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Abstract
In the last decade, researchers have searched for predictive surface
markers of multipotent mesenchymal stromal/stem cells (MSCs) for
ensuring improved therapeutic outcomes following cartilage damage in
humans. However, we have achieved only limited progress because of the
challenge presented by conflicting data. This commentary provides some
evidence to prove a lack of success with current efforts, including an
inconsistency in accepted surface markers and chondrogenic potential of
MSCs as well as the tissue source–dependent MSC surface markers that
correlate with chondrogenic potential. A brief discussion on these disputed
topics and perspective about functionally predictive surface markers and
standardization of analytic procedures are also highlighted.
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Introduction
As a leading cause of disability among adults, osteoarthritis often 
results from a biochemical breakdown of articular cartilage in 
joints1. Articular cartilage has a poor intrinsic healing capacity 
because of its avascular structure, immobility of chondrocytes, 
and low mitotic activity. Compared with conventional surgical  
methods, autologous cell therapy, growth factor therapy, and 
biomaterials provide more promising approaches for clinical  
treatment2. Human multipotent mesenchymal stromal/stem cell 
(MSC)-based cell therapy is expected to deliver a promising  
treatment for cartilage repair because of easy isolation of 
cells from mesenchymal tissues with higher proliferative and  
chondrogenic potential3,4. Given that MSCs exist in a 
number of tissues and organs, such as bone marrow, synovial  
membrane, and adipose tissue5–7, to compare research outcomes 
and promote the development of MSC-based therapy, the  
International Society for Cellular Therapy defined human MSCs 
in 20068. First, in vitro culture of MSCs must have the ability 
to adhere to plastic substrates; second, MSCs should express  
cluster of differentiation 73 (CD73), CD90, and CD105 (>95%), 
which are measured by flow cytometry. Meanwhile, CD14, CD19,  
CD34, CD45, and HLA class II should be negative (≤2%  
positive). Third, MSCs must have osteogenic, chondrogenic,  
and adipogenic capacities in vitro.

Increasing evidence has shown that human MSC subpopula-
tions which were sorted by some surface markers had better  
chondrogenic potential for cartilage regeneration. Researchers 

are trying to find predictive MSC surface markers for ensuring 
improved therapeutic outcomes. Although some promising 
MSC surface markers have been comprehensively reviewed9–11,  
Alegre-Aguarón et al. questioned the correlation between 
stem cell surface markers and chondrogenic potential12. This  
commentary provides some evidence to prove a lack of success 
with current efforts, including an inconsistency in accepted 
surface markers and chondrogenic potential of MSCs as well  
as the tissue source–dependent MSC surface markers that 
correlate with chondrogenic potential. A brief discussion on  
these disputed topics and perspective about functionally predic-
tive surface markers and standardization of analytic procedures  
are also highlighted (Figure 1).

Inconsistency of currently accepted surface markers 
and chondrogenic potential of MSCs
Increasing evidence suggests that environmental precondition-
ing revitalizes the proliferation and chondrogenic capacity 
of adult stromal/stem cells13. Given two good examples that 
decellularized extracellular matrix (dECM) expansion or  
fibroblast growth factor 2 (FGF2) pretreatment can promote 
human MSC proliferation and chondrogenic potential, there is 
an inconsistency in accepted surface markers and chondrogenic  
potential of MSCs.

dECM expansion
Recent reports demonstrated that dECM deposited by syn-
ovium-derived stromal/stem cells (SDSCs) provided an in vitro  

Figure 1. Schematic diagram of our Commentary on ‘Surface markers associated with chondrogenic potential of human mesenchymal 
stromal/stem cells’. Human mesenchymal stromal/stem cells (MSCs) were defined in 2006 by the International Society for Cellular Therapy. 
Unfortunately, currently accepted predictive surface markers do not seem to be ideal candidates to predict MSCs with chondrogenic potential 
in terms of inconsistency of currently accepted surface markers and chondrogenic potential of MSCs and tissue source–dependent MSC 
surface markers that correlate with chondrogenic potential. Are functionally predictive surface markers the next target for sorting MSCs in 
cartilage engineering and regeneration? ∝, positive correlation; ADSC, adipose-derived stromal/stem cell; BMSC, bone marrow-derived 
stromal/stem cell; dECM, decellularized extracellular matrix; FGF2, fibroblast growth factor 2; LTD EXP, limited expression; NR, not related; 
SDSC, synovium-derived stromal/stem cell.

Page 3 of 7

F1000Research 2020, 9(F1000 Faculty Rev):37 Last updated: 23 JAN 2020



microenvironment for SDSC expansion, which dramatically 
improved proliferation and enhanced chondrogenic potential14–16. 
The flow cytometry data reported by Li et al. showed that,  
compared with surface markers of human SDSCs grown on  
tissue culture plastic (TCP), the percentage of CD29, CD90, and  
CD105 expression of SDSCs grown on dECM decreased 
slightly but the median fluorescence intensity (MFI) declined  
dramatically; interestingly, both the percentage and MFI of  
stage-specific embryonic antigen 4 (SSEA4) increased17. Zhang 
et al. also found that, despite nearly 100% expression in  
SDSCs after expansion on either TCP or dECM substrates, 
CD29, CD90, and CD105 declined dramatically at the MFI 
in dECM-expanded SDSCs; the MFI of SSEA4 in dECM-
expanded cells increased slightly while the percentage doubled18.  
Interestingly, real-time quantitative polymerase chain reaction 
results showed that SRY-Box9 (SOX9), type II collagen (COL2A1), 
and aggrecan (ACAN) were significantly upregulated during  
chondrogenic induction in SDSCs from the dECM group18. 
In those two studies, SSEA4 was found to be the only surface  
marker under evaluation that increased when dECM improved 
the chondrogenic potential of human SDSCs. However, Li et al.  
showed that SSEA4(+) expression did not favor human SDSC 
chondrogenesis because enhanced chondrogenesis occurred in  
the SSEA4(−) population of cells19.

FGF2 pretreatment
In 2011, Kim et al. found that the expression percentage of  
surface marker CD49a in human SDSCs decreased with  
pretreatment using FGF2 and that FGF2 exerted no effect on 
the expression levels in CD29, CD44, CD73, CD105, and  
CD16620. In that study, the size, weight, and glycosaminoglycan 
(GAG) accumulation of pellets increased following FGF2  
supplementation during cell expansion. In another study, after 
seven days of monolayer expansion in the presence of FGF2, 
human SDSCs became significantly smaller and showed a  
fibroblast-like appearance as well as a decrease in MFI for 
CD29, CD90, and CD10; however, FGF2-pretreated SDSCs 
showed significantly increased chondrogenic potential21.  
Hagmann et al. reported that FGF2 pretreatment suppressed 
CD146 expression in human bone marrow–derived stromal/stem 
cells (BMSCs) and promoted chondrogenic differentiation22. 
These studies demonstrated that, during ex vivo expansion, FGF2 
is an effective agent to promote human MSC proliferation and  
chondrogenic potential via upregulation of SOX923. However, 
measured surface markers did not show a positive correlation  
with the proliferative and chondrogenic potential of MSCs.

Tissue source–dependent MSC surface markers that 
correlate chondrogenic potential
Some surface markers associated with chondrogenic potential 
are not equally expressed in all tissue-specific stromal/stem 
cells. The evidence shown in this section supports the conclusion 
that the predictive capacity of CD271 and CD105 for MSC  
chondrogenic potential is tissue source–dependent in terms of 
MSCs from synovium, bone marrow, and adipose.

CD271
CD271, a low-affinity nerve growth factor receptor, is consid-
ered to be a highly selective surface marker for BMSCs24. The  

reports from Mifune et al.25 and Calabrese et al.26 showed 
that CD271(+) BMSCs from freshly isolated cells had higher  
chondrogenic potential as evidenced by increased expression 
of chondrogenic genes in pellet culture with induction medium  
compared with CD271(−) BMSCs. Petters et al. demonstrated 
that, without ex vivo expansion, human bone marrow–derived  
CD271(+) mononuclear cells could generate sufficient  
articular cartilage constructs exhibiting high cell viability and  
remarkable chondrogenic matrix deposition in a type I collagen  
hydrogel27.

Given that CD271 plays an important predictive role in  
chondrogenic potential of human BMSCs, there is still  
controversy over whether human SDSCs express CD27128,29.  
Some studies reported that CD271 was expressed only in the 
synovial membrane of patients with osteoarthritis29,30. Inter-
estingly, increasing evidence indicates that SDSCs are tissue- 
specific stromal/stem cells for chondrogenesis31 and present  
superior chondrogenic potential and less hypertrophy compared 
with BMSCs32.

Despite the low abundance of CD271(+) subpopulation within 
stromal vascular fraction cells, Quirici et al. found that the  
CD271(+) subpopulation of adipose-derived stromal/stem 
cells (ADSCs) had high increments in cell proliferation when  
compared with unsorted ADSCs33. Research by Kohli et al. 
showed that CD271(+) ADSCs from ex vivo expansion had 
a superior ability to promote cartilage repair compared with 
unsorted ADSCs34. However, the study by Beckenkamp et al. 
showed that, in freshly isolated cells, CD34(+)CD271(+) ADSCs  
displayed similar in vitro chondrogenic potential at passage 3  
compared with CD34(+)CD271(−) ADSCs35.

CD105
CD105 (endoglin) is a transmembrane protein that regulates  
cellular proliferation, differentiation, and migration36. Cleary  
et al. found that the percentage of CD105 in human BMSCs was 
not related to subsequent chondrogenic potential since CD105  
expression did not change during cell expansion when  
chondrogenic potential decreased37. Interestingly, this outcome 
seems to be inconsistent with the role of CD105 in SDSCs 
and ADSCs. Arufe et al. in 200938 and Chang et al. in 201339  
demonstrated that the cellular subset of CD105(+) SDSCs from  
ex vivo expansion possessed greater chondrogenic capacity than 
the CD105(−) SDSC subset. Jiang et al. found that CD105(+)  
ADSC subpopulation in in vitro culture had a much stronger  
chondrogenic potential than CD105(−) subpopulation and had 
more intensive immunostaining of type II collagen and higher  
gene expression of COL2A1 and ACAN following chondro-
genic induction40. There is also a report that myrtucommulone-A  
treatment reduced CD105 expression in expanded human  
ADSCs along with reduced chondrogenic potential41.

Discussions and perspectives
In this commentary, we discussed that the same surface markers 
might perform differently in predicting the chondrogenic  
potential of MSCs isolated from different tissues. We also 
highlighted the inconsistency in currently accepted surface  
markers and chondrogenic potential of MSCs, which brings up  
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the challenge to find more reliable surface markers to meet the 
demands of future regenerative medicine. A 2017 report from  
Dickinson et al.42 raised the concept of “functionally predictive 
surface markers”, which may convey a promising method to  
address this issue. In the article, the authors used a genomic  
profiling strategy to find a functional MSC surface marker that 
can predict enhanced chondrogenic potential. They found that  
receptor tyrosine kinase-like orphan receptor 2 (ROR2), the  
Wnt5a receptor, was upregulated in highly chondrogenic clones 
and used ROR2 to sort the MSC subpopulation which can  
produce enhanced cartilage constructs with superior efficacy 
in an animal cartilage repair model. As a functionally predictive  
surface marker, ROR2 is believed to be important for chondro-
genesis, including initial morphology of the cartilage anlagen  
and subsequent tuning of mature cartilage43, as well as mediat-
ing Wnt5a signaling in enhancing chondrogenesis by activation 
of SOX944. Intriguingly, a recent report from Stüdle et al. did  
not find human BMSCs to express ROR2 since the percentage 
of ROR2(+) cells was lower than 0.1%45. The authors also found 
that high variability both across the donors and across clonally 
derived strains in BMSCs challenged chondrogenic differen-
tiation outcomes. These results indicate that there is a long way  
to go to find functionally predictive surface markers for stromal/
stem cell–based cartilage engineering and regeneration.

Although many studies have focused on the correlation between 
human MSC surface markers and chondrogenic potential, there 
is a lack of standard procedures to quantify surface marker  
expression. Some procedures might influence the outcome, such 
as enzyme-dependent cell-detaching methods. A 2017 report  
compared the effect of cell-detaching methods on the positive 

proportion of surface markers of cultured SDSCs46. They 
found that trypsin (catalog number 25200072; Thermo Fisher  
Scientific, Waltham, WA, USA) obviously reduced the percent-
age and MFI of CD73(+) cells and CD105(+) cells but had  
little effect on the percentage of CD90 expression. They also 
found that TrypLE (catalog number 12563011; Thermo Fisher  
Scientific) had no influence on the positive proportion of tested 
surface markers at 30 minutes of digestion but dramatically  
reduced the CD44(+), CD49c(+), CD73(+), CD140a(+), and 
CD140b(+) cell populations at 60 minutes of digestion. Col-
lagenase (catalog number C9263; MilliporeSigma, Burlington,  
MA, USA) was found to reduce the CD58(+), CD105(+), and 
CD140b(+) cell populations at 120 minutes of digestion. By  
using flow cytometric analysis, most researchers tend to measure 
the percentage rather than the MFI of surface markers to assess 
the influence on MSC chondrogenic potential. However, the  
percentage analysis method is easily affected by outliers and 
disregards fluorescent intensity shifts that may show how  
proliferation and differentiation are progressing by a change 
in the level of surface marker expression. To overcome the  
limitations of percentage, Chan et al. proposed an analysis 
method based on MFI because of its robustness against outliers 
and increased accuracy47. Therefore, the relationship between  
surface markers and chondrogenic ability should be further studied 
by a method including the MFI of MSCs.
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