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A novel deformable registration algorithm is proposed in the application of radiation therapy. The algorithm starts with
autodetection of a number of points with distinct tissue features. The feature points are then matched by using the scale invariance
features transform (SIFT) method. The associated feature point pairs are served as landmarks for the subsequent thin plate spline
(TPS) interpolation. Several registration experiments using both digital phantom and clinical data demonstrate the accuracy and
efficiency of the method. For the 3D phantom case, markers with error less than 2 mm are over 85% of total test markers, and it
takes only 2-3 minutes for 3D feature points association. The proposed method provides a clinically practical solution and should
be valuable for various image-guided radiation therapy (IGRT) applications.

1. Introduction

Deformable image registration is playing an increasingly
important role in radiation therapy, especially in image-
guided radiation therapy (IGRT). It can be used in automatic
contour delineation, dose accumulation, and so forth. Many
deformable image registration methods are proposed, such
as B-spline models [1], finite element method (FEM) [2],
optical flow [3], free-form surface-based registration [4],
multiresolution optical flow technique [5], regional narrow
shell model [6], and demons algorithm with the “active
force” [7]. All these investigations are based on image inten-
sity information.

On the other hand, the use of image features has been
shown to substantially improve the quality of image reg-
istration [8]. For example, in landmark-based registration,
feature points are manually selected and associated to
construct the optimal transformation between images. Lian
et al. [9] used these associated feature points to register
CT and MRI images by applying thin-plate splines (TPSs)
interpolation. Schreibmann and Xing [10] developed a
deformable image registration algorithm in which feature
points were selected manually on the template image and

then detected automatically on the target image. Although
the mapping is automatic, we still need to manually select
feature points on the template image, which is a tedious
and time-consuming process. In this work, we propose a
tissue feature-based deformable algorithm with inclusion of
autodetection of feature points on two images. Thousands of
feature points are autodetected and automatched together,
which significantly improves the accuracy and efficiency of
deformable registration.

2. Methods

2.1. Software Platform. The proposed contour mapping
algorithm was implemented using the Insight Toolkit (ITK)
[11, 12], which is an open-source cross-platform C++
software toolkit sponsored by the National Library of
Medicine (NLM). It is freely available for research purposes
(http://www.itk.org/). ITK provides various basic algorithms
to perform registration and segmentation for medical
images. The programs contained in ITK are highly extend-
able, making it an ideal platform for development of image
registration algorithms.
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Figure 1: Orientation histogram of SIFT method.

2.2. Overview of the Feature-Based Deformable Registration
Process. The proposed feature-based deformable registration
algorithm can be divided into three steps. First, feature points
are selected on the template and the target image based on the
gradient vectors of points in a neighborhood of each point.
Then, scale-invariant features transform (SIFT) method is
used to associate the corresponding feature point pairs in
two images. A bidirectional mapping strategy is also applied
to further increase the accuracy of feature point association.
Finally, the displacement vector of an arbitrary point on the
target image is obtained by interpolating the displacement
vectors of the feature points pairs using TPS transformation
[13].

2.3. Tissue Feature Association by Using SIFT Method. Detec-
tion and association of feature points with distinct tissue
feature are implemented by using SIFT method [14, 15],
which uses an orientation distribution of intensity gradient
vectors in eight quadrants in the neighborhood of the
point (containing 8 × 8 × 8 voxels). For each quadrant
(4 × 4 × 4 voxels) as illustrated in Figure 1, the gradient
components in three orthogonal directions (x-, y-, z-axis)
for each of the 64 voxels in a quadrant are computed.
Let I and ∇I represent the image intensity and its inten-
sity gradient, respectively. The gradient components along
x-, y-, and z-axis for a voxel (i, j, k) are (1/2)(Ii+1, j,k −
Ii−1, j,k), (1/2)(Ii, j+1,k − Ii, j−1,k), and (1/2)(Ii, j,k+1 − Ii, j,k−1),
respectively. For each of the three planes (xy, yz, and zx
planes), an eight-bin histogram of the gradient orientation
with 45◦ interval between 0◦ and 360◦ is then constructed.
Three eight-bin histograms for one of the quadrants are
sketched in Figure 1. A total of 192 vectors are obtained for
a given point since each quadrant has 24 vectors, with 8
vectors for each plane. The set of 192 vectors characterize
the inherent features and serve as a signature of the point.
The SIFT descriptor is considered as one of the most effective
descriptors currently available [16].

For a given point, indexed by (i, j, k) in the template
image, the least-squares difference of the SIFT descriptor of
the point and its potential corresponding point (i′, j′, k′) in
the target image, S, is computed according to

S =
√
√
√
√

192
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∣
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)
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2
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where α indexes the bins of the SIFT histogram. After the
least-square difference S is calculated for all points in the

(a) Template image

(b) Target image

(c) Image after registration

Figure 2: Registration result of a 2D digital phantom.

target image, two points having the least differences S1 and
S2 with point (i, j, k) in the template image are identified.
If the ratio κ = S1/S2 is less than 50%, the corresponding
point (i′1, j′1, k′1) with S1 is chosen as the correspondence of
the point (i, j, k). Otherwise, no association is made to avoid
any unphysical matching. More detailed discussions of the
κ-ratio can be found in [17].

2.4. Bidirectional Mapping Strategy. To further increase the
accuracy of feature point association, a bidirectional map-
ping strategy is developed based on the fact that if a point in
the template image is mapped correctly to the target image,
it should be default to be mapped back to the original point
in the template image when an inverse map is applied to
the corresponding point in the target image. Therefore, after
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Figure 3: Displacement vectors fields of the 2D digital phantom.

the original association of feature points as described above,
the mapped points in target image are inversely coregistered
to the template image. If the correspondence still exists, the
associated point pair is labeled a match. Otherwise, they
are considered as a mismatch and deleted from the list of
correspondence points. Upon the association of the feature
points, the associated points are employed as control points.

2.5. TPS Deformable Transformation. The process of deform-
able registration is to warp the template image in such a way
that it best matches the target image on a voxel-to-voxel basis.
Mathematically, this is an optimization problem, in which a
set of transformation parameters transform the voxels in the
template image to their corresponding voxels in the target
image.
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Figure 4: Histogram of the displacement error distribution of the
2D phantom.

To find the transformation matrix, T(X), that maps
an arbitrary voxel on the template image to that on the
target image (or vice versa), a TPS deformable model [18]
is employed in this study. In brief, a weighting vector W =
(w1,w2, . . . ,wn) and the coefficients a1, au, av, and aw are
computed from a series of matrices which are constructed
using n pairs of selected control points in the template image
(xi, yi, zi) and the target image (ui, vi, wi), respectively. The
function transforming a pixel coordinate in the template
image to the corresponding coordinate in the target image
is defined as

f (u′, v′,w′) = a1 + auu + avv + aww

+
n−1
∑

i=0

wiU
(∣
∣pi − (u, v,w)

∣
∣
)

,
(2)

where pi are control points coordinates in the template
image, and U is a basis function to measure the distance.
Major steps of the TPS calculation include the following.

(1) Assuming P1 = (x1, y1, z1), P2 = (x2, y2, z2), . . . ,
Pn = (xn, yn, zn) are n control points in the template images,
the distance between point i and j is given by ri j = |Pi − Pj|.
Define matrices
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where O is a 4 × 4 matrix of zeros, and U is a basic function
U(r) = r2 log r2.

(2) Letting Q1 = (u1, v1,w1), Q2 = (u2, v2,w2), . . ., Qn =
(un, vn,wn) be n corresponding control points in the target
image, construct matrices

V =
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⎣

u1 u2 · · · un

v1 v2 · · · vn

w1 w2 · · · wn

⎤

⎥
⎥
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,

Y =
(

V | 0 0 0 0
)T

.

(4)

The weighting vector W = (w1,w2, . . . ,wn) and the coef-
ficients a1, au, av, and aw can be computed by the equation

L−1Y =
(

W | a1 au av aw
)T

. (5)

(3) Using the elements of L−1Y to define a function
f (u, v,w) everywhere as given in (2).

2.6. Evaluation of the Method Using Digital Phantom and
Clinical Patient Data. The performance of the method has
been evaluated by a number of 2D digital phantoms and
archived clinical cases. In the digital phantom experiments,
deformation was introduced by using a harmonic formula
[19]

x′
(

x, y
) = (1 + b cosmq

)

x. (6)

Here, q = tan−1(y/x). Two parameters, m and b, were used
to characterize a deformation. Generally, they describe the
complexity and magnitude of a deformation, respectively.
The accuracy of the proposed algorithm was assessed by
directly comparing with the image from the known transfor-
mation matrix. A virtue of this approach is that the “ground
truth” solutions exist and the transformation matrices are
known, thus making the evaluation straightforward. A 3D
deformable registration phantom developed by University
of Michigan was also used to verify the accuracy of the
algorithm.

4D CT images were acquired to test the proposed
algorithm using a GE Discovery-ST CT scanner (GE Medical
System, Milwaukee, WI) approximately two weeks prior
to the initiation of the radiotherapy. The images were
transferred through DICOM to a high-performance per-
sonal computer (PC) with a Xeon (3.6 GHz) processor
for image processing. In general, quantitative validation of
a deformable registration algorithm for a clinical case is
difficult due to the lack of the ground truth for clinical testing
cases. For the cases studied here, visual inspection method
was employed to assess the success of the algorithm.

3. Results

3.1. Registration of 2D Digital Phantom. A 2D CT image
(the size of the slice is 170∗170) was used in the evaluation
as shown in Figure 2. The target image was generated by
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(a) Before registration (b) After registration

Figure 5: Fusion image between the inspiration and the expiration phase of a 3D deformable phantom.

deforming the template image along the anterior/posterior
(AP) direction using (6).

The displacement vector field (DVF) of this experiment
is shown in Figure 3. DVFs along AP direction are on the
left column, and DVFs along left/right (LR) direction are
on the right column. The first row is the DVF calculated
by the harmonic formula as the “ground truth.” Since the
deformation is along AP direction, the displacement vector
along LR direction is uniform with 1.5 cm. The second
row is the DVF after registration. It seems from Figures
3(a) and 3(c) that the difference between the analytical
and numerical solutions is quite large. However, when the
subtraction field was calculated, large errors between the
analytical and numerical solutions exist only outside the
phantom as shown in Figure 3(e), since no control points are
outside the phantom. The largest error is about 3.0 cm. The
fusion image between the subtraction field and the template
image is shown in the fourth row of Figure 3. It illustrates
that displacement errors are small inside the phantom.

Figure 4 shows the error distribution of the length of
displacement vectors in the phantom case. A total of 13000
pixels were calculated; the maximum and the mean error are
1.7 cm and 0.26 cm, respectively. Errors larger than 1.0 cm
exist only in 512 pixels, which is less than 4% of total pixels.

3.2. Registration of 3D Deformable Phantom. A 3D deform-
able phantom [20, 21] was used to verify the proposed
method. The phantom consists of a skeleton and a lung-
equivalent insert. Tumor-simulating inserts of varying den-
sity and size were embedded in the foam. The structures
selected were rigid objects of known shape (balls) and
various compositions. The insert was evaluated for relative
attenuation using a commercial CT scanner. An actuator-
driven diaphragm can compress/decompress the foam to
generate 4D CT images.

Figure 5 shows the fusion images between the inspiration
and the expiration phase. The inspiration phase, the expi-
ration phase, and the overlapped region between these two
phases are displayed in red, green, and yellow, respectively.
Large position differences were observed before registration.
The distance of a tumor (indicated by red arrows) between
two phases was 1.8 cm. These differences almost disappeared
after registration.

The proposed algorithm was compared to other deform-
able registration methods by using the same phantom. These
methods include TPS with manual selection of feature points
[22], single-resolution B-splines [23], multiresolution B-
splines [24–27], “demons” algorithm [7, 28], fluid flow [29,
30], and free form deformation with calculus of variations
[19]. Our method was the only method that markers with
error less than 2 mm are over 85% of total tested markers,
and it demonstrates the high accuracy of the method [21].

3.3. Registration of 4D CT Images. The proposed method
was applied in clinical 4D CT images as shown in Figure 6.
The fusion images before registration are on the left column,
and the fusion images after registration are on the right
column. The inspiration phase, the expiration phase, and the
overlapped region between these two phases are displayed
in red, green, and yellow, respectively. On the axial view in
Figure 6(a), large difference appears in the diaphragm region,
while the difference almost disappears after registration in
Figure 6(b). On the frontal and sagittal view in Figures 6(c)
and 6(e), the respiration movement can be clearly observed
from the position change of diaphragm and trachea, while
these structures are overlapped after registration in Figures
6(d) and 6(f).

Figure 7 shows an example of feature points detection
and association. 7581 feature points in the inspiration phase
and 7625 in the expiration phase are detected. After the SIFT
mapping, 468 control point pairs are associated, which are
about 6% of the total feature points. The small percentage
is due to the small κ-ratio of less than 50%. More detailed
discussions of the κ-ratio can be found in [17].

4. Discussion

Most, if not all, registration algorithms ignore the under-
lying tissue features but rely on the similarity of image
intensity. In contrast to intensity-based image registration,
the feature-based registration extracts information regarding
image structure, including shape and texture. Therefore, the
feature-based image registration is generally more effective
in detecting feature points. Features contained in a small
control volume around a point can be used as a signature
of the point [10]. The use of SIFT descriptors [15, 31, 32]
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Figure 6: Image registration results of 4D CT images.

is an alternative and potentially more advantageous way to
associate two input images before deformable registration.
The full automatic feature point detected and association
make it ideally suitable for deformable registration.

It is important to address that the proposed registration
method is not determined only based on the individual point

information, but also based on the information about the
relationship between points (e.g., continuity). In practice,
although control points are discrete, the gradient vector of
each point includes the continuity information.

For different purposes, control points are positioned in
different regions. For instance, if we seek to separate bone



The Scientific World Journal 7

A

R L

P

(a) Feature points detection

A

R L

P

(b) Feature points association

Figure 7: An example of feature points detection and association.

and soft tissues in deformable registration, the control points
are positioned in bone area. If our objective is to track
respiration movement, then the control points should be
positioned in the lung. Therefore, we need to define different
thresholds for different tissues. For instance, the intensity
threshold for bone is above 100, while for pancreas, the
threshold is between 0 and 100.

Compared to B-spline deformable registration, no itera-
tive procedure is needed in the method, and the calculation
speed is at least ten times faster than B-spline registration.
Commonly, it takes only 2-3 minutes for control point
matching, while it may take 1 hour for B-spline registration
with the same accuracy.

5. Conclusion

The novelties of this work include (1) seamlessly incorpora-
tion of the detected tissue feature information into accurate
and robust registration and the accuracy within one voxel can
be achieved; (2) without iteration procedure, the calculation
speed of the proposed method can be much faster than B-
spline image registration.

Inclusion of a prior anatomical knowledge is a key step
in bringing the currently available deformable registration
to the next level. The proposed method provides a clinically
practical solution and should be valuable for various IGRT
applications.
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