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Licorice (Glycyrrhiza spp.) is used widely in traditional Chinese medicine (TCM) due to its
numerous pharmacologic effects. However, the mechanisms of action of the chemical
constituents of licorice and their structure–function relationships are not fully understood.
To address these points, we analyzed the chemical compounds in licorice listed in the TCM
Systems Pharmacology database and TCM Integrated database. Target proteins of the
compounds were predicted using Integrative Pharmacology-based Research Platform of
TCM v2.0. Information on the pharmacologic effects of licorice was obtained from the
2020 Chinese Pharmacopoeia, and disease-related genes that have been linked to these
effects were identified from the Encyclopedia of TCM database. Pathway analyses using
the Kyoto Encyclopedia of Genes and Genomes database were carried out for target
proteins, and pharmacologic networks were constructed based on drug target–disease-
related gene and protein–protein interactions. A total of 451 compounds were analyzed, of
which 211 were from the medicinal parts of the licorice plant. The 241 putative targets of
106 bioactive compounds in licorice comprised 52 flavonoids, 47 triterpenoids, and seven
coumarins. Four distinct pharmacologic effects of licorice were defined: 61 major hubs
were the putative targets of 23 compounds in heat-clearing and detoxifying effects; 68
were targets of six compounds in spleen-invigorating and qi-replenishing effects; 28 were
targets of six compounds in phlegm-expulsion and cough-suppressant effects; 25
compounds were targets of six compounds in spasm-relieving and analgesic effects.
The major bioactive compounds of licorice were identified by ultra-high-performance liquid
chromatography–quadrupole time-of-flight–tandem mass spectrometry. The anti-
inflammatory properties of liquiritin apioside, liquiritigenin, glycyrrhizic acid and
isoliquiritin apioside were demonstrated by enzyme-linked immunosorbent assay
(ELISA) and Western blot analysis. Liquiritin apioside, liquiritigenin, isoliquiritin,
isoliquiritin apioside, kaempferol, and kumatakenin were the main active flavonoids,
and 18α- and 18β-glycyrrhetinic acid were the main active triterpenoids of licorice. The
former were associated with heat-clearing and detoxifying effects, whereas the latter were
implicated in the other three pharmacologic effects. Thus, the compounds in licorice have
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distinct pharmacologic effects according to their chemical structure. These results provide
a reference for investigating the potential of licorice in treatment of various diseases.
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INTRODUCTION

Licorice (referred toin Chinese as “GanCao”) is a food and dietary
supplement that has been used widely in traditional Chinese
medicine (TCM) for ∼4,000 years. According to the 2020 Chinese
Pharmacopoeia, licorice refers to the dried root and rhizome of
Glycyrrhiza uralensis Fisch. ex DC., G. inflate Bat., or G. glabra L.

As indicated in Shennong’s Materia Medica Classic (Shennong
Bencao Jing), licorice is used predominantly to treat spleen
dysfunction, stomach weakness, fatigue, lack of strength,
palpitation, dyspnea, cough, profuse sputum, acute pain in the
abdominal cavity, limb contracture, carbuncles, and sores, as well
as to alleviate drug toxicity (Chinese Pharmacopoeia
Commission, 2020). Because of its ability to “harmonize” the
effects of different medicines, licorice is an ingredient in nine out
of 10 herbal formulations.

The genusGlycyrrhiza comprises ∼30 species that are native to
Eurasia and which have been cultivated in Europe (e.g., Spain,
Italy, France), the Middle East (e.g., Syria, Iran, Turkey, Iraq) and
Asia (e.g., China) (Chen J. et al., 2019). Eight species in the
Leguminosae family are found in China: G. uralensis Fisch. ex
DC.; G. inflata Bat.; G. glabra L.; G. eurycarpa P.C.Li; G. aspera
Pall.; G. yunnanensis P.C.Li; G. pallidiflora Maxim.; G.
squamulosa Franch. (Zeng et al., 1991; Karami et al., 2015).
These species have various chemical constituents, such as
flavonoids, triterpenoids, coumarins, and stilbenoids (Zhang
and Ye, 2009; Cheng et al., 2012; Qiao et al., 2015).

There have been several reports on the pharmacologic effects
and bioactive constituents of licorice, which are mainly flavonoids
and triterpenoids (Wang et al., 2020). In vivo and in vitro
experiments have shown that these classes of compound have
anti-inflammatory, antimicrobial, antiviral, antioxidant, and
antitumor effects. Recent studies have focused on the
pathways regulating the pharmacologic effects of the
metabolites of flavonoids and triterpenoids in licorice
(Hosseinzadeh and Nassiri-Asl, 2015). However, given the
diversity and complexity of the bioactive compounds in
licorice, high-throughput and network-based approaches are
needed to fully elucidate their pharmacologic properties and
mechanisms of action.

Network pharmacology is an emerging discipline based on
systems biology, analysis of biological networks, and
identification of specific network nodes as targets in drug
design (Hopkins, 2007; Li and Zhang, 2013). In general,
treatment of diseases using TCM is based on integrative and
holistic principles as well as the synergistic effects of multiple
compounds and herbal formulations (Zhang et al., 2013).
Network pharmacology adopts a similar holistic approach in
aparadigm shift from “one target, one drug” to “network target,
multi-compound” therapeutics (Li et al., 2014). Thus, network
pharmacology is used widely to investigate the molecular

mechanisms underlying the pharmacologic effects of TCM
formulations (Li H. et al., 2014; Xiong et al., 2018; Piao et al.,
2019); appropriate TCM prescriptions for the treatment of
specific diseases (Li et al., 2007; Li X. et al., 2014; Shi et al.,
2014; Ke et al., 2016; Fang et al., 2017a, 2017b; Hu and Sun, 2017;
Dai et al., 2018; Shi et al., 2019); bioactive components of
medicines (Lv et al., 2014; Zhang Y.-F. et al., 2019; Ma et al.,
2019; Song et al., 2019; Guo et al., 2020).

Network pharmacology has been applied to studies on the
mechanisms of action of TCM formulations containing licorice
such as Sini, Shaoyao-Gancao, Guizhi-Shaoyao-Zhimu,
Yinchensini, and Maxing-Ganshi decoctions, among others
(Chen S. et al., 2014; Chen G. et al., 2018; Song et al., 2018;
Zhang Q. et al., 2019; Zhu et al., 2019) as well as analyses of
licorice constituents and their functions (Liu et al., 2013; ChenM.
et al., 2019). The molecular mechanisms of licorice components
in the context of diseases have also been studied (Li Y. et al.,
2019). Those reports focused on compounds present in the
overground and underground parts of the plant, which differ
considerably (Wang, 2004; Zhou, 2015; Ran, 2019). The
medicinal properties of licorice are associated mainly with the
underground parts (roots and rhizomes).

Here, we classified the different types of bioactive compounds
in the underground parts of the licorice plant. We also analyzed
the mechanisms of action underlying the pharmacologic effects of
licorice.

MATERIALS AND METHODS

Chemicals, Reagents, and Materials
Ultra-high-performance liquid chromatography–mass
spectrometry (UHPLC–MS)-grade acetonitrile and formic acid
were supplied by Fisher Scientific (Fairlawn, NJ, United States).
Ultrapure water (18.2MΩ) was prepared with a Milli-Q™ water-
purification system (Millipore, Milford, MA, United States). All
other reagents were of analytical grade and purchased from
Sinopharm Chemical Reagents (Shanghai, China).

The reference compounds schaftoside (number 1; lot number,
111,912–201703; purity, 95.60%), calycosin 7-O-β-D-glucopyranoside
(4; 111,920–201907; 96.80%), liquiritin (5; 111,610–201908; 95.00%),
kaempferol (15; 110,861–202013; 93.20%), formononetin (17;
111,703–201504) and glycyrrhizic acid monoammonium salt (18;
110,731–202021; 96.20%) were supplied by National Institutes for
Food and Drug Control (NIFDC; Beijing, China).

The reference compounds neoliquiritin (2; PRF20060,941;
97.88%), liquiritinapioside (3; PRF9050224; 99.95%),
isoliquiritin apioside (6; PRF9101021; 97.04%), isoliquiritin (7;
PRF20040,923; 98.23%), ononin (8; PRF20060,944; 99.58%),
neoisoliquiritin (9; PRF20060,942; 99.25%), licochalcone B (10;
PRF8031021; 99.10%), liquiritigenin (11; PRF20042,742;
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99.50%), calycosin (12; PRF10072945; 99.70%), naringenin (13;
PRF10030641; 99.67%), echinatin (14; PRF10122621; 99.81%),
isoliquiritigenin (16; PRF20060,943; 99.87%), licoflavone A (19;
PRF8050422; 99.94%), glycycoumarin (20; PRF20060,921;
99.77%), kumatakenin (21; PRF10120925; 99.28%),
licochalcone A (25; PRF8041841; 98.65%), 18α-Glycyrrhetinic
acid (29; PRF10101201; 99.02%) and 18β-Glycyrrhetinic acid (30;
PRF9100841; 99.46%) were purchased from Chengdu
BiopurifyPhytochemicals (Chengdu, China).

The reference compounds licoisoflavone A (23; PS010124;
98.46%), glycyrol (26; PS010089; 98.71%) and licoisoflavone B
(28; PS200618–01; 98.02%) were obtained from Chengdu Push
Biotech (Chengdu, China).

The reference compound licoflavonol (27; MUST-20041,311;
98.86%) was purchased from Chengdu Must Biotechnology
(Chengdu, China). The reference compound licoricone (24;
200313G; 99.46%) was obtained from Nanjing Dasf
Biotechnology (Nanjing, China). The reference compound
licoflavone C (22; P29A9F68905; 99.30%) was purchased from
Shanghai Yuanye Biotechnology (Shanghai, China).

Licorice materials were obtained from Elion Resources Group
(Inner Mongolia, China) and Gansu JinYoukang Pharmaceutical
Technology (Gansu, China). Licorice materials were
authenticated as the dried roots of Glycyrrhiza uralensis Fisch.
ex DC. by Professor Nanping Zhang (NIFDC, Beijing, China).
The voucher numbers of licorice from InnerMongolia wereN2-4-
1 to N2-4-10, and from Gansu were G1-5-1 to G1-5-10. Voucher
specimens were deposited in the Museum of Chinese Traditional
Drugs within the NIFDC (Li X. et al., 2019).

Preparation of Standard and Sample
Solutions
Thirty reference compounds were prepared by completely
dissolution in 70% methanol and their concentration (in mg/
mL)was (compound 1) 0.266; 2) 0.187; 3) 0.178; 4) 0.416; 5) 0.258;
6) 0.186; 7) 0.269; 8) 0.299; 9) 0.166 (10) 0.155 11) 0.277 12) 0.189
13) 0.279 14) 0.222 15) 0.257 16) 0.214 17) 0.431 18) 0.227 19)
0.144 (20) 0.124 21) 0.144 22) 0.233 23) 0.263 24) 0.164 25) 0.221
26) 0.230 27) 0.186 28) 0.164 29) 0.172 (30) 0.337. All solutions
were stored at 4°C before analyses.

All samples were pulverized and screened through the 50-
mesh sieve. The dried powder (0.5g) was weighed accurately into
a 100-ml conical flask with a stopper, and extracted by
ultrasonication in 50ml of methanol (70%) for 0.5h. The
mixture was centrifuged at 12,000rpm for 10min at room
temperature. Finally, the supernatant was filtered through
0.22-μm membrane before injection into aUHPLC–MS/MS
system.

Ultra-High-Performance Liquid
Chromatography–Quadrupole
Time-of-Flight–Tandem Mass
spectrometry(UHPLC–QTOF–MS/MS)
Chromatography was undertaken using an Acquity UHPLC HSS
T3 C18 column (2.1mm i. d. × 100mm, 1.8μm) within an Acquity

UHPLC system (Waters, Milford, MA, United States). The
column temperature was maintained at 35°C. The mobile
phase (at a flow rate of 0.4ml/min) consisted of solvent A
(0.1%formic acid/water) and solvent B (acetonitrile). The
conditions of gradient elution were optimized as: 5% B
(0–1min), 5–18% B (1–3min), 18–30% B (3–13min), 30–45%
B (13–18min), 45–50% B (18–21min), 50–75% B (21–29min),
75–95% B (29–31min), 95–5% B (31–31.5min) and held at 5% B
for 3.5min to equilibrate the column. The injection volume
was 2μL.

A Synapt™G2-S QTOF mass spectrometer (Waters MS
Technologies, Manchester, UK) was combined with the
UHPLC system via the electrospray-ionization source in
positive-ion mode. The desolvation-gas rate was set as 600L/h
at 500°C. The source temperature was set as 120°C. The capillary
voltage was3 kV and the sample cone voltage was set at 30V.
Centroided data were acquired from 50 to 1,000Da. Mass data
were acquired using LockSpray™ to ensure the mass was
recorded accurately. Leucine-enkephalin at a charge/mass ratio
(m/z) 556.2771 was selected as the lock-mass in positive mode.
The accurate mass and composition of precursor ions and
fragment ions were calculated using MassLynx V4.1 (Waters),
that incorporated with the instrument solution for the acquisition
of accurate mass.

Preparation of Bioactive Compounds
Four reference bioactive compounds, liquiritin apioside,
liquiritigenin, glycyrrhizic acid and isoliquiritin apioside were
prepared by completely dissolution in 0.1% DMSO/water and
their concentration were 2mg/ml. The dried licorice extract
powder (1.0g) was weighed accurately into a 100-ml conical
flask with a stopper, and completely dissolved in 50ml of
ultrapure water. All solutions were stored at −20°C before
analyses.

Cell Culture and Treatments
Murine macrophage RAW264.7 cells, a widely used in vitro
model for studies of macrophage and inflammatory cascades,
were obtained from the China National Collection of
Authenticated Cell Cultures (Shanghai, China). Cells were
maintained at 37°C under 5% CO2 in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal bovine
serum. RAW264.7 cells were treated with 1μg/ml
lipopolysaccharide (LPS; Sigma-Aldrich; Merck KGaA,
Darmstadt, Germany) for 24h at 37’ °C. The cells were rinsed
with phosphate buffer saline (PBS) and stimulated with LPS (1ug/
ml) to induce pyroptosis. Conditioned cells were collected for
measurement of protein expression levels by ELISA and western
blot analysis.

ELISA Assay for Cytokines
Interleukin (IL)-1β and tumor necrosis factor (TNF)-α
expression levels in the supernatant of treated cells were
measured by ELISA assays (IL-1β: Mouse: ml063132-C;
TNF-α: Mouse: ml002095-C; Enzyme-linked Biotechnology
Co., Ltd., Shanghai, China) according to the manufacturer’s
instructions.
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Western Blot Analysis
The protein expression in RAW264.7 cells were detected byWestern
blot. Cells (1.6 × 105 cells/well) were plated overnight and then
treated with the indicated concentrations of bioactive compounds.
After 1h, 1μg/ml LPS were added. Then, the supernatant and
precipitation of cells were collected 24h later. Immunoblotting
was performed using antibodies against the target proteins,
including AKT1 (1:2,500; ab89402; Abcam, Cambridge, MA,
United States), p-AKT1 (1:5,000; ab81283; Abcam, Cambridge,
MA, United States), PI3K (1:1,000; 4,249; Cell Signaling
Technology, Inc., Danvers, MA, United States), p-PI3K (1:1,000;
bs-3332R; Bioss Antibodies, Biotechnology, Inc., Beijing, China),
NFκB-p65 (1:1,000; sc-8008; Santa Cruz Biotechnology, Inc.,Dallas,
TX, United States), p-NFκB-p65 (1:1,000; YP0191; Immuno Way,
Biotechnology, Inc., Plano, TX, United States). The blots were
developed with an enhanced chemiluminescence kit (ECL,
Amersham Biosciences, Buckinghamshire, United Kingdom) and
measured by using a luminescent image analyzer (LAS-3000, Fuji
Photo Film Co. Ltd., Japan).

Statistical Analyses
All experimental values were presented as the mean ± standard
error of the mean. Statistical comparison between two groups was
performed by Student’s t-test, and one-way analysis of variance
followed by Bonferroni post hoc analyses was performed among
multiple groups for parametric data. P < 0.05 was considered to
indicate a statistically signifcant difference.

Chemical Compounds in Licorice
Candidate chemical compounds in licorice were searched in two
phyto chemical databases: Traditional Chinese Medicine Systems
Pharmacology (TCMSP; http://tcmspw.com/tcmsp.php) (Ru et al.,
2014) and Traditional Chinese Medicines Integrated database
(TCMID; www.megabionet.org/tcmid/). Components of the
underground parts of the licorice plant were screened from
candidate compounds by reviewing the literature. National Center
for Biotechnology Information (NCBI) PubMed (https://pubmed.
ncbi.nlm.nih.gov/) and China National Knowledge Infrastructure
(CNKI; www.cnki.net/) databases were used to find the
underground parts of licorice. In the PubMed database, “licorice
chemical composition” were used as keywords to search for studies
from 2000 to 2020. In the CNKI database, we searched for doctor
altheses from 2000 to 2020 under the keyword of “licorice”. Two-
dimensional (2D) chemical structures were obtained from NCBI
PubChem (https://pubchem.ncbi.nlm.nih.gov/) and SciFinder
Scholar (https://scifinder.cas.org/scifinder/) databases. If a structure
could not be retrieved from these databases, the original research
article describing the identification or purification of the compound
was searched for. ChemBioDrawUltra v12.0 (PerkinElmer,Waltham,
MA, United States) was used to draw structures, which were saved in
sdf or mol2 formats (Xiong et al., 2019).

Putative Targets of Bioactive Compounds in
Licorice
The sdf or mol2 files were uploaded to Integrative Pharmacology-
based Research Platform of Traditional Chinese Medicine

(TCMIP) v2.0 (www.tcmip.cn/). The putative targets of the
compounds in licorice were predicted using the drug target-
prediction tool of TCMIP. We selected only pairs of
compound–putative targets in which the structural similarity
score of the compound to known drugs was >0.80
(moderate–high similarity). Detailed information on putative
targets are shown in Supplementary Table S1.

Disease-Related Genes Associated with
Thepharmacologic Effects of Licorice
Disease-related genes associated with the pharmacologic effects
of licorice were identified from the Encyclopedia of Traditional
Chinese Medicine database (www.nrc.ac.cn:9090/ETCM) (Xu
et al., 2019). The genes related to “immune inflammation”
imbalance and some psychiatric symptoms were obtained as
disease/symptom gene sets corresponding to heat-clearing and
detoxifying effects. The genes related to anemia, low resistance,
mental disorders, organ dysplasia, reproductive capacity and
other symptoms were obtained as disease/symptom gene sets
corresponding to spleen-invigorating and qi-replenishing
effects. The genes related to the throat, trachea, bronchus,
inflammation, lung disease, asthma and other symptoms
were obtained as disease/symptom gene sets corresponding to
phlegm-expulsion and cough-suppressant effects. The genes
related to the chest, abdomen, limb-spasm pain and
neurological diseases were obtained as the disease/symptom
gene sets corresponding to spasm-relieving and analgesic
effects.

Network of Interactions Between Drug
Targets and Disease-Related Genes
Networks of interactions between drug targets and disease-related
genes were constructed based on the relationships between the
putative targets of compounds in licorice and disease-related
genes associated with the pharmacologic effects of licorice.
Construction and analyses of such networks were carried out
with TCMIP v2.0 (www.tcmip.cn). Visualization of such
networks was done using Navigator v2.2.1 (Krembil Research
Institute, Toronto, ON, Canada). Hubs with a degree greater than
two fold the median value of all node degrees were screened, and a
network was constructed based on direct interactions between
hubs. Three topologic properties of the hub network (degree,
betweenness, and closeness) were calculated to identify targets of
topologic importance. Major hubs were identified as those with
network topology values that were higher than the corresponding
median values.

Analyses of Pathway Enrichment
Pathway-enrichment analyses were done using database
Visualization and Integrated Discovery v6.7 (http://david.abcc.
ncifcrf.gov/home.jsp) based on pathway data obtained from the
Kyoto Encyclopedia of Genes and Genomes (KEGG)database
(www.genome.jp/kegg; updated on 18 November 2016)
(Kanehisa and Goto, 2000; Dennis et al., 2003). Only
functional annotations with enrichment P-values corrected
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with Bonferroni and Benjamini algorithms (p < 0.05) were
selected for further analyses.

RESULTS AND DISCUSSION

Analyses of Licorice Composition and
Compound Screening
A total of 451 compounds were screened from TCMSP and TCMID
(Supplementary Table S2). Of these, 211 were identified by
literature review as compounds present in the medicinal portion
of thelicorice plant:134 flavonoids, 49 triterpenoids, 18 coumarins,
and 10 stilbenoids (Supplementary Table S3). Most network-
pharmacology studies on licorice have used a single database to
identify itschemical constituents. We compared compounds in
TCMSP and TCMID, which are used widely in TCM research
and provide the names and 2D structures of compounds. We found
that some were commonto both databases whereas others were
unique. Some compounds were duplicated in the same database.We
obtained 604 compounds from the initial search (280 from TCMSP
and 324 from TCMID). We found that 26 compounds were
duplicated in TCMID and, therefore, there were actually 298
chemical compounds; 127 were common to both TCMSP and
TCMID. Compared with earlier network-pharmacology studies of
licorice, our screen of the chemical constituents of licorice was more
comprehensive and allowed more accurate prediction of molecular
mechanisms. The compounds were grouped according to their2D
structure for further analyses of the relationship between the type of
compound and pharmacologic effects of licorice.

Putative Targets of Compounds in Licorice
Based on their structural similarity to known chemical
compounds, 241 putative targets were identified for 106
chemical compounds in licorice: 52 targeted by flavonoids, 47
by triterpenoids, and seven by coumarins. Detailed information
on the bioavailability of these chemical compounds is provided in
Supplementary Table S4 (Ru et al., 2014; Daina et al., 2017; Xu
et al., 2019). Enrichment analyses based on the biological
pathways in the KEGG database revealed that the putative
targets were mainly involved in neuromodulation [neuroactive
ligand–receptor interactions (P � 3.90 × 10–10), long-term
potentiation (P � 0.001), and gap junctions (P � 0.03)], energy
production and metabolic pathways (nitrogen metabolism
(P � 7.84 × 10–10), linoleic-acid metabolism (P � 1.30 × 10–7)
and oxidative phosphorylation (P � 9.47 × 10–4) and
inflammation/immune-system regulation (Fc epsilon RI (P �
0.01), toll-like receptor (TLR; P � 0.01) and nucleotide-
binding and oligomerization domain-like receptor (NLR; P �
0.02) signaling pathways.

Pharmacologic Mechanisms of
Compoundsin Licorice
Pharmacologic Mechanisms of Heat-Clearing and
Detoxifying Effects
Of the 241 putative targets, 37 were disease-related genes involved
in the heat-clearing and detoxifying effects of licorice. The

network of interactions of drug target–disease-related genes
contained 985 nodes and 3,974 interactions. A total of 299
major hubs were identified based on the values of three
topologic features of the network (node degree, betweenness,
and closeness). Of these, 61 hubs were the putative targets of 23
chemical compounds in licorice: echinatin, glabrolide,
glycycoumarin, glycyrol, glycyrrhizic acid, isoliquiritin,
kumatakenin, licoarylcoumarin, licochalcone B,
licoricesaponin A3, licoricesaponin B2, licoricesaponin C2,
licoricesaponin D3, licoricesaponin E2, licoricesaponin F3,
licoricesaponin G2, licoricesaponin J2, licoricesaponin K2,
liquiritigenin, liquiritin, methyl glycyrrhetate, neoisoliquiritin,
and ononin.

To investigate the mechanisms underlying the heat-clearing
and detoxifying effects of licorice, a network was constructed
based on direct interactions between major hubs that was divided
into four functional modules.

The first nodule was regulation of the balance between
inflammation and the immune system. This comprised the
genes involved in nuclear factor-kappa B(NF-κB) (Zhang
et al., 2015), tumor necrosis factor (TNF) (Graßmann et al.,
2017), TLR (Belforte et al., 2013), and NLR signaling pathways
(Luan et al., 2018), as well as inflammatory regulation of transient
receptor potential (TRP) channels (Sahoo et al., 2019).

The second nodule was modulation of the nervous system.
This comprised the genes involved in retrograde
endocannabinoid signaling (Musella et al., 2017), neuroactive
ligand–receptor interactions (Schüle et al., 2014), γ-aminobutyric
acid [GABA]ergic (Streeter et al., 2010) as well as serotonergic
synapses and neurotrophin signaling pathways (Kashyap et al.,
2018).

The third nodule was regulation of energy production and
metabolism. This comprised the genes involved in adipocytokine
(Kita et al., 2019) and thyroid-hormone signaling pathways
(Mullur et al., 2014).

The fourth nodule was cellular functions. This comprised
genes involved in phosphoinositide 3-kinase/protein kinase B
([PI3K/AKT) (Hong et al., 2016) and mitogen-activated protein
kinase (MAPK) signaling pathways (Park, 2018) and apoptosis
(Kawamoto et al., 2016) (Figure 1).

Pharmacologic Mechanisms of Spleen-Invigorating
and Qi-Replenishing Effects
Of the 241 putative targets, 78 were disease-related genes
associated with the spleen-invigorating and qi-replenishing
effects of licorice. The network of interactions of drug
target–disease-related genes contained 1,729 nodes and 9,181
interactions. Based on the node degree, betweenness, and
closeness values, 534 major hubs were identified, of which 68
were the putative targets of six compounds (18α-and 18β-
glycyrrhetinic acid, isoliquiritin apioside, kumatakenin,
licoarylcoumarin, and liquiritin apioside).

We wished to investigate the mechanisms underlying the
spleen-invigorating and qi-replenishing effects of licorice.
Hence, a major hub network was constructed based on the
direct interactions between major hubs that were divided into
four functional modules.

Frontiers in Pharmacology | www.frontiersin.org April 2021 | Volume 12 | Article 5904775

Chen et al. Network Pharmacology Investigation of Licorice

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


The first functional node was regulation of balance of
inflammation and the immune system. This comprised genes
involved in PI3K/AKT, MAPK, TNF, Fc epsilon RI (Ben
Mkaddem et al., 2019), and NF-κB signaling pathways, and
inflammatory regulation of TRP channels.

The second functional node was regulation of energy
production and metabolism. This was composed of genes
involved in thyroid hormone, cyclic (c)AMP (Alqurashi et al.,
2016), insulin (Guo and Guo, 2017), adipocytokine, and 5ʹ AMP-
activated protein kinase (Ke et al., 2018) signaling pathways.

The third functional module was modulation of the nervous
system. This comprised genes involved in the neurotrophin
signaling pathway, gap junctions (Dong et al., 2018), long-
term potentiation/depression (Bliss and Cooke, 2011), and
neuroactive ligand–receptor interactions.

The fourth functional module was regulation of angiogenesis
and circulation. This comprised genes involved in Ras-associated
protein (Rap)1 (Rho et al., 2017), hypoxia-inducible factor (HIF)-
1 (Semenza, 2014), and vascular endothelial growth factor
(VEGF) signaling pathways (Gianni-Barrera et al., 2014) as
well as contraction of vascular smooth muscle and platelet
activation (Starlinger et al., 2011) (Figure 2).

Pharmacologic Mechanisms of Phlegm Expulsion and
Cough-Suppressant Effects
Of the 241 putative targets, nine were disease-related genes
involved in the phlegm-expulsion and cough-suppressant effects
of licorice. The network of interactions between drug targets and
disease-related genes contained 301 nodes and 851 interactions.
Ninety-seven major hubs were identified based on the values of the
node degree, betweenness, and closeness in the network. Of these,
28 were the putative targets of six compounds in licorice (18α- and
18β-glycyrrhetinic acid, isoliquiritin apioside, kumatakenin,
licoarylcoumarin, and liquiritin apioside).

We wished to investigate the mechanistic basis of the phlegm-
expulsion and cough-suppressant effects of licorice. A major hub
network was constructed based on the direct interactions between
major hubs that was divided into three functional modules.

The first functional nodule was regulation of the balance
between inflammation and the immune system. This
comprised the genes involved in: TNF, NF-κB, T-/B-cell
receptors (Lee and Korner, 2019), NLR, and TLR signaling
pathways; leukocyte transendothelial migration (Nourshargh
and Alon, 2014); tuberculosis (Khader et al., 2019); pertussis
(Murphy et al., 2020).

FIGURE 1 | Interaction network of chemical compounds containing licorice and the corresponding major targets associated with its heat-clearing and detoxifying
effects. To investigate the mechanisms underlying the heat-clearing and detoxifying effects of licorice, a network was constructed based on direct interactions between
major hubs that was divided into four functional modules. Purple hexagons represent chemical components, red hexagons denote representative the chemical
components of licorice, yellow circles denote the core targets related to regulation of balance of inflammation and the immune system, and blue circles represent
the core targets related to cellular functions. The pink circle represents the core target related to modulation of the nervous system, the orange circle represents the core
target related to regulation of energy production and metabolism.
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The second functional nodule was regulation of energy
production and metabolism. This was composed of the genes
involved in thyroid hormone, cAMP, adipocytokine, and glucagon
signaling pathways (Kleinert et al., 2019); regulation of lipolysis in
adipocytes (Shin et al., 2017) as well asthyroid-hormone synthesis.

The third functional nodulewas modulation of the nervous
system. This comprised genes involved in GABAergic synapses
(Babaev et al., 2018); retrograde endocannabinoid (Lu and
Mackie, 2017) and chemokine (Zigmond and Echevarria, 2019)
signaling pathways, as well as neuroactive ligand–receptor
interactions (MacKenzie EM et al., 2007) (Figure 3).

Pharmacologic Mechanisms of Spasm-Relieving and
Analgesic Effects
Of the 241 putative targets, 29 were disease-related genes linked to the
spasm-relieving and analgesic effects of licorice. The network of
interactions of the drug target and disease-related genes contained
689 nodes and 2,682 interactions. Based on the network topology
values of node degree, betweenness, and closeness, 200 major hubs
were selected, of which 25 were the putative targets of six compounds
in licorice (18α- and 18β-glycyrrhetinic acid, isoliquiritin apioside,
kumatakenin, licoarylcoumarin, and liquiritin apioside).

We wished to investigate the mechanisms associated with the
spasm-relieving and analgesic effects of licorice. Hence, a network
was constructed based on the direct interactions between major
hubs that were divided into three functional modules.

The first functional module was modulation of
neuroinflammation and neuropathologic pain. This comprised
thegenes involved in MAPK, calcium (Navakkode et al., 2018),
TNF, and TLR signaling pathways, as well as neuroactive
ligand–receptor interactions (Salvalaio et al., 2017).

The second functional module was regulation of energy
production and metabolism. This was composed of the genes
involved in cAMP and adipocytokine signaling pathways,
regulation of lipolysis in adipocytes, and oxidative
phosphorylation (Bald et al., 2017).

The third functional module was regulation of angiogenesis
and circulation. This comprised the genes involved in Rap1, HIF-
1 and VEGF signaling pathways as well as contraction of vascular
smooth muscle and platelet activation (Figure 4).

Analyses of the Main Bioactive Ingredients
of Licorice
The main bioactive components of licorice could be detected by
UHPLC–TOF–MS/MS (Figure 5). Thirty bioactive compounds
were identified by comparing the retention time and quasi-
molecular ions with reference standards, respectively. The
structures of these compounds are shown in Figure 6.
Information such as retention time (min), CAS number,
molecular formula, m/z, and MS2 fragments is offered in
Supplementary Table S5.

FIGURE 2 | Interaction network of chemical compounds containing licorice and the corresponding major targets associated with spleen-invigorating and qi-
replenishing effects. Wewished to investigate the mechanisms underlying the spleen-invigorating and qi-replenishing effects of licorice. Hence, a major hub network was
constructed based on the direct interactions betweenmajor hubs that were divided into four functional modules. Purple hexagons represent chemical components, pink
circles denote core targets related to regulation of balance of inflammation and the immune system, blue circles represent core targets related to nutrition and
energy production, green circles denote core targets related to regulation of blood circulation, and the orange circle represents the core target related to modulation of
the nervous system.
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Liquiritin apioside and liquiritigenin were the main flavonoids,
and 18α- and 18β-glycyrrhetinic acid were the main triterpenoids,
in licorice. These compounds were found to be implicated in the
various pharmacologic effects of licorice. Liquiritin apioside, which
was also present at a high level in licorice, can be used as a marker
for the quality assessment ofGlycyrrhiza species (Jiang et al., 2016).
The phlegm-expulsion and cough-suppressant effects of liquiritin
apioside have been reported (Kuang et al., 2018; Wei et al., 2020).
Also, liquiritin apioside has been linked to TNF, NF-κB, NLR, TLR,
and adipocytokine signaling pathways, which have important roles
in anti-inflammatory immune activity, energy production, and
metabolism (Guan et al., 2012).

Liquiritigenin has potent pharmacologic activity, including
inhibitory effects on fibrogenesis and inflammation in the liver
(Huang et al., 2019; Lee et al., 2019). We predicted the following
proteins to be the putative targets of liquiritigenin in the heat-clearing
and detoxifying effects of licorice: AKT1, cyclin-dependent kinase 6,
heat-shock protein (HSP)90AA1, HSPA2, Janus kinase,
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit γ,
casein kinase 2α1, CCAAT enhancer-binding protein β, β-actin,
estrogen receptor 1, nuclear receptor coactivator (NCOA)1, and
NCOA2. Our analyses suggested that liquiritigenin exerts
heat-clearing and detoxifying effects via regulation of PI3K/AKT

(Shi et al., 2015; Tao et al., 2016; Meng and Lin, 2019), MAPK (Tu
et al., 2019), NF-κB (Zhu et al., 2018), TNF (Yu et al., 2015), and
neurotrophin (Liu et al., 2009)signaling pathways and apoptosis (Bae
et al., 2018).

18α-and 18β-glycyrrhetinic acid are representative triterpenoid
saponins present in high concentrations in licorice (Wang
and Yang, 2007). They have anti-inflammatory, antiviral,
hepatoprotective, and anti-tumor effects. We predicted the
following proteins to be the putative targets of 18α-and 18β-
glycyrrhetinic acid in the spleen-invigorating and qi-replenishing
effects of licorice: NF-κB subunit 1, estrogen receptor1, NCOA1,
NCOA2, 3-mydroxy-3-methylglutaryl-coA reductase, integrin
subunit β2, and nuclear receptor subfamily 3 group C member 1.
These proteins constituted two functional modules. The first
functional module was regulation of balance of inflammation and
the immune system, with genes involved in PI3K/AKT (Kao et al.,
2010;Wang et al., 2011),MAPK (ChenX. et al., 2018; Zhang Y. et al.,
2019), TNF (Zhou and Wink, 2019) and NF-κB (Cao et al., 2017)
signaling pathways. The second functional module was regulation of
energy production and metabolism (Chang et al., 2010, Chen et al.,
2014a), with genes involved in thyroid hormone, cAMP, and
adipocytokine signaling pathways (Shamsa et al., 1991; Rastegari
et al., 2019).

FIGURE 3 | Interaction network of chemical compounds containing licorice and the corresponding major targets associated with phlegm-expulsion and cough-
suppressant effects. We wished to investigate the mechanistic basis of the phlegm-expulsion and cough-suppressant effects of licorice. A major hub network was
constructed based on the direct interactions betweenmajor hubs that was divided into three functional modules. Purple hexagons represent chemical components, pink
circles denote core targets related to regulation of balance of inflammation and the immune system, light purple circles represent core targets related to modulation
of the nervous system, and orange circles denote core targets related to nutrition and energy production.
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FIGURE 4 | Interaction network of chemical compounds containing licorice and the corresponding major targets associated with spasm-relieving and analgesic
effects. We wished to investigate the mechanisms associated with the spasm-relieving and analgesic effects of licorice. Hence, a network was constructed based on the
direct interactions between major hubs that were divided into three functional modules. The purple hexagon represents the chemical composition, the pink circle
denoted the core target related to analgesic action, the blue circle represents the core target related to nutrition and energy production, and the yellow circle
denoted the core target related to regulation of blood circulation.

FIGURE 5 | Representative base peak intensity (BPI) chromatograms of licorice derived from UHPLC–QTOF–MS/MS.
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Liquiritin and glycyrrhizic acid are the main representative
chemical components of licorice (Chinese Pharmacopoeia
Commission, 2020). We found that liquiritin and glycyrrhizic
acid had putative targets, but the number of their putative targets
were not as high as those of liquiritin apioside, 18β-glycyrrhetinic
acid or other chemical components. The pharmacologic effects of
the chemical components of licorice were related not only to the
strength of biological activity but also to their concentration.
Chemical components with strong biological activity but very low
concentration contributed little to the pharmacologic effect.
However, the chemical components with moderate activity but
very high concentration contributed considerably to the
pharmacologic effect. Biological activity and concentration are
the most important factors for selecting quality control (QC)
markers.We believe that liquiritin and glycyrrhizic acid should be
used as QC markers for licorice.

Main Bioactive Ingredients of Licorice
Reduce the Inflammatory Responses
Based on the result of network pharmacology, liquiritin
apioside, liquiritigenin and isoliquiritin apioside were found
as the main bioactive components of licorice. Liquiritin

apioside and isoliquiritin apioside comprised the genes
involved in NF-κB, TNF and IL-1β, while liquiritigenin
comprised the genes involved in PI3K/AKT. Glycyrrhizic
acid is the main representative chemical components of
licorice which comprised the genes involved in NF-κB and
TNF. All of these genes have important roles in anti-
inflammatory immune activity.

To determine whether the main bioactive components of
licorice can reduce the inflammatory response, the levels of
TNF-α and IL-1β were measured in RAW 264.7 by ELISA
analysis. Liquiritin apioside, liquiritigenin, glycyrrhizic acid
and isoliquiritin apioside were chosen as representative
bioactive components. In the vitro experiment, the levels of
TNF-α and IL-1β in RAW 264.7 were significantly increased
after stimulation with LPS compared with those in the blank
control (P < 0.01). The LPS group showed higher levels of TNF-α
and IL-1β than those of the four bioactive components-treated
and licorice-treated LPS group (P < 0.05), indicating that the
excessive secretion of TNF-α and IL-1β induced by LPS could be
reduced by liquiritin apioside, liquiritigenin, glycyrrhizic acid,
isoliquiritin apioside and licorice (Figure 7). According to these
results, we found that the inflammatory responses could be
reduced by the main bioactive components of licorice treatment.

FIGURE 6 | Two-dimensional chemical structures of the bioactive compounds in licorice.

FIGURE 7 | Reduce effects of the main bioactive compounds of licorice on the LPS-induced production of cytokines and chemokines. The supernatants were
collected for measuring the levels of IL-1β (A), TNF-α (B) by ELISA. Data are presented as the mean ± standard error of the mean (n � 3). *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.001 vs. Con group; #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs. LPS group. Liquiritin apioside, LA; Liquiritigenin, LIQ; Isoliquiritin
apioside, IA; Glycyrrhizin, GLY; IL, interleukin; LPS, lipopolysaccharide; TNF, tumor necrosis factor.
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In order to investigate the mechanisms underlying the anti-
inflammatory activities of bioactive components of licorice,
Western blotting analysis was used to verify the regulatory
effects of the main bioactive components. The results of
Western blotting revealed that bioactive components are able
to markedly suppressed the PI3K/AKT/NFκB signaling pathway,
mediated by p-PI3K (Figure 8A), p-AKT1 (Figure 8D), p-NFκB-
p65 (Figure 8G), p-PI3K/PI3K (Figure 8B), p-PI3K/PI3K
(Figure 8B), p-AKT1/AKT1 (Figure 8E) and p-NFκB-p65/
NFκB-p65 (Figure 8H) in LPS-activated macrophages.

The PI3K/AKT/NFκB signaling pathway plays an important
role in the regulation of signal transduction and biological
processes such as cell proliferation, apoptosis, metabolism
and angiogenesis. The regulatory echanisms and biological
functions of the PI3K/AKT/NFκB signaling pathway are
important in many human diseases, including ischemic brain
injury, neurodegenerative diseases, and tumors and play an
important role in erythropoiesis and glycolysis (Xie et al.,
2019; Xu et al., 2020). Nuclear factor-kappaB (NF-κB)
proteins constitute a family of transcription factors that are

FIGURE 8 | Reduce effects of the main bioactive compounds of licorice on the PI3K/AKT/NFκB signaling pathway. The levels of PI3K, AKT and NF-κB proteins
were detected by Western blotting(J). The relative expression of p-PI3K(A), p-AKT1(D), p-NFκB-p65(G) protein and ratio of p-PI3K/PI3K(B), p-AKT1/AKT1(E), p-NFκB-
p65/NFκB-p65(H) and total PI3K(C), AKT1(F) and NFκB-p65/NFκB-p65(I) protein were quantified. Data are presented as the mean ± standard error of the mean (n � 3).
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 vs. Con group; #p < 0.05, ##p < 0.01, ###p < 0.001, ####p < 0.0001 vs. LPS group. Liquiritin apioside, LA;
Liquiritigenin, LIQ; Isoliquiritin apioside, IA; Glycyrrhizin, GLY; LPS, lipopolysaccharide.

FIGURE 9 | Proportion of different chemical structure types of licorice in various pharmacologic effects.
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stimulated by pro-inflammatory cytokines, chemokines, stress-
related factors and extracellular matrix (ECM) degradation
products, which has long been considered a prototypical
proinflammatory signaling pathway (Toby, 2009; Stella and
Athanasios, 2013). These results indicat that the main
bioactive components of licorice inhibit the expression of
TNF-α and IL-1β in the downstream through the PI3K/AKT/
NFκB signaling pathway. Our results further demonstrate that
the main bioactive components of licorice have anti-
inflammatory properties.

Functions of Different Types of Compound
in the Pharmacologic Effects of Licorice
We analyzed the major targets of the chemical compounds
associated with the pharmacologic effects of licorice. We
showed that the activities of the compounds varied according
to their chemical structure, with flavonoids and triterpenoids
having the most important role, data that are consistent with
results from the work ofWang and colleagues (Wang et al., 2020).

We constructed a network for the heat-clearing and
detoxifying effects of licorice comprising four functional
modules: cellular functions; modulation of the nervous system;
balance between inflammation and the immune system;
regulation of energy production and metabolism.
Triterpenoids were the predominant type of compound in the
first three modules, whereas flavonoids had a leading role in
regulation of energy production and metabolism (accounting for
83.73% of compounds within this module). Triterpenoids
participated to varying degrees in the different functional
modules. In the spleen-invigorating and qi-replenishing effects
of licorice, they were important formodulation of the nervous
system (69.97%). In the phlegm-expulsion and coughing-
suppressant effects, they were responsible for regulating the
balance between inflammation and the immune system
(66.51%). In the spasm-relieving and analgesic effects, they
played a major part in neuroinflammation and
neuropathologic pain (67.13%) (Figure 9).

CONCLUSION

The pharmacologic effects of licorice arise from the combined
action of various types of compounds. Triterpenoids and
flavonoids make the greatest contribution, but coumarins are
also important. Each pharmacologic effect of licorice comprised
multiple functional modules. This finding is consistent with the
general premise of TCM that therapeutic mechanisms involve
many compounds and targets. We suggest that, for invigorating
the spleen and replenishing qi, expelling phlegm and suppressing

cough, or relieving spasm and pain, licorice with a higher
triterpenoid content may be used. Licorice with higher levels
of flavonoids may be more appropriate for heat-clearing and
detoxification. Our results provide a reference for the QC of
licorice and for investigating its therapeutic potential in the
treatment of specific symptoms or diseases.
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