genes with

a very small rate of false positives given the correction for popu-

lation structure and the statistically stringent criteria used.

Although it is very likely that these genes are under climatic

selection, we cannot exclude that some of them are selected

by other environmental factors (e.g., biotic or edaphic factors)

that may be correlated to mean annual temperature or total

annual precipitation. The lists of genes significantly associated to

climate are provided in supplementary table S3, Supplementary

Material online (for both FDR=0.05 and FDR=0.10).

Number of Gene Loci Involved in Adaptation to Climate
in Picea glauca

Depending on the statistical stringency of the FDR criterion

used, the total number of putatively adaptive genes varied

from 43 (carrying 46 SNPs associated to climate) to 132 (car-

rying 146 SNPs associated to climate; table 1), representing

0.55% or 1.69% of the total number of genes tested, respec-

tively. The proportion of genes showing signals of selection in

this study is comparable, although at the lower end, with that

reported in previous genome scan studies in plants, which

typically reported between 1% and 20% of loci to be under

selection following variable levels of statistical stringency

(Holderegger et al. 2008; Zulliger et al. 2013; Cullingham

et al. 2014). Out of the 43 genes most significantly associated

to climate, 32 were mapped on the genome of P. glauca and

were located on 9 of the 12 linkage groups (Pavy, Pelgas, et al.

2012; Pavy et al., in preparation), with no obvious clustering

according to recombination distance.

In this study, we detected a much greater number of puta-

tively adaptive genes for temperature than for precipitation

(table 1). This suggests that more genes are involved in adap-

tation along the temperature gradient than along the precipi-

tation gradient across the studied region. This could indicate

that, compared with the precipitation gradient, more environ-

mental factors impose selective pressures on P. glauca popula-

tions along the temperature gradient, and/or more traits are

involved in adaptation along this gradient, and/or traits

selected along this gradient are controlled by more genes.

These explanations are not mutually exclusive, but they are

difficult to disentangle with the data at hand. It is still worth

noting that, in P. glauca, genetic variation in traits related to

growth and phenology is mainly structured by latitude (which

is the main driver of the temperature gradient) in the studied

region (Li et al. 1997), and that several quantitative trait loci,

each explaining a small percentage of variance, have been

identified for these traits (Pelgas et al. 2011). These results

are consistent with the finding that more genes may be

involved in adaptation to temperature. Another possible

explanation for the low number of genes involved in adapta-

tion to precipitation may relate to the fact that white spruce is

mainly found in mesic soil moisture conditions across the

boreal forest. Climax species occurring on xeric sites are pre-

ferably jack pine or black spruce (Bonan and Shugart 1989;

Desponts and Payette 1992), with low soil moisture being

recurrently reported as a growth limiting factor in white

spruce (Wang and Klinka 1996; Barber et al. 2000).

Similarly, hydric sites are generally occupied by eastern larch

or black spruce at the final stage of boreal forest succession

FIG. 4.—Variance explained by Random Forest models with various

numbers of SNPs included in the backward elimination procedure (see

Materials and Methods). Models containing between 50 and 100 SNPs

are not displayed because the plateau shown here extended until 100

SNPs. Variance explained by randomly selected SNPs (null models) could

be slightly negative, meaning that these SNPs were not important. Each

point represents the variance explained by the corresponding model, aver-

aged over at least five independent runs of this model.

Table 1

Overview of the Number of SNPs and Genes Showing Strong Signals

of Climate Selection in Picea glauca from the Analyzing 11,085 SNPs

in 7,819 Genes

Number of Significant SNPs (Genes)

Mean Annual

Temperature

Total Annual

Precipitation

Union

FDR = 0.05

Linear effect 24 (22) 2 (2) 24 (22)

Quadratic effect 10 (10) 0 (0) 10 (10)

Linear and quadratic effects 33 (31) 2 (2) 33 (31)

FDR = 0.10

Linear effect 95 (84) 4 (4) 96 (85)

Quadratic effect 43 (40) 2 (2) 44 (41)

Linear and quadratic effects 134 (121) 5 (5) 136 (123)

Random Forest

Top 10 10 (10) 10 (9) 19 (18)

Union of regression and RF

FDR = 0.05 and RF top 10 39 (36) 11 (10) 46 (43)

FDR = 0.10 and RF top 10 138 (124) 13 (12) 146 (132)
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(Ritchie 1957; Viereck 1970; Bonan and Shugart 1989).

Hence, white spruce may lack the adaptive genetic back-

ground necessary to develop on a wide array of moisture

conditions. Finally, the low number of significant associations

with precipitation may indicate that mostly small-effect genes

are at play, which would require greater statistical power to be

detected.

We found that several SNPs ranked as important in the

multilocus RF analysis were not significant according to the

univariate linear or quadratic regression analyses. This trend

suggests that these SNPs may be involved in adaptation

through interactions with other SNPs (Boulesteix et al. 2012).

It should be noted that genes detected both by RF and regres-

sion analyses may also be in interaction with other genes. This

is consistent with the view that epistatic interactions contribute

to the genetic architecture of traits and their response to selec-

tion, along with additive genetic effects (Le Corre and Kremer

2012; Hendry 2013; Wray 2013).

From a methodological perspective, our results showed the

clear benefit of extending linear univariate methods for the

detection of loci under selection by assessing nonlinear

responses to selection (e.g., quadratic regression) (Manel

et al. 2010; Prunier et al. 2012; this study). For instance, if a

substitution is only beneficial in populations with intermediate

temperatures, its frequency would increase in this part of the

temperature gradient due to selection. This would result in a

bell-shape relationship between allele frequency and tempera-

ture rather than a linear one. Thus, testing for quadratic rela-

tionships may allow detecting those loci that may be selected

on a limited part of the gradient (Prunier et al. 2012). The

results obtained with RF highlight the need to implement

multivariate methods taking into account interactions

between loci. Combining such methods should provide a

more realistic picture of the genetic basis of adaptation

(Sork et al. 2013; Bourret et al. 2014).

It will be insightful to compare all the above results with

results from association studies in white spruce (ongoing pro-

ject), in order to better understand which phenotypic traits are

controlled by the genes identified herein (as well as their inter-

actions). Integrating such results with those of studies on

quantitative trait genetic variation across populations (such

as those of Li et al. 1997; Jaramillo-Correa et al. 2001) will

allow to disentangle which environmental factor selects which

trait, which genes and gene interactions control these traits,

and how these relationships lead to the observed patterns of

phenotypic and adaptive genetic variation.

Small to Moderate Allele Frequency Shifts

We estimated changes in allele frequency along the climatic

gradients using the equation of the logistic regression model

for each of the 46 SNPs most strongly associated to climate.

Mean differences between extreme allele frequencies were

0.31 ± 0.08 (range 0.04–0.46, N = 39) and 0.32 ± 0.08

(range 0.21–0.47, N = 11) for the temperature and the

precipitation gradients, respectively. Mean differences for

temperature and precipitation were similar for SNPs identified

with linear and quadratic regressions.

These results suggest that although moderate to strong

differentiation in quantitative adaptive traits along geographi-

cal gradients related to precipitation and temperature is

observed in white spruce (Li et al. 1997), selection along the

climatic gradients only led to small or moderate allele fre-

quency shifts at individual gene loci. A similar trend for smaller

sets of tested and significant gene SNPs was also observed in

other largely distributed boreal spruces such as the North

American P. mariana, shown to harbor significant differentia-

tion in quantitative adaptive traits (Prunier et al. 2011), and

along a temperature gradient in Picea abies in Scandinavia

(Chen et al. 2012). Such a trend may be explained by several

factors which cannot be disentangled with the current data

set but are worth examining. First, though significant, selec-

tion intensity at individual loci is likely weak in P. glauca along

the climatic gradients investigated, as previously suggested for

other largely distributed tree species (Alberto et al. 2013).

Second, the homogenizing effect of extensive pollen gene

flow may counteract selection-driven divergence.

Furthermore, it is possible that local adaptation involves only

weak antagonistic pleiotropy or conditional neutrality, where

a beneficial allele in one environment has only small deleter-

ious or neutral effect in other environments. In such a case,

differences in allele frequencies are expected to remain limited

or to disappear over time at the selected locus, due to gene

flow (Anderson et al. 2012). Finally, assuming that current

P. glauca populations in the south of the studied region estab-

lished about 12,000 cal. yr BP (calibrated years before past)

and that the northernmost populations studied herein estab-

lished about 7,000 cal. yr BP (Payette 1993; Richard 1993; see

also de Lafontaine et al. 2010), and assuming a conservative

generation time of at least 50 years (Bouillé and Bousquet

2005), modern populations would have been under climatic

selection for no more than 140–240 generations. This means

that local climatic selection in extant populations is rather

recent. All these factors might also act in combination to

impede divergence in allele frequencies at selected loci

along environmental gradients. For instance, Kremer and Le

Corre (2012) and Le Corre and Kremer (2012) showed theo-

retically that even under high divergent selection, small or no

differentiation is expected at loci implicated in quantitative

trait variation when their number is large and gene flow is

high. This is in agreement with the trends observed here,

including the small percentage of significant gene SNPs.

Utility and Limitations of Random Forest in Genome-
Wide Environmental Association Studies

Our results indicate that RF provides valuable insights in envir-

onmental association studies, due to several desirable
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properties (see Materials and Methods). Besides, without a

multilocus approach such as RF, several loci putatively inter-

acting with other loci along the climatic gradients would not

have been detected, despite being among the most important

ones.

We also identified two main limitations to the current RF

approach in environmental association studies. First, RF did

not give high importance values to SNPs that had a strong

quadratic effect (and thus were significant in quadratic regres-

sion). Although RF performs nonlinear regressions, this is pos-

sibly due to the fact that contrary to linear relationships, the

three genotypic classes at a given locus may have similar tem-

perature or precipitation mean values when the relationship is

strongly bell shaped. Second, although RF takes into account

interactions between SNPs, the detection of interactions

might not be efficient in high-dimension data sets where

main effects are more easily detected than interactions

(Winham et al. 2012). This means that many more potentially

interacting SNPs are likely to occur in the data set. Despite

these drawbacks, our study shows how multilocus methods,

such as RF, can provide new insights compared with single-

locus methods (Sork et al. 2013; Bourret et al. 2014).

Functional Enrichments in Genes Related to Local
Adaptation to Climate in Picea glauca

The strict set of 43 genes carrying the most significant SNPs

included 33 (~77%) genes similar to protein families from the

PFAM database, representing 44 different families or domains

(25 with at least 5 members in the whole data set and then

used for enrichment tests). They included 28 genes (~65%)

associated to an Uniprot keyword, with 20 biological pro-

cesses, 19 molecular functions, and 16 cellular components

(20, 18, and 16 terms, respectively, with at least 5 members in

the whole data set). In total, 22 (~51%) had a KEGG

Orthology (KO) annotation, of which 18 were assigned to a

pathway in poplar, representing 24 different pathway terms

(23 with at least 5 members in the whole data set).

Statistical power was quite low in tests for enrichments in

functional annotations: except for PFAM terms, less than 50%

of the 43 genes were annotated. Still, we detected some

significant enrichments. At FDR = 0.05, the 43 genes asso-

ciated to climate were enriched in the pathway “Cellular

processes” (2 genes vs. 0.8 expected by chance). At

FDR = 0.10, the 43 genes associated to climate were enriched

in the PFAM term “Leucine rich repeat” [PFAM: PF13516.1] (4

genes vs. 0.06 expected by chance) and the pathway

“Transport and catabolism” (4 genes vs. 0.8 expected by

chance). At P< 0.05 (uncorrected P value), we detected

enrichments in the “mRNA surveillance” pathway (2 genes

vs. 0.6 expected by chance), the “Plant–pathogen inter-

action” pathway (2 genes vs. 0.4 expected by chance), and

the Uniprot keyword “Rotamase” (2 genes vs. 0.1 expected

by chance). These results show that the strict set of 43

adaptive genes differed from the distribution of the other

genes and that the enriched functional categories may be

especially important for climate adaptation in P. glauca.

Enrichment tests performed on the less stringent set of 132

genes associated to climate (table 1) revealed more functional

enrichments that may also be especially important for adapta-

tion in P. glauca (e.g., CBS and NAF domains, “environmental

information processing,” “signal transduction,” “nucleus,”

“activator”; supplementary fig. S5, Supplementary Material

online).

Genetic Adaptation to Climate Encompasses a Great
Diversity of Molecular Functions and Biological Processes

Overall, the 43 adaptive genes carrying the most significant

SNPs were well characterized, with 88% of them having a

putative molecular function assigned after database and lit-

erature information on putative homologs. A diversity of

molecular functions was found. Among enzymes, six classes

were represented (fig. 5). Along with hydrolases, transferases

were the most represented enzymes and included several

kinases and methyltransferases. Through their role in phos-

phorylation, kinases are involved in the signal transduction

needed to convey stress signals into cellular responses (Hirt

1997). Several methyltransferases belonged to the biosyn-

thetic pathway of secondary metabolites. Most of the tran-

scriptional regulators (fig. 5) were transcription factors, which

belonged to several families (e.g., IAA, AP2). The other most

populated classes were ubiquitin-related proteins and actors

of the photosynthesis. All the other molecular functions found

were so diverse that they could hardly be grouped (fig. 5).

Moreover, except for most of the above-mentioned families,

gene families were represented only by a few members or

even by a single gene in the strict set. This large functional

diversity observed was consistent with that reported in envir-

onmental and phenotypic association studies, as well as tran-

scriptomic studies conducted in trees (Holliday et al. 2008;

Eckert et al. 2010; Prunier et al. 2011; McKown et al.

2014), and in plants in general (Seki et al. 2002; Kilian et al.

2007; Yoder et al. 2014). The biological processes in which

the 43 adaptive genes carrying highly significant SNPs are

likely involved were also very diverse (fig. 6). In the follow-

ing sections, we discuss this diversity of functions and

processes involved in climate adaptation in P. glauca,

along with some of the most remarkable of the 43 adap-

tive genes identified.

Genetic Adaptation to Climate Involves Genes Related to
Development, Metabolism, and Stress Response

In total, 11 (~26%) sequences were similar to proteins

involved in stress response (fig. 6) in addition to two sequences

involved in proteolysis, a crucial mechanism underlying protein

plasticity and therefore plant survival under abiotic stress

(Stone 2014). Moreover, 9 (~21%) sequences were involved
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in plant development, including seed development, the auxin

pathway, ABA signaling, or phenology (fig. 6). One of the two

top genes for temperature in RF belonged to the b-tubulin

family (>90% identity over 426 amino acids with A. thaliana

b-tubulin sequences [TAIR: AT1G75780.1, AT5G62690.1,

AT5G62700.1, AT5G44340.1, AT1G20010.1,

AT2G29550.1, AT5G23860.1, AT4G20890.1]). b-tubulins,

which are components of microtubules, are involved in impor-

tant processes such as cell division and expansion, and cell wall

formation (Nick 1998). Some b-tubulins have been shown to

be differentially expressed under biotic and abiotic stresses in

Arabidopsis (Chu et al. 1993; Kreps et al. 2002; Ascencio-

Ibanez et al. 2008). Other highly significant genes detected

in regression and/or RF included three genes putatively coding

for two oxidoreductases and one isomerase whose homologs

are involved in photosynthesis, one gene putatively coding for

a transferase whose homolog is involved in the accumulation

of lipids in seeds, and one gene putatively coding for a

superoxide dismutase whose homolog is involved in tolerance

to oxidative stress (fig. 6).

One adaptive gene [GenBank: BT111298] belonged to the

sucrose non-fermenting-1 (SNF1) related kinase 3 (SnRK3 or

CIPK, CBL-interacting protein kinase) family (Hrabak et al.

2003). This gene was differentially expressed during bud set

in P. glauca, and matched DEGs during bud set in P. sitchensis

(Holliday et al. 2008), DEGs in E. camaldulensis under water

stress (Thumma et al. 2012), and DEGs in A. thaliana submitted

to all four studied stresses (Kilian et al. 2007) (see Materials and

Methods). This gene was downregulated in stems and in form-

ing buds during bud set in P. glauca (El Kayal et al. 2011;

Galindo-Gonzalez et al. 2012). It likely encodes a kinase: the

P. glauca protein sequence was 65% identical over 425 amino

acids to A. thaliana CIPK20 [TAIR: AT5G45820.1]. Its closest

homolog was CIPK16 of Vitis vinifera [RefSeq: NP_001267894]

(72% identity over 434 amino acids). CIPKs are activated by

CBL (calcineurin B-like) proteins that bind to the regulatory NAF
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FIG. 5.—Putative molecular functions of the 43 Picea glauca genes carrying highly significant SNPs associated with climate (table 1 and supplementary

table S3A, Supplementary Material online). The numbers on top of the histogram indicate the percentage of these genes found in each class. Genes with

homologs of known function were split into several functional categories. Enzymes were distributed across six of the seven categories of the enzyme

classification, but ubiquitin ligases were included in the «ubiquitin related proteins» category. Some included such a high diversity of proteins that they were

grouped in the category named “other.” Within bars, the left number indicates how many of the 43 adaptive genes matched differentially expressed genes

(DEGs) in spruces only (Holliday et al. 2008; El Kayal et al. 2011; Galindo-Gonzalez et al. 2012); the right number indicates the number of adaptive genes

matching DEGs in angiosperms only (rice, Zhang et al. 2012; Arabidopsis thaliana, Kilian et al. 2007; Eucalyptus camaldulensis, Thumma et al. 2012); the

number in parentheses indicates the number of adaptive genes matching DEGs both in spruces and angiosperms (for angiosperms, identity�50% over at

least 100 nucleotides, and BLASTP e-value< 1� 10�10; for Picea sitchensis, identity�95% over at least 100 nucleotides, and BLASTN e-value< 1� 10�10).

The isomerase gene did not match any DEG.
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domain. CBL proteins are sensors of the second messenger

Ca2+, and the CIPK/CBL network is thus an important mediator

of different signaling pathways (Luan 2009; Yu et al. 2014).

SnRK3 proteins are involved in the response to abiotic stresses

(Coello et al. 2011). For instance, SnRK3 mutations are respon-

sible for the “salt overly sensitive” phenotypes of SOS

Arabidopsis mutants (Liu and Zhu 1998; Liu et al. 2000).

Several CIPKs are also involved in ABA responses (Gong et al.

2002; Guo et al. 2002; Kim et al. 2003). For example, activation

of CIPK20 is required to activate the ABA signaling pathway

involved in seed germination and growth elongation inhibition

in A. thaliana (Gong et al. 2002).

The many processes and pathways likely involved in climate

adaptation in P. glauca were well reflected by such adaptive
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FIG. 6.—Functional classification of the 43 Picea glauca genes carrying highly significant SNPs associated with climate. Each line corresponds to one of the

43 adaptive genes. The categorization into functional classes was determined after transcriptome analyses and literature search about the functions of

homologs (see Materials and Methods, Supplementary Table S3A). 1Adaptive genes detected by regression (FDR=0.05) or Random Forest (top 10) alone (pale

blue), or by both methods (dark blue). 2Adaptive genes differentially expressed (or matching a Picea sitchensis DEG) during bud set in P. glauca or P. sitchensis

alone (yellow), or in both species (orange). The experiments were published by El Kayal et al. (2011) and Galindo-Gonzalez et al. (2012) for P. glauca, and by

Holliday et al. (2008) for P. sitchensis. 3Picea glauca adaptive genes matching an Arabidopsis gene transcriptionally regulated by cold and/or drought and/or salt

and/or UV-B stresses (Kilian et al. 2007). 4Genes with homologs involved in defense mechanisms against several pathogens (e.g., bacteria, nematodes,

herbivory). 5Genes involved in development, growth, or seed development. 6Genes involved in secondary metabolism, lignin accumulation. Letters and arrows

on the right indicate the main genes discussed in the text. (a) CIPK20, (b) b-tubulin, (c) PP2A catalytic subunit, (d) PP2A regulatory subunit.
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genes, and by the enriched functional categories. These find-

ings were consistent with the known cross-talks between

responses to different stresses (Cheong et al. 2002; Fraire-

Velazquez et al. 2011), and between development and stress

response (Krasensky and Jonak 2012). Altogether, our results

showed that adaptation to climate in P. glauca involves many

mechanisms playing at several cellular and organismal levels.

Genetic Adaptation to Climate Involves Genes Related to
Bud Set and Phenology

Among the 43 adaptive genes carrying highly significant SNPs,

29 had a known expression profile, of which 18 and 14 were

differentially expressed during bud set in buds (El Kayal et al.

2011) and whole stems (Galindo-Gonzalez et al. 2012),

respectively. Expression and sequence data were also com-

pared with DEGs during bud set in the closely related species

P. sitchensis (Holliday et al. 2008) (identity� 95% over at least

100 bp), although some paralogy between annotated genes

in both spruces cannot be excluded. Among the 43 adaptive

genes, 34 matched a P. sitchensis gene studied by these

authors, including 9 that were differentially expressed. No

significant enrichment in DEGs in P. glauca or P. sitchensis

was found (P>0.10 in all cases).

Altogether, six genes (fig. 6; six first rows) were declared as

involved in climate adaptation by our study and the three

transcriptomic studies of Holliday et al. (2008), El Kayal et al.

(2011), Galindo-Gonzalez et al. (2012). They belonged to dif-

ferent protein families: a universal stress protein [PFAM:

PF00582.21], a dirigent-like protein [PFAM: PF03018.9], a

putative cyclase [PFAM:PF04199.8], a protein tyrosine kinase

[PFAM: PF07714.12] with a NAF domain [PF03822.9] (the

CIPK20 homolog discussed above), a protein from the linker

histone H1 and H5 family [PFAM: PF00538.14], and one

orphan. Furthermore, some of the 43 adaptive genes identi-

fied herein were homologs of key components of flowering

regulation in angiosperms. Indeed, two of them encoded two

of the three subunits of the PP2A (phosphatase 2A; the reg-

ulatory and the catalytic subunits), which is involved in the

regulation of flowering time in Arabidopsis through its inter-

action with the flowering locus C gene (Heidari et al. 2013).

These genes may be adaptive through their role in phenolo-

gical changes, especially those linked to bud set, and through

other processes discussed above, such as development and

stress response.

Genetic Adaptation to Climate Involves Genetic and
Epigenetic Control of Transcription

The 43 adaptive genes carrying highly significant SNPs

included several transcription factors (fig. 5), histones, and a

putative SWI/SNF chromatin remodeling ATPase, suggesting

that the control of transcription is one important mechanism

for adaptation, involving both transcription factors and also

likely epigenetic modifications. Both processes are contribute

to acclimation and response to stress in plants (Singh et al.

2002; Kim et al. 2010; Bräutigam et al. 2013; Baulcombe and

Dean 2014; Han and Wagner 2014). Finally, some of the 43

adaptive genes were also likely involved in the preservation

of genome integrity and DNA repair (fig. 6), two processes

critical for plant survival.

Conclusions

In this study, the use of linear and quadratic regressions, as

well as the RF algorithm, allowed detecting dozens of loci

likely involved, directly or indirectly, into genetic adaptation

to climate in P. glauca. Most of these genes had homologs

likely involved in responses to various biotic and abiotic stres-

ses, as well as in development or phenological changes. Some

of these genes are reported as integrators of the stress

response from signal reception to transduction to activation

of mechanisms for protecting cells and genomes. Our results

support the view that several adaptive genes identified in this

study are involved in cross-talks between processes, in part

through the regulation of transcription or by phosphorylation.

Altogether, our results are consistent with theoretical and

empirical studies suggesting that adaptation involves function-

ally diverse loci with small allele frequency shifts when selec-

tion is recent in species with high gene flow.

Our results also highlight the importance of extending cur-

rent methods for the detection of loci under selection with

complementary methods accounting for more realistic pat-

terns of adaptive genetic variation in natural populations

such as nonlinear patterns and interaction effects. Doing so

will provide a more rigorous foundation to compare the results

of empirical environmental association studies with theoretical

predictions on the dynamics and the genetic architecture of

adaptation. Ultimately, it should result in a better understand-

ing and monitoring of ecologically relevant genetic variation in

an era of global environmental change, which is particularly

crucial for perennial plant species with long generation times

such as conifers.

Supplementary Material

Supplementary figures S1–S5 and tables S1–S3 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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