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As a common and frequent clinical disease, peripheral nerve defect has caused a
serious social burden, which is characterized by poor curative effect, long course of
treatment and high cost. Nerve autografting is first-line treatment of peripheral nerve
injuries (PNIs) but can result in loss of function of the donor site, neuroma formation, and
prolonged operative time. Nerve guidance conduit (NGC) serves as the most promising
alternative to autologous transplantation, but its production process is complicated and
it is difficult to effectively combine growth factors and bioactive substances. In recent
years, additive manufacturing of NGCs has effectively solved the above problems due
to its simple and efficient manufacturing method, and it can be used as the carrier of
bioactive substances. This review examines recent advances in additive manufacture
of NGCs for PNIs as well as insight into how these approaches could be improved in
future studies.

Keywords: biomaterial, additive manufacturing, nerve guidance conduit, nerve regeneration, peripheral nerve

INTRODUCTION

Peripheral nerve injury (PNI) is usually caused by cross-section, extrusion, or stretching (Petcu
et al., 2018). The peripheral nervous system is a network of 43 pairs of motor and sensory
nerves that connect the brain and spinal cord (central nervous system) to the entire human body.
Epidemiological studies have shown that the incidence of peripheral nerve injury can be as high as
3% of all trauma patients (Zhang et al., 2020a). Connective tissue provides mechanical support
for nerve fibers and contains blood vessels, which provide nutritional support for nerve fibers.
From the inside to the outside, a peripheral nerve can be divided into three layers: endoneurium,
perineurium, and epineurium.

TYPES OF NERVE INJURY

Seddon divided PNI into three grades of injuries. Based on the Seddon classification, Sunderland
expanded PNI to five degrees of injuries based on the histological changes of the PNI
(Sunderland, 1951; Grinsell and Keating, 2014).
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Treatment for PNI is dependent upon the extent of the
pathophysiological damage and the integrity of supportive
structures of the axons, endoneurium, perineurium, and
epineurium of the peripheral nerve, and functional outcome
(Schmidt and Leach, 2003; Pinho et al., 2016; Petcu et al.,
2018). A Sunderland grade-I PNI denotes transient neurological
disease. Grade II is characterized by axonal destruction, but
the endoneurium is intact. Hence, PNIs of Sunderland grades I
and II can recover without intervention. Grade III is associated
with additional loss of the endoneurium, whereas the other
supporting structures (e.g., perineurium) remain intact. This
scenario results in non-specific and misguided regeneration
because the newly regenerated axons can randomly enter any
of the distal endoneurial pathways in close vicinity (Tos et al.,
2015). Spontaneous recovery in grade-III injuries is possible
but variable. Sunderland grade-IV injuries are characterized
by damage to the endoneurium and epineurium, and are the
most severe pathological entities. In grade-V injuries, all the
supporting structures are severely damaged, and significant
hemorrhage and inter-gap scarring follows the injury. The
opportunity for spontaneous recovery in grade-IV and -V
injuries is very low, and these lesions require surgical exploration
and repair (Grinsell and Keating, 2014).

TREATMENT STRATEGIES FOR PNIs

Although human peripheral nerves can regenerate after injury,
this degree of regeneration is limited, and may not achieve
a good effect on nerve function (especially for Sunderland
grade-IV and -V injuries). Most PNIs require treatment
to promote the recovery of nerve function. Treatment
methods for PNIs can be divided into two categories:
non-surgical and surgical.

Non-surgical Treatment Methods
Non-surgical treatment methods have many advantages in the
treatment of PNIs of Sunderland grade I–III. However, the effect
of non-surgical treatment is often uncertain because identifying
the type and severity of injury is challenging.

Physical Therapy
Physical therapy (e.g., electrical stimulation, magnetic
stimulation, laser phototherapy) is considered to be one of
the most widely used and efficacious non-surgical treatment
methods (Martinez De Albornoz et al., 2011). Electrical
stimulation is one of the most popular and tolerated treatment
methods. Low-frequency electrical stimulation can promote
the recovery of nerve function, but its optimal frequency of
use and duration, and side effects are not well characterized.
Improper application may even cause adverse results (Al-
Majed et al., 2000; O’gara et al., 2006; Geremia et al., 2007;
Haastert-Talini et al., 2011).

Magnetic stimulation and laser phototherapy are also widely
applied physical therapies. Magnetic stimulation can promote the
recovery of PNIs (Bannaga et al., 2002). Laser phototherapy can
accelerate the recovery of nerve function and reverse atrophy of

the corresponding muscles (Gigo-Benato et al., 2004; Rochkind
et al., 2007a,b; Camara et al., 2011).

Pharmacotherapy
According to animal experiments, several drugs have been shown
to promote the recovery of peripheral-nerve function after
injury. However, only a few drugs have been applied clinically,
such as neurotrophin 3, glial cell-derived neurotrophic factor
(GDNF), glial growth factor, ciliary neurotrophic factor, and
leupeptin (Joung et al., 2010). Some studies have demonstrated
that a combination of physical therapy and pharmacological
therapy can promote regeneration of nerve function, such
as a combination of electrical stimulation and corticosteroids
(Sharma et al., 2010).

Methods of Surgical Treatment
The purpose of surgery is to reconstruct the continuity
of the endoneurium, perineurium, and epineurium, thereby
supporting the regeneration of nerve axons. Injury severity can
be determined intraoperatively, so the treatment effect is more
specific than that using non-surgical treatment. The common
surgical methods are described below.

Neurorrhaphy
Neurorrhaphy is the most basic and commonly used surgical
method to suture the proximal and distal ends of the perineurium
and/or epineurium together (Li et al., 2014). Neurorrhaphy is
suitable for nerves without defects or with small defects, and
nerves can be sutured without tension. If there are medium-sized
and large nerve gaps, the recovery effect is weak due to excessive
tension after suture, so nerve grafting or nerve transfer will be
needed (Johnson and Soucacos, 2008).

Nerve Transfer
“Nerve transfer” is defined as the repair of a distal injury by use
of a proximal “foreign” nerve as the donor (Midha, 2006). After
the healthy donor nerve is cut, it is transferred to the more critical
receptor muscle to rebuild function. Therefore, it is often used in
regeneration of upper-limb function and repair of brachial plexus
nerves. However, nerve transfer has not been used widely owing
to missing innervation of the donor nerve and co-contraction-
related complications.

Tissue engineering has been used widely (Zhang et al., 2019;
Cui et al., 2020; Qiu et al., 2020; Zhu et al., 2020), especially for
tissue repair. Also, polymer-based nerve catheters have become
the most promising alternatives to autologous transplantation.
With technological advancements in scaffold preparation (Ding
et al., 2019; Feng et al., 2019; Zhang et al., 2019; Zhao et al.,
2019) [especially using three-dimensional (3D) printing], repair
of extremely long nerve defects is expected.

Nerve Grafting
Nerve autografts have been considered the “gold standard” for
treatment of medium-sized and large defects in peripheral nerves
(Ray and Mackinnon, 2010). Commonly used nerves used for
donation are the sural nerve, intercostal nerves, superficial and
deep peroneal nerves (Norkus et al., 2005). Compared with
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other methods, nerve autografts are regarded to be efficacious,
but the chance of recovery of nerve function is ∼50%. Given
the disadvantages associated with this procedure, such as a
lack of donor-area sensation and poor matching between the
donor nerve and defective nerve (Grinsell and Keating, 2014; Li
et al., 2014), application of nerve autografts is limited and better
recovery of nerve function is hard to achieve.

As the most promising alternative to autologous
transplantation, nerve conduits are currently available in
humans for repair of nerve defects less than 3 cm in length.
Nerve allografts can avoid the donor-site morbidity caused
by autografts, and can be applied more flexibly clinically. The
main drawback of allografts is the associated morbidity of
immunomodulatory therapy (systemic immunosuppression is a
prerequisite for allografting).

DESIGN PRINCIPLES FOR ADDITIVE
MANUFACTURING OF NERVE
GUIDANCE CONDUITS

The nerve conduit scaffolds mainly refers to the structure of the
conduit connecting the proximal and distal ends of the nerve
defect. If the nerve conduit combines with cells and/or growth
factors, that is, nerve tissue engineering grafts, the length of
the nerve defect and the repair effect can be further improved.
NGCs connect the distal and proximal ends of a defective nerve.
This procedure is a substitute for nerve transplantation, and
avoids the limitations and damage caused by nerve transfer
and nerve grafting. NGCs not only provide structural support
for axon regeneration, they also offer various nerve factors
and other regenerative-environment support, thereby promoting
nerve regeneration (Mackinnon et al., 1984; Apel et al., 2010).
The “ideal” NGC should not only have biomimetic structures
to provide structural support for axon growth, but also provide
nutritive support at all stages of nerve regeneration while
having conductivity, biocompatibility, and degradability. One
of the main advantages of 3D-printed NGCs is the ability
to “customize” any desired shape and to add suitable active
cells. Additive manufacturing of NGCs involves consideration of
various factors, as discussed below.

Biocompatibility and Degradation of
Nerve Guidance Conduits Materials
The materials employed for 3D printing of NGCs include
biological materials and/or cells. Biomaterials can be from nature
or can be synthesized using polymers, ceramics, metals, or
composite materials. Several biological materials have been used
in the 3D printing of NGCs (Zhuang et al., 2018). However,
only a small number of biological materials, such as alginate,
chitosan, agarose, a biodegradable polyurethane (PU)-modified
poly(ε-caprolactone) (PCL) hydrogel, have been used for the
3D printing of active tissues (Lin et al., 2016; Gu et al., 2017;
Zhuang et al., 2018). All materials must non-toxic to cells
and tissues, and not elicit inflammatory or immune responses
(Wang and Sakiyama-Elbert, 2019).

The materials used for 3D printing of NGCs should have a
suitable degradation rate. The ideal NGCs should retain their
shape, wait for the axon to grow from the proximal stump
through the defect and re-innervate the distal nerve pathway,
and then begin to degrade gradually and minimize the pressure
on surrounding tissues. If the degradation rate is too fast, it can
cause local inflammation. If the degradation rate is too slow,
the NGC compresses the nerve, leading to chronic immune
rejection. For example, non-degradable materials such as silicone
and polytetrafluoroethylene require a second procedure to
remove the stent, and fibrotic scars may appear after long-term
implantation, which limits the application and widespread use of
these materials (Mann and Helbing, 2017).

Mechanical Properties of Nerve
Guidance Conduits
3D-printed NGCs provide mechanical support. NGCs serve as
channels for the infiltration of cells and axons, and axon diffusion,
in human tissues (Yoshii et al., 2003; Nectow et al., 2012; Dixon
et al., 2018; Koffler et al., 2019). Therefore, the mechanical
properties of NGCs should be similar to those of peripheral-nerve
tissue and surrounding tissues to avoid mechanical damage to
these tissues after NGC transplantation. NGCs should not only
have a certain degree of anti-compression protection, but also
have a certain degree of flexibility to resist the pulling and twisting
forces generated during limb activities, thereby protecting the
new axons (Chang et al., 2018).

Microstructure of Nerve Guidance
Conduits
The microstructure of NGCs not only affects mechanical
properties but also affects the arrangement of cells and axons,
as well as the exchange of materials inside and outside the
ducts, which is essential to nerve regeneration. Intraluminal
microchannels and the permeability of the tube wall are the most
popular designs of NGCs (Hanani, 2005).

The microchannels in NGCs are not only channels that
support axon growth, but also essential factors affecting the
morphology and function of axons (Nectow et al., 2012).
Therefore, the microchannels in NGCs need to be large enough
to support the growth of axons and blood vessels. Although a
microchannel with a large diameter is beneficial to the growth
of blood vessels and nerves, it reduces the migration of axons
and Schwann cells in NGCs, and factors such as scar ingrowth
are not conducive to axon growth. Krych et al. (2009) observed
a significant reduction in the number of nerve axons in tubes
of diameter > 450 µm, but axon regeneration was observed in
microchannel scaffolds with a diameter of 150–300 µm. Several
other studies have also shown that axons, blood vessels, and glial
cells regenerated in microchannels within a diameter of 100–
300 µm can be arranged linearly to achieve effective regeneration
of nerves (Stokols et al., 2006; Pawelec et al., 2018; Koffler
et al., 2019). As the diameter of the microchannel decreases, the
regenerated axons and blood cells can be arranged linearly more
effectively. However, a too-small diameter prevents the ingrowth
of blood vessels and effective nutrient fluid exchange in NGCs,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 September 2020 | Volume 8 | Article 590596

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-590596 September 24, 2020 Time: 19:52 # 4

Song et al. Additive Manufacturing NGCs

which is not conducive to nerve regeneration. It is considered that
a microchannel diameter of 20–30 µm is appropriate (Deumens
et al., 2010; Pawar et al., 2011; Sarker et al., 2018), but more
experimental results are needed.

An appropriate permeability of the tube wall should promote
the transportation of nutrients and blood supply, isolate
the invasion of scar tissue-forming cells, and help discharge
metabolic waste (Chiono and Tonda-Turo, 2015; Sarker et al.,
2018). Some researchers believe that for repair of peripheral
nerves, a micropore size of 10–40 µm and porosity of 80% is the
most suitable ratio (Kokai et al., 2009). In addition to pore size,
permeability is also affected by the hydrophilicity of the material
and the distance from the tube wall to the center.

The surface structure and properties of the material also
affect the growth and differentiation of cells. For example, a
larger surface roughness (85–200 nm) supports generation of
longer axons and more neurite outgrowths/branches than that
of a smoother surface (surface roughness of 6–50 nm). For
human endothelial cells, a higher surface roughness (35 nm)
of biomaterials can enhance the adhesion and growth of cells
compared with that obtained with a roughness of 20 nm (Chung
et al., 2003). In addition, more hydrophilic surfaces exhibit a
higher rate of cell adhesion and tend to absorb more protein. As
the surface hydrophobicity decreases, the rate of neuron diffusion
and neurite outgrowth increases (Popovich, 2012). Therefore,
careful design of the local microenvironment is very important
for nerve tissue-engineered scaffolds.

In short, on the basis of satisfying the requirements of
biocompatibility, permeability and mechanical properties, the
additive manufacturing nerve conduit could be better simulated
with extracellular matrix by means of improving the printing
accuracy producing complex morphological features, so as to
meet the needs of repairing long segment nerve defects.

BIOMATERIALS FOR ADDITIVE
MANUFACTURING OF NERVE
GUIDANCE CONDUITS

Compared with traditional manufacturing methods (e.g.,
dip coating, electrospinning, molding), 3D printing has the
advantages of being highly cost-effective and having high
production efficiency. Several reviews on biomaterials for NGCs
have been published (Zhang et al., 2020a), so we will focus
on the biomaterials used in additive manufacturing of NGCs
in this section.

The advantage of natural materials is their good
biocompatibility, but their mechanical properties are poor
and purification is difficult. Synthetic polymers-based NGCs can
be relatively easy to prepare and achieve good mechanical
properties, but their biocompatibility is not as good as
natural polymers.

Natural Polymers
Natural polymer materials are characterized by suitable cellular
histocompatibility and excellent degradation performance
(Deumens et al., 2010; Zhang et al., 2020b). Therefore, they have

been applied widely in tissue engineering, including regeneration
of peripheral nerves. However, they have weak mechanical
properties, and they carry the risk of antigenicity and disease
transmission. Several natural materials, including collagen
(Weng et al., 2012), hyaluronic acid (HA) (Suri et al., 2011),
alginate (Lee and Mooney, 2012; Johnson et al., 2015), gelatin
(Hu et al., 2016) and silk fibroin (SF) (Kim et al., 2018), have
been used in additive manufacturing of NGCs.

Collagen types I, II, and III are critical components of
peripheral nerves (Georgiou et al., 2015; Bozkurt et al., 2016).
Collagen can simulate the structure and function of the
extracellular matrix. Also, the promotion of axonal regeneration
and myelination by gelatinized NGCs of various types of collagen
has been demonstrated in vitro and in vivo. Several US Food
and Drug Administration-approved collagen products are on
the market, but they are suitable only for patients with nerve
defects < 3 cm (Kehoe et al., 2012; Sarker et al., 2018).

Hyaluronic acid is also one of the essential components of the
extracellular matrix, and its immunogenicity is low. The porous
structure of HA scaffolds enables them to be used as suitable
carriers for drugs and bioactive substances (Ikeda et al., 2003).
HA enhances cell adhesion by binding adhesion molecules or
peptides (Suri et al., 2011).

As a type of denatured collagen, gelatin is used widely
in peripheral-nerve scaffolds. Several studies have shown that
gelatin nerve ducts have good cell compatibility, excellent
degradability, and promote axon regeneration (Hu et al., 2016).
The methacryloyl gelatin (GelMA) obtained by functionalizing
gelatin with methacryloyl substituent groups is often used as a
material for 3D printing of NGCs. The methacryloyl substituent
groups give GelMA photocrosslinking and polymerization
functions, and the mechanical properties are improved (Hu et al.,
2016; Zhu et al., 2018).

Silk fibroin comes from the fibrin of the silkworm, and
many SF-based peripheral NGCs have been fabricated. SF
can be used to produce films, gels, and sponges. Among
them, Kim et al. used methacrylate-grouped SF to produce
degradation properties using its photoactivation and free radical
polymerization properties Adjustable hydrogel, and prepared
into SF-biological ink for bioprinting (Kim et al., 2018).

Synthetic Polymers
The advantages of synthetic materials are that they are convenient
to produce, and their mechanical properties can be adjusted.
However, compared with natural biological materials, their
biocompatibility is poor. Several synthetic materials, such as
PCL (Singh et al., 2018), poly(lactic acid-co-glycolic acid)
(PLGA) (Radulescu et al., 2007), poly(ethylene glycol) (PEG)
(Christopher et al., 2015; Evangelista et al., 2015), poly(glycerol
sebacate) (PGS) (Dharaminder et al., 2018), polypyrrole (PPy)
(Weng et al., 2012) and carbon nanotubes (CNTs) (Lee et al.,
2018a) have been used alone or in combination with natural
polymers for 3D-printed NGCs.

The aliphatic polyester PCL is used widely as a raw material
for NGCs due to its excellent mechanical properties (Kim and
Kim, 2007; Schnell et al., 2007; Chang et al., 2018; Huang
et al., 2018). However, the degradation performance of PCL is
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poor. Compared with PCL, PLGA has an adjustable degradation
performance and mechanical properties. The very permeable
PLGA/Pluronic F127 NGC and chitosan/PLGA compound
NGCs have been tested in vivo to promote motor-function
recovery and axon regeneration (Oh et al., 2008; Xue et al., 2012).

Although PEG has excellent biocompatibility, its effect on
nerve regeneration is not clear. However, during preparation of
the NGC, the photocrosslinkable PEG and PEGDA can serve as
cell carriers, and ∼87% of the cells embedded have good cellular
activity (Arcaute et al., 2006). Hence, PEGDA has been used
widely in the additive fabrication of PEG-based NGCs.

PGS is a photocurable and absorbable material that can be
used as a 3D-printed material for NGCs (Dharaminder et al.,
2018). PGS-based NGCs can provide mechanical properties
close to those of peripheral nerves and greater flexibility.
Compared with PLGA, flat-sheet PGS NGCs can better promote
the adhesion and proliferation of Schwann cells and reduce
the inflammatory response, but they lack the 3D structure
of the extracellular matrix. Photocurable, functionalized
PGS-based NGCs can have both excellent mechanical
properties and individual customization requirements
(Dharaminder et al., 2018).

As the latest generation of NGC materials, conductive
materials mainly comprise conductive polymers and CNTs
(Weng et al., 2012; Lee et al., 2018a). They can maintain the
integrity of the electrical signal of the nerve pathway and further
synergize electrical stimulation. However, they are difficult to
process, insoluble, and have poor degradability, so often they
are combined with natural polymers. As mentioned earlier,
hybrid composite additive manufacturing NGCs have also been
used, such as chitosan/PLGA NGC. Hybrid composite nerve
conduits Because hybrid composite nerve conduits can combine
the advantages of both natural and synthetic polymers, so they
are a promising type of material combination in the future.

METHODS FOR ADDITIVE
MANUFACTURING OF NERVE
GUIDANCE CONDUITS

3D printing is one of additive manufacturing technologies,
which mainly refers to the method of obtaining 3D samples
designed through continuous deposition of materials on the
basis of computer assistance control. Continuous ink-jet printing

has been around for nearly 70 years, and fused deposition
modeling and stereolithography (SLA) were new technologies
that emerged in the 1990. The three main methods of additive
manufacturing of NGCs are extrusion-based printing, SLA,
and inkjet bioprinting (Murphy and Atala, 2014; Lee et al.,
2018a). Each method has its advantages and disadvantages.
In this section, we introduce the principles of various
additive manufacturing methods and their applications in NGC
preparation (Scheme 1).

Extrusion-Based Printing
Microextrusion printing can achieve one-step printing of NGCs
containing various composite materials that are difficult to
obtain by conventional manufacturing methods. Extrusion-
based printing can obtain better mechanical properties and
more complicated NGC structures than traditional production
methods. Based on 3D imaging, Johnson et al. fabricated a
sciatic nerve conduit with the bifurcation structure of sensory
and motor branches by microextrusion printing (Figure 1). The
disadvantage of extrusion 3D printing is that the efficiency and
accuracy of printing are low due to the limitations of the nozzle,
which is prone to blockage (Zhu et al., 2016). The printing
materials are PCL, PLGA, alginate, calcium chloride, and GelMA.
The delivery of NGF in the sensory branch and GDNF in the
motor branch has been realized (Johnson et al., 2015).

Fused deposition modeling (FDM) is a printing technology.
A temperature-sensitive polymer is heated to a molten state and
then deposited on a solid medium through a printing nozzle
(Qian et al., 2019). The advantage of this kind of technology is
its high precision. The printed scaffold has high hardness, few
impurities, and can eliminate organic solvents that are potentially
toxic to cells. However, the polymer must be heated to a high
temperature before printing, so the effect of high temperature on
material properties must be considered.

Cui et al. (2009) fabricated double-layer PU/Col NGC by a
modified FDM method. They used double needles, relatively low
temperatures combined with separation and freezing to prepare
the outer layer containing a macroporous (15–25 mm) structure
of the inner layer of the oriented fiber PU/Col NGC. This
NGC had excellent mechanical properties and biocompatibility,
and the extrusion temperature was low, so growth factors and
bioactive substances could be introduced.

The indirect biological-printing method of microextrusion has
also been used to produce NGCs. Hu et al. (2016) employed

SCHEME 1 | Schematic diagram of additive manufacturing techniques for nerve guide conduit. (A) Microextrusion bioprinter. (B) Stereolithography. (C) Inkjet
bioprinter. Reproduced with permission from Malda et al. (2013).
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FIGURE 1 | Microextrusion printing rat complex structure sciatic nerve conduit. (A) Photographs of sciatic nerve including both of sensory and motor nerve
branches and (B) corresponding sciatic nerve defect. (C) Scans for 3D reconstruction from various perspectives by structured light scanning system. (D) The
process of three-dimensional reconstruction of data. (E) Image after 3D reconstruction of the scan data of the sciatic nerve. (F) Image of the microextrusion printed
sciatic nerve conduit. Reproduced with permission from Johnson et al. (2015).

magnetic resonance imaging to obtain the data of the human
sciatic nerve, and then used the indirect printing method to
make a “personalized” GelMA NGC of the human sciatic nerve
(Figure 2). By introducing GelMA hydrogel into the molds, they
created a neural tube of a precise shape corresponding to the
molds. When adipose-derived stem cells were introduced, the
NGS could promote their adhesion and proliferation. In vivo
experiments using a model of a 10-mm defect in the sciatic nerve
showed that the nerve-repair effect was no different to that from
an autograft group.

Stereolithography
In-depth research into SLA (also known as photosensitive
liquid phase solidification) has been done. SLA uses a laser
light source to cure resins to produce complex 3D products.
The main raw material added to the printing paste is a
liquid resin. This photosensitive resin, after ultraviolet light
(UV)-wavelength laser irradiation, causes the printing slurry
to polymerize, and a single cured product is obtained. Then,
the work platform is filled with a new printing slurry
to continue the curing reaction of the next layer. This

process is repeated layer-by-layer to obtain 3D solid parts.
Finally, the latter are placed under UV light or a sintering
furnace for molding.

The advantages of this technology are that: (i) macroscopic
devices can be made under the control of a computer-aided
design (CAD) or computer-aided manufacture; (ii) the accuracy
and efficiency of production are higher than those of extrusion-
printed methods. A high degree of automation means that the
product is more controllable because it solidifies the liquid
directly (Melchels et al., 2012). However, this method is suitable
only for materials with high photosensitivity, and photoinitiators
must be added, so tests of cytotoxicity and biocompatibility
in vitro must be passed before use.

“Generalized SLA” comprises two types. One type is laser-
assisted programmed SLA, which is characterized by projecting
the image to be printed onto the polymer to increase the layer
printing directly. The other type uses laser beams for point-by-
point printing (Zhu et al., 2016).

Digital micromirror devices (DMDs) are employed widely
in SLA to improve the printing efficiency. Zhu et al. (2018)
used SLA to fabricate a human-facial-nerve conduit with
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FIGURE 2 | Schematic diagram of tissue engineered NGCs by indirect bioprinting, and computer models and photographs of complex structured NGCs.
(A) Schematic diagram of tissue engineered nerve conduits. (B) Computer models and photographs of (a) 4-channel, (b) bifurcating. (c) MRI scan of the human
sciatic nerve and the photograph of the corresponding nerve conduit. Reproduced with permission from Hu et al. (2016).

bifurcated structures. After collecting the data of the
NGCs to be printed by computed tomography or nuclear
magnetic resonance spectroscopy, a CAD model was
established. Using a 405-nm laser, light was transmitted

into the GelMA and PEGDA prepolymer solution through
a DMD to achieve selective light-curing according to
CAD-model data (Figure 3A). This CAD design had the
advantages of high efficiency, continuous and rapid customized
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FIGURE 3 | Rapid continuous 3D printing. (A) Schematic diagram of the rapid continuous 3D printing (Zhu et al., 2018). (B) SEM images of complex structured
NGCs transverse sections of hollow (a), 4-multichannel (b), aligned cryomatrix-filled NGC (c,d), random cryomatrix-filled (e), Micro-CT image of aligned
cryomatrix-filled NGC (f) (Singh et al., 2018). (A) Reproduced with permission from Zhu et al. (2018) and (B) Reproduced with permission from Singh et al. (2018).

printing, and preparation of NGCs with a multi-lumen and
bifurcated structure.

Singh et al. (2018) used SLA to produce a 3D-printed
PCL resin with reactive methacrylate groups. The preparation
parameters of the laser light source was 400–500 nm, the
thickness of each layer was 25 µm, and a PCL NGC of length
1.9 cm containing four microchannels and an accuracy of 50 µm
was fabricated (Figure 3B). This PCL NGC filled with a nerve
growth factor-loaded aligned cytomatrix repaired the critical
length defect of a rat sciatic nerve.

Ye et al. (2020) used digital light-processing 3D printing
technology to prepare a four-lumen GelMA hydrogel NGC.
In vitro experiments demonstrated that the NGC promoted
the proliferation of PC-12 cells, the directional migration along
the long axis of the NGC, and promoted the directional
differentiation of neurons of neural crest stem cells. These
observations showed great potential for application in peripheral-
nerve repair, but the study did not compare multi-channel with
single-channel NGCs (Ye). PEG resin has also been employed
in the fabrication of NGCs using SLA (Christopher et al., 2015;
Evangelista et al., 2015). Evangelista et al. (2015) compared single-
lumen NGCs with multi-lumen NGCs fabricated by SLA. They

found that the effect of single-lumen conduit on sciatic-nerve
regeneration was better than that of multi-lumen PEG NGCs
(Evangelista et al., 2015). Dharaminder et al. (2018) prepared
photocurable functionalized PGS through methacrylation of
hydroxyl end-groups. A 405-nm laser was used to photocure
PGSm, and the printing speed was 0.3 mm/s. After printing,
methanol solution was used to remove uncured PGSm, and both
ends of the NGC were laser-cut to obtain a complete 1.5 cm-long
PGSm NGC. The mechanical-performance test results showed
that its compressive Young’s modulus was >3 MPa and could
fully resist the tension of the suture. In vitro experiments
with S100-β immunofluorescence showed that the PGS-coated
material could maintain the morphology of Schwann cells.
In vivo tests demonstrated that the PGSm NGC promoted the
regeneration of the common fibular nerve and reduced neuralgia
(Dharaminder et al., 2018).

Conductive materials can also be applied in 3D-printed NGCs
using SLA. Lee et al. fabricated 3D-printed MWCNTs-loaded
PEGDA scaffolds using SLA, and in vitro experiments showed
that synergistic electrical stimulation could promote the growth
of neurites of neural stem cells (Lee et al., 2018b). Heo et al. (2019)
used poly(3,4-ethylene dioxythiophene):polystyrene sulfonate
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FIGURE 4 | Schematic diagram of the 3D fabrication of the Col/NC/PCL NGCs, transmission electron micrograph of a sciatic nerve after surgery and the antioxidant
properties of Col/NC/PCL NGCs (Qian et al., 2019). (A) The Col/NC/PCL NGC was printed in three layers from the outside to the inside, the Col layer, PCL layer, and
NC/PCL layer. The inner layer was suitable for SC adhesion, and the outer layer could prevent fibroblasts from entering the conduit. (B) SEM of the Col/NC/PCL
NGCs; (C) Western blot results of in vitro antioxidant and anti-inflammatory indicators; (D) Transmission electron micrograph of the sciatic nerve 18 weeks after
surgery; (E) Reverse transcription-polymerase chain reaction (RT-PCR) results and the HO-1 and nuclear factor-like 2 (Nrf2) levels Reproduced with permission from
Qian et al. (2019).

(PEDOT:PSS) to further increase the conductivity of nerve
scaffolds. This PEDOT:PSS/PEGDA scaffold could enhance the
neuronal differentiation of dorsal root ganglion cells. However,
few in vivo studies on this type of NGC have been done, and its
effectiveness merits further study.

Inkjet Bioprinting
Inkjet bioprinting is a commonly used additive technology, but
it is not used widely used in NGCs (Dixon et al., 2018). Inkjet-
printing technology can use polymers as raw materials, and
accurately control the speed of polymer deposition droplets on a
3D coordinate axis through non-contact additive manufacturing
technology. The power of the droplet’s advancement takes two
forms: (i) the air pressure generated by heat; (ii) the pulse

pressure generated by piezoelectric or ultrasonic devices. Then,
the droplet is delivered to the substrate that supports or becomes
part of the final product (Okamoto et al., 2000).

The earliest batch of inkjet-bioprinting equipment was
modified from 2D ink-based printers. That is, the original ink
was replaced with the biological material that needs to be printed,
and the paper was changed to the corresponding Z-axis that
can be moved up and down (Xu et al., 2008). Radulescu et al.
(2007) demonstrated the compatibility of human embryonic
kidney cells and promotion of nerve grow the factor, and
adjusted the parameters of the inkjet printer to prepare additively
manufactured cylindrical PLGA NGCs. By genetic modification
of human embryonic kidney cells, the NGC could be used as an
effective carrier for growth factors (Radulescu et al., 2007).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 9 September 2020 | Volume 8 | Article 590596

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-590596 September 24, 2020 Time: 19:52 # 10

Song et al. Additive Manufacturing NGCs

The performance of inkjet printing technology has
facilitated introduction of functionally active substances. Qian
et al. (2018) used inkjet bioprinting to prepare functional
collagen/nanoceria/PCL NGCs to investigate the characteristics
of inflammation and oxidative stress after nerve defects
(Figure 4). They used a rotating roller with a structure of
microneedles (simulating the pores of NGCs) to spray polymers
on abrasive tools to prepare NGCs. In vivo and in vitro
experiments demonstrated that the NGC had good local anti-
oxidative stress function (Qian et al., 2019). Yuan and coworkers
fabricated polydopamine- and arginyl glycyl aspartic acid-coated
grapheme-loaded PCL nerve scaffolds by a similar type of inkjet
bioprinting, and the NGC was used to repair a 15-mm sciatic-
nerve defect in rats. The repair effect was no different from that of
an autologous-nerve-graft group 18 months after the procedure,
and study of the mechanism of nerve regeneration revealed
promotion of axon- and myelin-related protein expression
(Qian et al., 2018).

With the advancement of inkjet-dispensing technology,
increasing numbers of bioactive materials have been used in
inkjet printing to make tissue-engineered devices (Silva et al.,
2007). Nerve scaffolds made of conductive materials can also be
prepared using inkjet printing. Wallace and colleagues developed
PPy/collagen platforms by inkjet printing (Weng et al., 2012).
The electrical conductivity of these scaffolds was >1 S/cm, and
bio-printing with micron precision was realized. In vitro tests
demonstrated that the scaffold had good compatibility with
PC-12 cells, and could promote the directional alignment and
elongation of synapses upon synergistic electrical stimulation.

SUMMARY AND FUTURE
PERSPECTIVES

Compared with the traditional manufacturing method, the nerve
conduit manufactured by 3D printing has the advantages of low
price, high efficiency, and easy preparation, and can be used
as a growth factor or a carrier of bioactive substances. Further
efforts will be directed toward the fabrication of NGCs with
nano-precision and with growth factors or with growth factors
gradient, as well as the development of new additive materials.
The 3D bioprinting nerve conduit containing cells and growth
factors, which can be used to better simulate the in vivo peripheral
nerve micro-environment, is expected to repair peripheral nerve
defects of limited length and will be the research direction of
additive manufacturing of NGCs in the future.
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