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Patients diagnosed with McCune-Albright Syndrome (MAS) frequently manifest

craniofacial fibrous dysplasia (FD). Craniofacial FD can impinge nerve fibers causing

visual loss as well as craniofacial pain. Surgical decompression of affected nerves is

performed, with variable efficacy, in an attempt to restore function or alleviate symptoms.

Here, we present a case of a 12-year-old MAS patient with visual deficits, particularly

in the left eye (confirmed by enlarged blind spots on Goldmann visual field testing),

and craniofacial pain. Decompression surgery of the left optic nerve mildly improved

vision, while persistent visual deficits were noted at a 3-month follow-up assessment. An

in-depth, imaging-based evaluation of the visual system, including the retinal nerve fiber

layer, optic nerves, and central nervous system (CNS) visual pathways, revealed multiple

abnormalities throughout the visual processing stream. In the current FD/MAS patient,

a loss of white matter fiber density within the left optic radiation and functional changes

involving the left primary visual cortex were observed. Aberrant structural and functional

abnormalities embedded within central visual pathways may play a role in facilitating

deficits in vision in FD/MAS and contribute to the variable outcome following peripheral

nerve decompression surgery.
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INTRODUCTION

Fibrous dysplasia (FD) is a rare, non-inherited bone disease arising from a R201 missense mutation
of the GNAS gene (1–3). A key pathological feature of FD includes the formation of bony lesions
within a single bone (monostotic FD) ormultiple bones (polyostotic FD) (4–6). Skeletal diseasemay
occur in isolation or in conjunction with endocrinopathies and hyperpigmented macules, termed
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McCune-Albright Syndrome (MAS). FD lesions readily pervade
the axial-appendicular skeleton and craniofacial structures, with
the latter frequently leading to craniofacial nerve compression,
neuropathy, and vision loss (7–12).

Symptomatic patients with evidence of optic nerve
impingement often undergo decompression surgery, yet
there is variable efficacy of the procedure in terms of improving
or preserving vision (13–16). Moreover, decompression surgery
may cause thermal and ischemic injury to the optic nerve,
resulting in neuropathy (17). We hypothesized that factors
outside of isolated optic nerve impingement may facilitate visual
impairment in FD/MAS patients, including those embedded
within the central nervous system (CNS). To date, however, the
visual processing pathways in the CNS remain unexplored in
FD/MAS. We further hypothesized that in FD/MAS, the use
of advanced imaging techniques that allow for characterization
of CNS white matter pathways (i.e., optic radiation) and
visual cortex function in parallel would provide an improved
understanding of how visual deficits and, by extension, other
neurological phenotypes are generated. Here, we present a
pediatric MAS patient with craniofacial FD and a history of
bilateral visual deficits, craniofacial pain, and headaches. In
this patient, optic nerve decompression surgery in the left
hemisphere improved but did not fully correct his visual deficits.
To investigate the abnormalities in the visual pathway, from
the retinal nerve fiber layer (RNFL) to the visual cortex, the
current MAS patient was evaluated using a combination of (i)
18F-sodium fluoride positron emission tomography/computed
tomography (18F-NaF PET/CT), (ii) optic coherence tomography
(OCT), (iii) non-contrast, magnetic resonance imaging (MRI)
of peripheral nerves, and (iv) functional and structural MRI of
the CNS. This unique case and a multimodal approach provide
insights into the effects of craniofacial FD on a developing
biological system in addition to the complex pathophysiology
of the associated neurological signs and symptoms. This report
points to the importance of using a multimodal approach as
early as possible upon diagnosis of pediatric FD/MAS.

PATIENT OVERVIEW

A 12-year-old boy with MAS and craniofacial FD presented with
worsening vision. He was diagnosed withMAS at age 8. At age 10,
the patient developed visual complaints including blurry vision
and decreased acuity, particularly in the left eye, which worsened
over the subsequent 2 years. Functional evaluation performed
with Goldmann visual field testing revealed enlarged blind spots
bilaterally, with a more significant effect for the left eye than the
right. Of note, he also developed bilateral chronic tension type
headache pain covering regions above the eye and the posterior
surface of the external ear. At age 12, visual acuity testing showed
20/70 vision and 20/100 in the right and left eye, respectively.
Color testing with Ishihara was 1/11 and 0/11 in the right and left
eye, respectively. OCT showed declining RNFL starting at age 10
(see Supplemental Information).

Due to concerns of declining visual acuity, the patient
underwent a left orbital decompression surgery (performed by
ASH) at age 12 years. The surgical procedure relieved pressure on
the left optic nerve by removing a portion of the left lateral orbital

wall and opening the periosteum allowing for orbital fat and the
lateral rectus muscle to prolapse into the newly created space.
Conservative bone removal was performed in order to reduce the
likelihood of the patient developing enophthalmos. The patient
had an unremarkable post-operative course. Post-operatively
his vision improved to 20/40 and 20/50 in the right and left
eyes, respectively, while color testing was 1/11 in both eyes.
Improvements in vision were reported by the patient following
surgery, but with sustained visual deficits. 3 months after the
surgery, the patient presented for a multidisciplinary study of
FD/MAS consisting of behavioral testing, imaging, and clinical
evaluation. This study was approved by the Boston Children’s
Hospital and the Massachusetts General Brigham, Institutional
Review Boards. The patient and patient’s legal guardian provided
informed consent.

Craniofacial Pain Evaluation
At post-surgery evaluation, his craniofacial pain and headache
was described as burning, shooting, stabbing, or cramping and
was often triggered by bright lights, psychological stress, or
physical exertion. Craniofacial pain varied between 2 and 4 on
a 0–10 scale and over a one-week period. Quantitative sensory
testing (QST) revealed higher cold pain threshold and tolerance
temperatures in the left relative to the right craniofacial regions,
specifically the V2 and V3 distribution of the trigeminal system,
suggesting more cold pain sensitivity in the left hemisphere.
Further details on QST procedures and findings have been
provided in Supplemental Information.

Craniofacial FD Burden
18F-NaF PET/CT was performed to characterize FD lesion
burden and activity (Figures 1A,B). There were multiple intense
foci of uptake within the skull and facial bones associated with
ground-glass CT abnormalities of FD, including the frontal bone,
occipital bone, right maxillary sinus, nasal turbinates, clivus,
bilateral sphenoid bone, right zygomatic arch, left mastoid bone,
and mandible. Furthermore, acquisition of multisequence and
multiplanar, non-contrast magnetic resonance imaging (MRI)
data further defined the distribution of craniofacial FD and
revealed inter- and intra-lesion heterogeneity in terms of fluid
content, volume, and disruption of cranial nerves (Figure 1B).

RNFL
OCT was performed and compared to previous studies prior
to surgery (Figure 1C). Following the patient’s initial decline in
RNFL thicknesses, at 3 months post-surgery, levels (global mean
and individual quadrants) remained within the 1% thickness
percentiles of the reference database. Overall, reduction in
RNFL was evident in right and left eyes with, sub-regions
of the temporal RNFL (i.e., Temporal-Inferior) showing more
involvement in the left vs. right.

Optic Nerve and Optic Radiation
The condition of the optic nerve andV2 division of the trigeminal
system were primarily evaluated using STIR MRI (Figure 1D).
At the intraorbital and intracanalicular levels, an abnormal
inferior displacement of the left optic nerve was observed, and
as compared to the right optic nerve, the left optic nerve was
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FIGURE 1 | Visual pathway characterization in a pediatric MAS patient. All imaging data were acquired without sedation and at 3-months post-decompression

surgery of the left optic nerve. (A) Whole-Body 18F-Sodium fluoride positron emission tomography/computerized tomography (18F-NaF PET/CT) identified FD lesions

within craniofacial bones (red arrow), spine (green arrow), and ribs (blue arrow). (B) A combination of 18F-NaF PET/CT and non-contrast MRI identified FD in multiple

craniofacial regions (i.e., frontal bones, nasal turbinates, sphenoid bone, greater wing of the sphenoid, zygomatic arch, mastoid, mandible occipital bone, and right

maxillary sinus). The white arrow denotes the segment of bone tissue removed during decompression surgery of the left optic nerve. (C) Retinal nerve fiber layer

(RNFL) loss was evident in both eyes as revealed by OCT, with slightly greater abnormalities in the left eye. G, Global Average; TS, Temporal-Superior; T, Temporal; TI,

Temporal-Inferior; NI, Nasal-Inferior; N, Nasal; NS, Nasal-Superior. (D) Coronal, non-contrast short-tau inversion-recovery (STIR) MRI showed neuropathy in the left

optic and trigeminal nerves. Inferior displacement and flattening were detected within intraorbital (orange arrow) and intracanalicular (blue arrow) segments of the left

optic nerve. Bilateral trigeminal nerve (V2) inferior displacement, compression, and atrophy was also present (green arrow). At the pre-chiasmatic level (yellow arrow),

inferior displacement, mild atrophy, and subtle hyperintensity indicate mild edema or gliosis of the left optic nerve. Left optic nerve atrophy was present in the optic

chiasm (red arrow). (E) DTI revealed a loss of white matter fiber density, as defined by the probability distribution, of the left optic radiation relative to the right. The

optic radiation is defined as the axonal bundle projecting between the lateral geniculate nucleus and primary visual cortex. (F) Resting-state functional connectivity

was reduced for the left primary visual cortex compared to the right. Further details on all data acquisition and analysis procedures as well as additional study findings

have been provided in Supplemental Information.

flattened, with partial effacement of the normal T2 hyperintense
cerebral spinal fluid (CSF) signal within the optic nerve sheath.
Intracanalicular segments of both optic nerves and V2 trigeminal
nerves through foramen rotundum, showed complete effacement
of the normal T2 hyperintense CSF signal along both optic
nerves. There was also moderate narrowing and compression
of the foramen rotundum bilaterally with atrophy of the V2
divisions of both trigeminal nerves. The pre-chiasmatic segments
of both optic nerves showed a relatively smaller, inferiorly
displaced left optic nerve with mild intrinsic T2 hyperintensity
consistent with relative atrophy and gliosis of the left optic nerve
as compared to the right. The optic chiasm showed a slightly
smaller left optic nerve compared to the right consistent with left
sided optic nerve atrophy.

Diffusion tensor imaging (DTI) and probabilistic tractography
were performed to map the right and left optic radiation
(Figure 1E). The probability density, a measure of white matter

fiber density, was lower in the left optic radiation relative to
the right, especially as the optic radiation nears the primary
visual cortex.

Visual Cortex Function
Functional connectivity of resting state functional MRI data
was performed to evaluate primary visual cortex function
(Figure 1F). In this patient, seed (right or left calcarine
cortex) to voxel connectivity analysis revealed more robust
connectivity for the right calcarine cortex (5,212 voxels;
maximum effect size = 2.5) compared to the left calcarine
cortex (1,385 voxels; maximum effect size = 2.0). The loss
of functional connectivity involving the left hemisphere
visual cortex reflects functional disturbance or perhaps
reorganization within central visual pathways in the current
MAS patient.
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DISCUSSION

Vision loss in patients with FD/MAS is likely driven by multiple
neuro-ophthalmological abnormalities and cannot be explained
purely by physical optic nerve compression alone (18–20). While
several case reports note improved visual function following
decompression surgery (8, 9, 21), other patients with craniofacial
FD fail to experience a substantial benefit (22, 23). Lastly,
patients may note improved visual function without surgical
decompression (24).

In many cases, the primary objective of incorporating cranial
imaging in patients with FD/MAS with vison loss is to define
the extent of craniofacial lesions or lesion burden, and determine
whether FD structurally alters optic nerves. The impact of
craniofacial FD lesions can have an affect along multiple points
along the visual processing stream including those portions
residing in the CNS. Here, white matter changes particularly
those localized to the left optic radiation and likely maladaptive
plasticity anchored within the primary visual cortex are believed
to work in concert with upstream, optic nerve and RNFL
abnormalities to produce the full array of visual deficits.
Moreover, we hypothesize that for the current MAS patient, the
impact of the craniofacial FD lesions on the left eye temporal
retina as shown on OCT and downstream optic pathway (i.e.,
left optic radiation) alterations contributed to vision loss (see
Supplemental Information). A more detailed and necessary
determination of the underlying neurobiological changes causing
left or right hemisphere anopia may be obtained with retinotopic
mapping. A further limitation of the current study is indeed the
absence of pre- and post-surgical DTI and fMRI datasets. With
the availability of multi-timepoint neuroimaging assessments,
the associations and interactions among peripheral and central
visual system changes in cases of craniofacial FD could be better
ascertained. The current results now provide the rationale for
longitudinally incorporating DTI- and fMRI in FD/MAS studies
alongside more conventional imaging methods (i.e., OCT and
structural MRI of craniofacial structures) and behavioral testing
of visual function. This report also details the course of a single
individual with MAS; therefore, additional studies in larger and
more heterogeneous populations are required to determine the
generalizability of these results.

The presence of structural and functional changes between
the RNFL and visual cortex may underpin vision loss either
before or after decompression surgery, and relatedly the variable
outcomes following surgical intervention. Moreover, while
further investigation is required, the impact of craniofacial
lesions on visual pathways may be unique in pediatric cases
considering involvement of a developing neurobiological system.
Even a mild level of FD may lead to more severe signs and
symptoms, yet early and careful intervention combined with
inherent neurobiological plasticity of a maturing system may
facilitate better long-term outcome.

A multimodal, imaging-based assessment of the collective
visual apparatus including the optic nerve, but also the
orbit, RNFL, visual tracts, and the visual cortex provides an
opportunity to objectively characterize the visual system and
identify abnormalities that drive vision loss in FD/MAS. This

complementary approach may be particularly informative when
the level of patient reported visual deficit is discordant with
the severity of objective FD craniofacial lesions or optic nerve
compression. This strategy may be ideal to employ when there
is a need to more accurately pinpoint causes of vison loss either
before or after decompression surgery. Furthermore, persistent
extra-skeletal abnormalities may in part explain the frequent
failure of decompression surgery in alleviating visual deficits
in FD; however, much work remains to thoroughly explore
this perspective.
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