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Estimation of best corrected 
visual acuity based on deep neural 
network
Woongsup Lee1, Jin Hyun Kim1*, Seongjin Lee2, Kyonghoon Kim3, Tae Seen Kang4 & 
Yong Seop Han4,5*

In this study, we investigated a convolutional neural network (CNN)-based framework for the 
estimation of the best-corrected visual acuity (BCVA) from fundus images. First, we collected 53,318 
fundus photographs from the Gyeongsang National University Changwon Hospital, where each fundus 
photograph is categorized into 11 levels by retrospective medical chart review. Then, we designed 
4 BCVA estimation schemes using transfer learning with pre-trained ResNet-18 and EfficientNet-B0 
models where both regression and classification-based prediction are taken into account. According to 
the results of the study, the predicted BCVA by CNN-based schemes is close to the actual value such 
that 94.37% of prediction accuracy can be achieved when 3 levels of difference can be tolerated during 
prediction. The mean squared error and R2 score were measured as 0.028 and 0.654, respectively. 
These results indicate that the BCVA can be predicted accurately for extreme cases, i.e., the level 
of BCVA is close to either 0.0 or 1.0. Moreover, using the Guided Grad-CAM, we confirmed that the 
macula and the blood vessel surrounding the macula are mainly utilized in the prediction of BCVA, 
which validates the rationality of the CNN-based BCVA estimation schemes since the same area is 
also exploited during the retrospective medical chart review. Finally, we applied the t-distributed 
stochastic neighbor embedding to examine the characteristics of CNN-based BCVA estimation 
schemes. The developed BCVA estimation schemes can be employed to obtain the objective 
measurement of BVCA as well as the medical screening of people with poor access to medical care 
through smartphone-based fundus imaging.

Vision plays a significant role in our daily lives and good eye condition can promote economic opportunities, 
improve quality of life1, and enable better educational outcomes2. Approximately 596 million people had dis-
tance vision impairment worldwide, of whom 43 million were blind by 20203, and the majority of whom live in 
middle- or low-income countries with poor access to eye care. Given that over 80% of such vision impairments 
can be avoidable through early detection and treatment, it is important to have regular eye health screening.

Best-corrected visual acuity (BCVA) is the measurement of the possible ability to distinguish shapes and 
the details of objects at a given distance with corrective lenses, and is one of the most commonly used testing 
factors for eye conditions. The accurate measurement of BCVA is important because clinicians depend on these 
results to determine further investigations and quantify changes to vision over time1. The most common way to 
measure BCVA is to use a chart, such that the patient is asked to identify letters on the chart4–6, e.g., Snellen or 
Landolt C chart. However, such manual BCVA estimations rely on the response from the patients, making them 
ineffective when the patients are unable to respond. Moreover, manual approaches can be time-consuming and 
can be subjective to factors such as the BVCA measuring environment. To deal with these shortcomings, objec-
tive automatic BCVA estimation schemes were developed, where the BCVA level is predicted-based on various 
factors such as the visual evoked potential (VEP)5,7 or the optical coherence tomography angiograsphy (OCTA)8.

Recently, deep learning, based on the deep neural network (DNN), has gained great popularity due to 
its significant performance gains over conventional schemes9–11. Especially, the classifications based on the 
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convolutional neural network (CNN), which is specialized in extracting spatial features, are shown to achieve far 
more accurate performance than the conventional handcrafted schemes based on the analytic models and even 
surpassed human-level performance12,13. As a result, CNN-based schemes have been investigated extensively 
in the diagnosis based on medical images, including head computed tomography (CT), lung CT and fundus 
image14. Specifically, for the application of CNN in the analysis of head CT, brain stroke detection and lesion 
segmentation were mainly examined15–17, whereas the detection of lung cancer18–20 or the diagnosis of COVID-
1921–24, were mainly taken into account in the analysis of lung CT.

In this study, we estimated BCVA levels using different types of CNNs; where the BCVA level is predicted 
by observing a fundus image that involves photographing the rear of an eye. The motivation behind using the 
fundus image is that it is most popularly used in examining eye diseases, and the advent of smartphone-based 
fundus imaging25–28 makes it easy to obtain fundus images. Moreover, in recent days, deep learning has been 
extensively applied to the fundus image to detect the lesion and diagnose eye-related diseases such as macular 
degeneration and diabetic retinopathy (DR)29–31. Deep learning has also been employed for the quality grading 
of fundus image32, and for the segmentation of blood vessel from fundus image33, which validate the applicability 
of deep learning for the fundus image. However, the deep learning-based estimation of BCVA levels from fundus 
images has been rarely investigated despite its importance in practice, such that the application of deep learn-
ing for estimating BCVA levels from fundus images is the contribution of our work. Moreover, we verified the 
performance of the proposed scheme using a large number of actual data, i.e., 53,318 fundus images, collected 
at the Gyeongsang National University Changwon Hospital, and showed that the BCVA level could be predicted 
with high accuracy, which is another contribution of our work. We also used class activation visualization, i.e., 
Guided Grad-CAM34, to confirm the operation of CNN-based BCVA estimation schemes, and the character-
istics of fundus images for each BCVA level were verified using t-distributed stochastic neighbor embedding 
(t-SNE) clustering35,36, both of which are another contribution of our work. We note that unlike manual BCVA 
measurement, which is affected by the BCVA measuring environment, the proposed methodology can provide 
an objective measurement of BCVA, which can be used to determine the necessity of other expensive and 
time-consuming BCVA measurements such as VEP, electroretinography (ERG) or multifocal-ERG (mfERG). 
Moreover, our BCVA measurement can be helpful in the analysis of clinical studies of ophthalmology. Finally, it 
can be employed in public health facilities to provide efficient ways of eye health screening for people who have 
poor access to public health. Especially, the proposed methodology can be employed in a mobile application so 
people can self-measure their BCVA level using the smartphone conveniently25–28.

Results
Characteristics of collected fundus dataset.  The fundus images of patients who visited Gyeongsang 
National University Changwon Hospital, South Korea, from February 2016 to December 2020, were collected, 
and the fundus images from the left and right eyes were utilized altogether. Each collected fundus image was 
examined through retrospective medical chart review and labeled into 11 levels ranging from 0.0 to 1.0. We note 
that the case of no light perception (LP-), light perception (LP), hand movement (HM), and decimal VA scale 
0.01 and 0.025 that correspond to Snellen VA scale of 20/2000 and 20/800, is counted as BCVA level of 0.0. It 
is also worth noting that we used the same BCVA level that the expert ophthalmologists use at the Gyeongsang 
National University Changwon Hospital so that the entire BCVA levels can be covered. In total, 53,318 fundus 
images were accumulated where the number of fundus images which corresponds to BCVA level of 0.0, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 is 1760, 1153, 1711, 2175, 2061, 3386, 3969, 4524, 4553, 6454, and 21572, 
respectively. Moreover, 90% of these collected fundus images were used for training CNN models, while the rest 
10% of fundus images were used for validation.

Considered schemes and performance metrics.  As an underlying pre-trained CNN structure, we 
considered two CNN structures, ResNet-1837 and EfficientNet-B038, and both were pre-trained with ImageNet 
dataset39. Moreover, we considered both regression-based and classification-based BCVA estimation schemes, 
where, the level of BCVA is estimated as a continuous value in the former case while it is predicted as discrete 
levels in the latter case. The classification-based BCVA estimation schemes using ResNet-18 and EfficientNet-
B0 are denoted as Res-Cla and Eff-Cla, respectively, while regression-based BCVA estimation schemes using 
ResNet-18 and EfficientNet-B0 are denoted as Res-Reg and Eff-Reg.

Regarding the performance metrics, we considered the precision, which is denoted as TP

TP+FP
 , where TP and 

FP denote the true positive and false positive, respectively. In the calculation of precision, the estimated BCVA 
of regression-based schemes, i.e., Res-Reg and Eff-Reg, was rounded such that it can have a discrete value. 
Moreover, the root mean square error (RMSE) and the R2 score were taken into account as performance metrics40. 

Formally, the RMSE is expressed as E
[

(

VA− V̂A

)2
]

 , where VA and V̂A are the actual and predicted BCVA 

levels, and R2 score can be formulated as 1−
∑

(

V̂A−VA

)2

∑

(E[VA]−VA)2
 . We note that the RMSE will be close to 0 when the 

prediction is accurate whereas the R2 score is close to 1 when the prediction is accurate.

Performance comparison of considered schemes.  Table 1 shows the precision of considered BCVA 
estimation schemes. For the precision calculation, we assumed that a certain level of discrepancy could be toler-
able, which is expressed by the level of relaxation. For example, when 1 level relaxation is used and the actual 
BCVA level is 0.5, our prediction is assumed to be correct when the predicted BCVA level is either 0.4, 0.5, or 
0.6. Without relaxation, Res-Cla showed the highest precision whose value is 44.28%, while Res-Reg achieved 
the highest precision value for 1 level relaxation, i.e., 71.11%. Moreover, for 2- and 3-level relaxations, Eff-
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Reg showed the highest precisions of 87.03% and 94.37%, respectively. Table 2 shows the RMSE and R2-score, 
where the Res-Reg achieved the lowest RMSE of 0.028 and the highest R2-score of 0.654. Moreover, the Eff-Reg 
achieved almost the same performance as the Res-Reg, which is much higher than that of classification schemes.

Classification results using confusion matrix.  Figure 1 shows the confusion matrix of the considered 
schemes. The elements concentrate near diagonal for all confusion matrices such that the wrong prediction 
result will not diverge significantly from the ground truth value. Especially, the level of concentration is higher 
for regression schemes (Res-Reg and Eff-Reg) than for classification schemes (Res-Cla and Eff-Cla). Moreover, 
the sum of diagonal elements is highest for the Res-Cla; and the classification accuracy is higher when the actual 
level of BCVA is near 0.0 or 1.0 than the case when it is near 0.5. The highest accuracy obtained, 79%, can be 
obtained for the Eff-Cla when the level of BCVA is 0.0.

Classification results using histogram.  Figure 2 shows the histogram of the considered schemes. The 
prediction distribution is concentrated near the ground-truth value, such that the wrong prediction will not 
diverge significantly from the actual BCVA level. Moreover, the distribution concentrated more densely when 
BCVA = 0.0 and 1.0, which coincides with our findings observed in previous results on the confusion matrix.

Validation of considered schemes using class activation visualization.  Figure 3 shows the class 
activation visualization of the considered schemes with the corresponding fundus image, where the Grad-CAM, 
Guided Back-propagation, and Guided Grad-CAM are taken into account for the visualization, where more 
results can be found in our data repository41. The actual BCVA level is 1.0, and the predicted BCVA of Res-Cla, 
Eff-Cla, Res-Reg, and Eff-Reg are 0.7, 1.0, 0.934, and 0.968, respectively. According to the Grad-CAM results, 
the area near the macula is highlighted for all considered schemes, while the optic disk is also highlighted for the 
Res-Reg. For the Guided Back-propagation, the blood vessel, macula, and optic disk are highlighted. Finally, for 
the Guided Grad-CAM, the blood vessel and macula are highlighted, which coincides with the area inspected 
during the retrospective medical chart review to identify BCVA.

Samples of wrong prediction result.  Figure 4 shows the randomly selected samples of wrong prediction 
results for all the considered schemes when the actual BCVA is 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. Some of the wrong 
prediction results are caused by the inappropriate fundus image. For example, macula and optic disc could not 
be identified properly from the fundus images for the case when the actual BCVA is 0.0, which makes the iden-
tification of BCVA challenging.

Validation of considered schemes using class activation t‑SNE.  Figure  5 shows the clustering 
results using t-SNE. Although data points for each BCVA level overlap to some extent, they are aligned mono-
tonically according to their corresponding BCVA level in general. Additionally, data points for the case when 
BCVA is 0.0 can be clustered separately, which suggests that this case can be classified accurately.

Discussion
In general, the level of BCVA is measured through examination using the Snellen or Landolt C chart. However, 
when a patient is unconscious due to brain damage or a disease such as dementia, it will be impossible to deter-
mine the level of BCVA. Moreover, such manual BVCA measurement cannot apply to infants and childhood. 
Furthermore, some patients give false response to the examination to get a high disability rating. In such a case, 
the measurement of BCVA level through the direct inspection of the fundus is necessary, where the macula, 
major retinal arteries, and veins are used for the examination.

Table 1.   The precision of considered BCVA estimation schemes. For each relaxation case, the scheme with the 
highest precision is highlighted in bold font.

Prediction model Res-Cla (%) Eff-Cla (%) Res-Reg (%) Eff-Reg (%)

No relaxation 44.28 37.05 35.91 30.18

1 level relaxation 69.84 71.01 71.11 69.55

2 level relaxation 82.29 85.01 86.69 87.03

3 level relaxation 89.94 92.32 94.12 94.37

Table 2.   MSE and R2-score of considered BCVA estimation schemes where the highest performance is 
highlighted in bold font.

Prediction model Res-Cla Eff-Cla Res-Reg Eff-Reg

RMSE 0.042 0.036 0.028 0.029

R
2-score 0.501 0.575 0.654 0.648
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Recently, CNN has been applied extensively in retinal fundus image analysis. Specifically, CNN-based detec-
tion and classification of DR, which is a diabetes complication causing blindness, has been investigated42–45. 
Moreover, a study confirmed that the CNN-based approach could be used for the estimation of gender from 
retinal fundus image46 and the identification of left and right fundus image47. Since the spatial feature of fundus 
images can be extracted by CNNs, we examined the feasibility of CNN-based BCVA estimation in this study.

Table 1 shows the precision of considered CNN-based BCVA estimation schemes, i.e., Res-Cla, Eff-Cla, Res-
Reg, and Eff-Reg. Unlike conventional classification tasks, the severity of misclassification can differ depending on 
the misclassified results. For example, when the actual BCVA level is 0.1, the prediction of 0.2 can be regarded as 
more accurate than prediction of 0.9, even though both prediction results are incorrect. It is worth noting that the 
prediction results obtained through the retrospective medical chart review can be slightly different for the same 
fundus image, and such minor deviation is usually acceptable in practice. To properly reflect such characteristics 

Figure 1.   Confusion matrix of considered schemes.
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in the misclassification, we evaluated the precision by allowing such a small difference in the prediction, namely 
the level of relaxation. Accordingly, when 2 level relaxation is adopted, we assumed that prediction is correct if 
|V̂A− VA| ≤ 0.2 where VA and V̂A are actual and predicted BCVA levels.

As shown in Table 1, the classification schemes achieve higher precision than the regression schemes when the 
relaxation is not adopted. On the other hand, the regression schemes provide higher accuracy when the relaxed 
precision is adopted. We conjecture that the utilization of the different loss functions causes such a phenomenon. 
More specifically, we train the classification schemes to exactly match the predicted BCVA to the actual BCVA, 

Figure 2.   Histograms of considered schemes for each BCVA level. The last subgraph corresponds to the 
histogram of all prediction results and actual BCVA levels.

Figure 3.   Class activation visualization of the considered schemes with fundus image. For each sub-figure, the 
first, second, third, and fourth image correspond to the original fundus image, Grad CAM results, Guided Back-
propagation result, and Guided Grad CAM results, which combine Grad CAM and Guided Back-propagation, 
respectively.
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whereas the regression schemes are trained to minimize the difference between predicted and actual BCVA levels. 
Accordingly, classification schemes are better at finding the exact BCVA level while the prediction of regression 
schemes can be closer to its actual value when the predicted BCVA level is different from the actual value. Moreo-
ver, the Res-Cla achieves the highest precision of 44.28% for no relaxation case, whose value is somewhat low 
for practical uses. However, as 1, 2, and 3 levels of relaxations are adopted, the achievable precision can increase 

Figure 4.   Wrong prediction result of the considered scheme when actual BCVA areis 0.0, 0.2, 0.4, 0.6, 0.8, and 
1.0. The actual and predicted BCVA is indicated at the top of the figure.

Figure 5.   T-SNE result of considered schemes.
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to 71.11% (Res-Reg), 87.03% (Eff-Reg), and 94.37% (Eff-Reg), respectively. It is worth noting that the manual 
BVCA measurement is subjective, and the measurement of BVCA can change depending on the measuring 
environment and time. Accordingly, a minor difference in BCVA prediction is generally acceptable such that we 
can conclude that our considered BCVA estimation schemes can be handy in practical usage.

Table 2 shows the RMSE and R2-Score of considered BCVA estimation schemes. The regression schemes pro-
vide better performance than the classification schemes because we trained the regression schemes to minimize 
the difference between the actual and predicted BCVA level, as explained previously, whereas this difference 
determines the RMSE and R2-Score. Specifically, the Res-Reg scheme achieves the highest performance (i.e., 
lowest RMSE and highest R2-Score) while the Eff-Reg scheme achieves almost the same performance as the 
Res-Reg scheme.

Next, to better understand the prediction accuracy for each BCVA level, we showed the accuracy of considered 
BCVA estimation schemes using the confusion matrix as depicted in Fig. 1. The diagonal element corresponds 
to the accuracy for each BCVA level. As can be observed from confusion matrices, the diagonal elements are 
generally small. The diagonal values are smaller when the BCVA level is close to 0.5 compared to cases when the 
BCVA level is either 0.0 or 1.0. For example, the accuracy of Res-Cla is 79% and 72% when the BCVA level is 
0.0 and 1.0, respectively, while the accuracy is 24% when the BCVA level is 0.5. This is because when the BCVA 
level is either 0.0 or 1.0, the fundus image contains the unique characteristic, which is easy to identify. However, 
as the BCVA level approaches 0.5, such a unique characteristic becomes ambiguous, making the identification of 
BCVA more challenging. Also, examinations by expert ophthalmologists are more confident when BCVA levels 
are either 0.0 or 1.0. Among all considered schemes, the trace of the confusion matrix is highest for Res-Cla, i.e., 
highest accuracy, which is in line with the performance evaluation in Table 1.

Although the diagonal elements are not dominant in the confusion matrix, the values near the diagonal are 
considerably large. This means that even when the predicted BCVA level is incorrect, the difference between 
the wrong prediction result and the actual BCVA level is not significant. Also, the level of concentration to the 
diagonal element is higher for regression schemes (i.e., Res-Reg and Eff-Reg) than for classification schemes (i.e., 
Res-Cla and Eff-Cla). Thereby, regression schemes will be more accurate, which coincides with our conclusion 
in Table 2. Moreover, we also found only a minor difference in performance according to baseline CNN models, 
i.e., ResNet-18 and EfficientNet-B0.

Figure 2 depicts the histogram of the estimated BCVA level for all considered schemes. The distribution of 
the predicted BCVA level concentrates around the actual BCVA level, i.e., the wrong prediction will be close to 
the ground-truth value, and the distribution becomes more densely concentrated when BCVA is 0.0 and 1.0, 
which agrees with our previous observation in Fig. 1. Moreover, the distribution of classification schemes is also 
concentrated around the actual BCVA level even though we do not consider the difference between the predic-
tion and the ground-truth BCVA level during the training. To be more specific, we adopted the cross-entropy 
loss function for the training of DNN in classification schemes. Thereby, the value of the loss function will be the 
same for wrong predictions. For example, when the actual BCVA level is 0.2, the inaccurate prediction of 0.3 will 
not have a lower value of loss function than the case with a wrong prediction of 1.0. Consequently, the training 
will not force the prediction results to locate near the actual BCVA level. According to the results, the similarity 
exists in fundus images for nearby BCVA levels, e.g., the spatial features of the fundus image corresponding to 
the BCVA level of 0.2 will be similar to those corresponding to the BCVA level of 0.3, as will be confirmed later 
using the clustering with t-SNE.

Due to the black-box nature of DNN9, it is hard to justify why such a prediction on the BCVA level is obtained 
from the fundus image, which is one of the main drawbacks of CNN-based schemes. To better understand the 
operation of the considered CNN-based schemes, we applied Guided Grad-CAM, which combines Grad-CAM 
and Guided Back-propagation to identify the dominant spatial features for the prediction. Figure 3 depicts the 
original fundus image and the resulting Grad-CAM, Guided Back-propagation, and Guided Grad-CAM overlaid 
on the original fundus image for all considered schemes, where the actual BCVA level is 1.0, and the prediction 
of Res-Cla, Eff-Cla, Res-Reg, and Eff-Reg are 0.7, 1.0, 0.934, 0.968, respectively. The area near the macula is 
highlighted for all considered schemes in the Grad CAM. On the other hand, the blood vessel, macula, and optic 
disk are emphasized for the Guided Back-propagation result. As a consequence, for the Guided Grad-CAM, the 
macula and blood vessel surrounding the macula are highlighted, i.e., BCVA estimation schemes make their 
predictions by observing these features. Since the same spatial features are used in the retrospective medical 
chart review to identify BCVA levels, we can conclude that the prediction of the considered BCVA estimation 
schemes is reasonable and trustworthy.

To further analyze the inaccurate prediction results, Fig. 4 presents the randomly selected samples of wrong 
prediction results for all considered schemes, when the actual BCVA is 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. In some 
cases, wrong prediction results are obtained due to the inappropriate fundus images. For example, the macula 
and optic disc could not be identified from the fundus images for the case when the actual BCVA was 0.0. 
Moreover, for Eff-Cla with BCVA level of 1.0 and Eff-Reg with BCVA level of 1.0, the macula is shaded and hard 
to recognize, which makes the identification of BCVA levels more challenging.

Finally, to investigate the correlation of fundus images for each BCVA level, Fig. 5 depicts the visualization 
result using t-SNE. Data points are aligned monotonically according to their corresponding BCVA. This result 
reveals that similarity exists in spatial features for fundus images according to their BCVA levels. Additionally, 
the data points for the BCVA level of 0.0 can be grouped separately which suggests that the fundus image with 
a BCVA level of 0.0 can be classified accurately.
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Methods
Study design.  The protocol of this retrospective study was approved by the Institutional Review Board 
of Gyeongsang National University Changwon Hospital and the principles of the Declaration of Helsinki. The 
requirement for obtaining informed patient consent was waived by the institutional review board (GNUCH 
2021-05-007) due to the retrospective nature of the study.

Acquisition of fundus data.  The fundus images of patients who visited Gyeongsang National University 
Changwon Hospital were obtained by an expert examiner using a digital retinal camera. The black area of the 
fundus image, which surrounds the retinal image, was removed through trimming. The fundus images were 
reviewed and labeled by expert ophthalmologists such that each fundus image can be associated with one BCVA 
level ranging from 0.0 to 1.0. During the acquisition of data, LP-, LP, HM, and decimal VA scale 0.01 and 0.025, 
which correspond to the Snellen VA scale of 20/2000 and 20/800, was labeled as BCVA level of 0.0.

Pre‑processing of data.  The fundus images were pre-processed before being fed into CNN. First, the size 
of the original fundus image was reduced to 224x224x3, which is necessary to reduce the computational over-
head. Then, the fundus image were randomly flipped horizontally and rotated to a maximum rotation of 5 
degrees. The pre-processing is necessary as a means of data augmentation because the number of fundus images 
is not sufficient for some BCVA levels, i.e., imbalance in data size. The considered pre-processing of the fundus 
image is shown in Fig. 6.

Convolutional neural networks.  In our current study, we considered two types of estimations, i.e., the 
classification scheme and the regression scheme, where the training methodology and output layer of the DNN 
structure are different for both schemes. Moreover, to expedite the training of the neural network, we employed 
the transfer learning (TL)48 such that the pre-trained baseline CNN models are connected in tandem with the 
DNN structure composed of fully connected layers, as shown in Fig. 6. We take into account the ResNet-1837 and 
EfficientNet-B038 as baseline CNN models. The ResNet-1837 is a CNN structure composed of 18 layers, where 
the residual connection is employed to improve the performance of CNN. On the other hand, the EfficientNet-
B038 is a CNN structure composed of 237 layers, where the compound scaling is employed to achieve better 
performance with a lower number of parameters. Both ResNet-18 and EfficientNet-B0 are first pre-trained with 
ImageNet dataset39. We note that both baseline CNN models can be used for both estimations.

Then, the output of the baseline CNN model is fed into the DNN structure, which summarizes spatial features 
extracted from the CNN model. For the DNN structure, the batch normalization49 and dropout50 were applied, 
and the rectified linear unit (ReLU) was utilized as an activation function. Depending on the estimations, the 
last layer of the DNN structure is different. Specifically, for the classification scheme, the last layer of the DNN is 
connected to the softmax function, whereas the sigmoid function is adopted for the regression scheme, as shown 
in Fig. 6, where VAEC , VARC , VAER , and VARR denote the estimated BCVA level for Eff-Cla, Res-Cla, Eff-Reg, 
and Res-Reg, respectively. We note that the classification and regression schemes use different DNN structures.

Regarding the training of DNNs, only the parameters of the DNN at the latter part are updated during the 
training because the baseline CNN models are pre-trained with the ImageNet dataset. For the regression schemes, 

Figure 6.   The procedure considered the BCVA estimation scheme. The fundus image was resized to 
224× 224× 3 , and the random flipping and rotating are applied as a means of data augmentation. The modified 
fundus images were then fed into pre-trained ResNet-18 and EfficientNet-B0, whose outputs were fed into a 
DNN structure composed of a fully connected layer, batch normalization, dropout, and ReLU. The softmax 
function is used as a last layer for classification schemes (i.e., Res-Cla and Eff-Cla) whereas the regression 
schemes (i.e., Res-Reg and Eff-Reg) employ the sigmoid function instead. The parameters of the considered 
DNN structure are updated using cross-entropy loss and MSE loss using the level of BCVA as a label for 
classification schemes and regression schemes, respectively.
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the mean squared error (MSE) loss was employed. On the other hand, the cross-entropy loss was used for clas-
sification schemes where the label data on BCVA levels was transformed to a vector whose length is 11, using a 
one-hot encoding. The trained DNN models can be found in our data repository41.

Class activation visualization.  The Guided Grad-CAM34 that combines Grad-CAM and Guided Back-
propagation was adopted for the class activation visualization. In the Grad-CAM, the outputs of the final convo-
lutional layer were summarized to find the most critical area that affects the BCVA estimation the most. On the 
other hand, in the Guided Back-propagation, only the positive gradients and the input signal were visualized. 
Finally, in the Guided Grad-CAM, by combining the results of Grad-CAM and Guided Back-propagation, we 
identified the main spatial features which affect the BCVA estimation most.

Clustering using t‑SNE.  We used t-SNE35,36, which is one of the most popular nonlinear dimensionality 
reduction technology, to visualize the spatial features of the fundus for each BCVA level. In the calculation of 
t-SNE, the dimension of the output of the last layer of the DNN structure was compressed to two-dimensional 
space.

Data availability
Data supporting the findings of the current study are available from the corresponding author upon reasonable 
request.

Received: 28 June 2022; Accepted: 17 October 2022

References
	 1.	 Kniestedt, C. & Stamper, R. L. Visual acuity and its measurement. Ophthalmol. Clin. N. Am. 16, 155–70 (2003).
	 2.	 Bruce, A., Fairley, L., Chambers, B., Wright, J. & Sheldon, T. A. Impact of visual acuity on developing literacy at age 4–5 years: A 

cohort-nested cross-sectional study. BMJ Open 6, 66 (2016).
	 3.	 Burton, M. J. et al. The Lancet global health commission on global eye health: Vision beyond 2020. Lancet Glob. Health 9, e489–e551 

(2021).
	 4.	 Bach, M. et al. The Freiburg visual acuity test-automatic measurement of visual acuity. Optom. Vis. Sci. 73, 49–53 (1996).
	 5.	 Han, X. et al. Development and validation of a smartphone-based visual acuity test (vision at home). Transl. Vis. Sci. Technol. 8, 

1–10 (2019).
	 6.	 Steren, B. J., Young, B. & Chow, J. Visual acuity testing for telehealth using mobile applications. JAMA Ophthalmol. 139, 344–347 

(2021).
	 7.	 Iyer, K. K., Bradley, A. P. & Wilson, S. J. Conducting shorter vep tests to estimate visual acuity via assessment of snr. Documenta 

Ophthalmologica 126, 21–28 (2013).
	 8.	 Díez-Sotelo, M. et al. A novel automatic method to estimate visual acuity and analyze the retinal vasculature in retinal vein occlu-

sion using swept source optical coherence tomography angiography. J. Clin. Med. 8, 66 (2019).
	 9.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
	10.	 Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).
	11.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).
	12.	 Karpathy, A. et al. Large-scale video classification with convolutional neural networks. In Proceedings of IEEE Conference on 

Computer Vision and Pattern Recognition, 1725–1732 (Columbus, 2014).
	13.	 Karpathy, A. & Fei-Fei, L. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (Boston, 2015).
	14.	 Shen, D., Wu, G. & Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017).
	15.	 Chilamkurthy, S. et al. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study. The 

Lancet 392, 2388–2396 (2018).
	16.	 Li, L. et al. Deep learning for hemorrhagic lesion detection and segmentation on brain CT images. IEEE J. Biomed. Health Inform. 

25, 1646–1659 (2021).
	17.	 Karthik, R., Menaka, R., Johnson, A. & Anand, S. Neuroimaging and deep learning for brain stroke detection—A review of recent 

advancements and future prospects. Comput. Methods Programs Biomed. 197, 105728 (2020).
	18.	 Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. 

Nat. Med. 25, 954–961 (2019).
	19.	 Bhandary, A. et al. Deep-learning framework to detect lung abnormality—A study with chest X-ray and lung CT scan images. 

Pattern Recognit. Lett. 129, 271–278 (2020).
	20.	 Kanavati, F. et al. Weakly-supervised learning for lung carcinoma classification using deep learning. Sci. Rep. 10, 1–11 (2020).
	21.	 Tan, W. & Liu, J. A 3D CNN network with BERT for automatic COVID-19 diagnosis from CT-scan images. In Proceedings of IEEE/

CVF International Conference on Computer Vision Workshops, 439–445 (Virtual, 2021).
	22.	 Bhattacharya, S. et al. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey. Sustain. 

Cities Soc. 65, 102589 (2021).
	23.	 Ko, H. et al. COVID-19 pneumonia diagnosis using a simple 2D deep learning framework with a single chest CT image: Model 

development and validation. J. Med. Int. Res. 22, e19569 (2020).
	24.	 Saood, A. & Hatem, I. COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet. BMC Med. 

Imaging 21, 1–10 (2021).
	25.	 Rajalakshmi, R., Subashini, R., Anjana, R. M. & Mohan, V. Automated diabetic retinopathy detection in smartphone-based fundus 

photography using artificial intelligence. Eye 32, 1138–1144 (2018).
	26.	 Iqbal, U. Smartphone fundus photography: A narrative review. Int. J. Retina Vitreous 7, 1–12 (2021).
	27.	 Akil, M. & Elloumi, Y. Detection of retinal abnormalities using smartphone-captured fundus images: A survey. In Proceedings of 

the Real-Time Image Processing and Deep Learning, vol. 10996, 126–133 (Baltimore, 2019).
	28.	 Mrad, Y., Elloumi, Y., Akil, M. & Bedoui, M. A fast and accurate method for glaucoma screening from smartphone-captured fundus 

images. IRBM 43, 279–289 (2022).
	29.	 Li, T. et al. Applications of deep learning in fundus images: A review. Med. Image Anal. 69, 101971 (2021).
	30.	 Elloumi, Y., Akil, M. & Boudegga, H. Ocular diseases diagnosis in fundus images using a deep learning: Approaches, tools and 

performance evaluation. In Proceedings of the Real-Time Image Processing and Deep Learning, vol. 10996, 221–228 (Baltimore, 
2019).



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17808  | https://doi.org/10.1038/s41598-022-22586-2

www.nature.com/scientificreports/

	31.	 Sengupta, S.. Singh, A., Leopold, H.A., Gulati, T. & Lakshminarayanan, V. Application of deep learning in fundus image processing 
for ophthalmic diagnosis—A review. arXiv preprint arXiv:​1812.​07101 (2018).

	32.	 Abramovich, O. et al. FundusQ-Net: A regression quality assessment deep learning algorithm for fundus images quality grading. arXiv 
preprint arXiv:​2205.​01676 (2022).

	33.	 Straat, M. & Oosterhof, J. Segmentation of blood vessels in retinal fundus images. arXiv preprint arXiv:​1905.​12596 (2019).
	34.	 Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 

IEEE International Conference on Computer Vision, 618–626 (Venice, 2017).
	35.	 Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2650 (2008).
	36.	 Gang, P. et al. Dimensionality reduction in deep learning for chest X-ray analysis of lung cancer. In Proceedings of the International 

Conference on Advanced Computational Intelligence, 878–883 (Xiamen, 2018).
	37.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, 770–778 (Las Vegas, 2016).
	38.	 Tan, M. & Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International 

Conference on Machine Learning, 6105–6114 (Long Beach, 2019).
	39.	 Deng, J. et al. Imagenet: A large-scale hierarchical image database. In Proceedings of IEEE Conference on Computer Vision and 

Pattern Recognition, 248–255 (Miami, 2009).
	40.	 Lee, W. et al. Prediction of average daily gain of swine based on machine learning. J. Intell. Fuzzy Syst. 36, 923–933 (2019).
	41.	 Additional simulation results and model parameters of trained DNN models. https://​github.​com/​seota​ijiya/​Estim​ation-​of-​Best-​

Corre​cted-​Visual-​Acuity-​Based-​on-​Deep-​Neural-​Netwo​rk. Accessed 2022-08-22.
	42.	 Shankar, K., Zhang, Y., Liu, Y., Wu, L. & Chen, C.-H. Hyperparameter tuning deep learning for diabetic retinopathy fundus image 

classification. IEEE Access 8, 118164–118173 (2020).
	43.	 Gargeya, R. & Leng, T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124, 962–969 (2017).
	44.	 Qummar, S. et al. A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7, 150530–150539 (2019).
	45.	 Arcadu, F. et al. Deep learning algorithm predicts diabetic retinopathy progression in individual patients. NPJ Digit. Med. 2, 1–9 

(2019).
	46.	 Korot, E. et al. Predicting sex from retinal fundus photographs using automated deep learning. Sci. Rep. 11, 1–8 (2021).
	47.	 Kang, T. S. et al. Asymmetry between right and left fundus images identified using convolutional neural networks. Sci. Rep. 12, 

1–8 (2022).
	48.	 Zhuang, F. et al. A comprehensive survey on transfer learning. Proc. IEEE 109, 43–76 (2020).
	49.	 Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings 

of the International Conference on Machine Learning, 448–456 (Lille, 2015).
	50.	 Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: A simple way to prevent neural networks 

from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

Acknowledgment
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIT) (No. 2021R1F1A1046932).

Author contributions
Design and conduct of the study (W.L. and J.K.); collection of data (Y.S.H. and T.S.K.); analyses and interpreta-
tion of data (W.L., T.S.K., Y.S.H. and J.K.); writing the manuscript (W.L., T.S.K., Y.S.H. and J.K.); critical revision 
of the manuscript (W.L., Y.S.H., T.S.K., S.L., K.K., and J.K.); and final approval of the manuscript (W.L., Y.S.H., 
T.S.K., S.L., K.K., and J.K.).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.H.K. or Y.S.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://arxiv.org/abs/1812.07101
http://arxiv.org/abs/2205.01676
http://arxiv.org/abs/1905.12596
https://github.com/seotaijiya/Estimation-of-Best-Corrected-Visual-Acuity-Based-on-Deep-Neural-Network
https://github.com/seotaijiya/Estimation-of-Best-Corrected-Visual-Acuity-Based-on-Deep-Neural-Network
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Estimation of best corrected visual acuity based on deep neural network
	Results
	Characteristics of collected fundus dataset. 
	Considered schemes and performance metrics. 
	Performance comparison of considered schemes. 
	Classification results using confusion matrix. 
	Classification results using histogram. 
	Validation of considered schemes using class activation visualization. 
	Samples of wrong prediction result. 
	Validation of considered schemes using class activation t-SNE. 

	Discussion
	Methods
	Study design. 
	Acquisition of fundus data. 
	Pre-processing of data. 
	Convolutional neural networks. 
	Class activation visualization. 
	Clustering using t-SNE. 

	References
	Acknowledgment


