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Abstract

Plant-derived nature products, known as herb formulas, have been commonly used in Tradi-

tional Chinese Medicine (TCM) for disease prevention and treatment. The herbs have been

traditionally classified into different categories according to the TCM Organ systems known

as Meridians. Despite the increasing knowledge on the active components of the herbs, the

rationale of Meridian classification remains poorly understood. In this study, we took a

machine learning approach to explore the classification of Meridian. We determined the mol-

ecule features for 646 herbs and their active components including structure-based finger-

prints and ADME properties (absorption, distribution, metabolism and excretion), and found

that the Meridian can be predicted by machine learning approaches with a top accuracy of

0.83. We also identified the top compound features that were important for the Meridian pre-

diction. To the best of our knowledge, this is the first time that molecular properties of the

herb compounds are associated with the TCM Meridians. Taken together, the machine

learning approach may provide novel insights for the understanding of molecular evidence

of Meridians in TCM.

Author summary

In East Asia, plant-derived natural products, known as herb formulas, have been com-

monly used as Traditional Chinese Medicine (TCM) for disease prevention and treat-

ment. According to the theory of TCM, herbs can be classified as different Meridians

according to the balance of Yin and Yang, which are commonly understood as metaphysi-

cal concepts. Therefore, the scientific rational of Meridian classification remains poorly

understood. The aim of our study was to provide a computational means to understand

the classification of Meridians. We showed that the Meridians of herbs can be predicted

by the molecular and chemical features of the ingredient compounds, suggesting that the

Meridians indeed are associated with the properties of the compounds. Our work pro-

vided a novel chemoinformatics approach which may lead to a more systematic strategy

to identify the mechanisms of action and active compounds for TCM herbs.
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Introduction

Single-agent drug discovery has often experienced low success rates which can be largely

attributed to the lack of efficacy as well as unsatisfactory safety, especially when treating com-

plex diseases such as cancer [1] and diabetes [2]. Recently, polypharmacology that involves

multi-drug combinations acting on distinct targets has been proposed as a paradigm shift of

drug discovery [3]. However, without a systems-level understanding of disease and drug inter-

actions, it maintains a challenge to develop a valid strategy for the rational selection of drug

combinations. In East Asia, plant-derived natural products, known as herb formulas, have

been commonly used in Chinese Traditional Medicine (TCM) for disease prevention and

treatment. Herb formulas often involve multiple bioactive components to produce synergistic

effects in a personalized medicine manner, aiming for maximal therapeutic efficacy as well as

minimal side effects [4]. For example, the Fufang Danshen Diwan (Dantonic pill), a botanical

drug consisting of extracts of Danshen (Radix Salviae Miltiorrhizae) and Sanqi (Radix Noto-
ginseng) is currently approved in 26 countries outside the USA for the treatment and preven-

tion of chronic stable angina pectoris and other cardiovascular disease related conditions [5].

In this regard, understanding the bioactive components and their mechanisms of action for

herb formulas might provide important insights on the rational design of multi-drug combina-

tions for complex diseases [6, 7].

The prescription of herb formulas in TCM has been based on a holistic principle to model

the human body as a miniature system that resemble the universe, which is composed of five

interacting Elements (metal, wood, water, fire and earth) [8]. Similar to other schools of sys-

tems medicine, the cause of diseases or symptoms can be perceived as the loss of balance

between these Five Elements [9, 10]. Treating a given disease is therefore equivalent to restor-

ing the balance in the system [11], which can be achieved by either acupuncture [12, 13] or

herb formulas that tune specifically certain inner channels of the body, known as Meridians

[14]. There are 12 principal Meridians, each of which is linked to a specific TCM Organ and

can be further attributed to one of the Five Elements (Table 1). The concept of Organ in TCM

is fundamentally different from that of modern anatomic perspective, as the Organs in TCM

represent certain distinct states of the human body, rather than a morphological structure.

Similarly, although the Meridian system has been established as a fundamental basis of TCM

several thousand years ago, it is not coincided to the known patterns of blood vessels or central

nervous system [15]. More recently, fascia networks [16] and perivascular space [17] have

been proposed to explain Meridian, but neither of them have been experimentally confirmed.

While the anatomical and physiological evidence of Meridians are yet to be determined, the

narrative of TCM allows for the classification of herb formulas based on their targeting Meridi-

ans [18–20]. The rationale of Meridian has been investigated for a few TCM herbs. For exam-

ple, Jie Geng (Platycodi Radix) has been considered as a Lung Meridian herb, and it was

discovered recently that an active ingredient in Jie Geng called saponin can affect the lung and

respiratory systems by the inhibition of lipid peroxidation [21]. Another example is Danshen,

the dried root of Salvia miltiorrhiza burge, which has been used for treating cardiovascular dis-

eases and hepatitis as a Heart and Liver Meridian herb [22]. Recent studies have shown that its

lipophilic ingredients such as tanshinones and hydrophilic ingredients such as salvianic acids

may play a synergistic role to achieve its therapeutic efficacy [23]. With the increasing knowl-

edge about the biochemical and pharmacological properties of the bioactive ingredients from

the TCM herbs, it is now possible to carry out a larger-scale analysis to investigate the molecu-

lar basis of Meridians and other concepts in TCM [24].

To leverage the complex biochemical and pharmacological datasets, systems biology

approaches involving machine learning techniques have been utilized to the study of herb
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formulas [25]. For example, Cheng et al. proposed a network-based methodology that can

identify clinically efficacious drug combinations for specific diseases, which might be poten-

tially used to explain also the pharmacology of TCM herbs [26]. Fang et al. summarized vari-

ous chemo-informatics, bioinformatics and systems biology resources for reconstructing

drug–target networks of natural products [27]. Fu et al. developed a data clustering method

using a collection of 2,012 compounds associated with TCM herbs and discovered that the hot

or cold nature of the herbs can be correlated with the physicochemical and target pathways of

their ingredient compounds [28]. Wang et al. collected 5,464 compounds for 115 herbs and

applied an unsupervised clustering method called Self-organizing map (SOM) to establish a

classifier of cold and hot herbs based on the chemical structural fingerprints of the compounds

[29]. However, these machine learning studies focused only on the hot/cold classification of

TCM herbs, while it remains unknown whether the Meridian classification that involves 12

major classes can be also predicted from the chemical structure and physiochemical features of

ingredient compounds.

In this study, we collected the Meridian information of herbs as well as the chemical struc-

tures of their ingredient compounds (Fig 1). These two datasets were utilized to determine the

molecular features including structure-based fingerprints and ADME properties. With the fea-

ture matrices determined at both the herb level and the compound level, we further developed

a machine learning framework to predict the Meridians of the herbs and their ingredient com-

pounds. We tested multiple machine learning methods and showed that the classification of

Meridians can be predicted especially at the compound level. These results suggested that

Meridians indeed are associated with the molecular properties of herb compounds. We

expected that our data integration approach may represent a novel perspective for the under-

standing of Meridian, which may ultimately lead to a more systematic exploration of the

mechanisms of TCM.

Results

Distribution of Meridians at the herb level and the compound level

In total, 646 herbs including 10,053 ingredient components with Meridian and chemical struc-

ture information were obtained from the TCMID database (S1 Table). The Meridian distribu-

tion at the herb and the compound levels can be seen in Fig 2. At the herb level, altogether 333

Table 1. The Meridians and their example herbs. Each Meridian is linked to a particular Organ which is characterized by its Elements and Quality of Yin or Yang. TCM

considers a disease a result of loss of balance in the Yin and Yang, which can be restored using herbs that target particular Meridians.

Meridian name Quality of Yin or Yang Main Organ Example herb

Taiyin Lung Channel of Hand Greater Yin (taiyin) Lung Rhizoma Pinelliae
Shaoyin Heart Channel of Hand Lesser Yin (shaoyin) Heart Salvia miltiorrhiza
Jueyin Cardiovascular Channel of Hand Faint Yin (jueyin) Cardiovascular Motherwort Herb
Hand’s Minor Yang Three End Lesser Yang (shaoyang) Three End Cape jasmine fruit
Taiyang Small Intestine Channel of Hand Greater Yang (taiyang) Small Intestine Adsuki Bean
Yangming Large Intestine Channel of Hand Yang Bright (yangming) Large Intestine Radix et rhizoma rhei
Taiyin Spleen Channel of Foot Greater Yin (taiyin) Spleen Pueraria Root
Shaoyin Kidney Channel of Foot Lesser Yin (shaoyin) Kidney Radix Angelicae Biseratae
Jueyin Liver Channel of Foot Faint Yin (jueyin) Liver Bupleurum chinense DC
Shaoyang Gallbladder Lesser Yang (shaoyang) Gall Bladder Spica Prunellae
Taiyang Bladder Channel of Foot Greater Yang (taiyang) Urinary bladder Common Andrographis Herb
Yangming Stomach Channel of Foot Yang Bright (yangming) Stomach Rhizoma Cyperi

https://doi.org/10.1371/journal.pcbi.1007249.t001
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herbs target the Liver Meridian, followed by Lung (n = 237), Stomach (n = 235), Spleen

(n = 213), Kidney (n = 181), Heart (n = 155) and Large Intestine (n = 111) (Fig 2A). In con-

trast, much less herbs are found for the other five Meridians including Bladder (n = 57), Gall-

bladder (n = 33), Small Intestine (n = 24), Cardiovascular (n = 4) and Three End (n = 4). To

avoid the over-interpretation of machine learning models on unbalanced datasets, we focused

on the top seven abundant Meridians including Liver, Lung, Spleen, Stomach, Kidney, Heart

and Large Intestine (S2 Table).

As expected, the majority of herbs (n = 580; 89.8%) target more than one Meridian, how-

ever, there is a varying degree of overlap between them. It can be seen that Kidney and Liver

has the biggest number of shared herbs (n = 51), followed by 36 herbs that are common

between Liver and Heart, and then 30 herbs between Liver and Stomach. The overlap between

the Meridians illustrates the multi-target characteristics of TCM herbs. For example, Huo

Fig 1. Workflow of the study. Herb-compound network shows the associations between herbs (green rectangles) and their active compounds (purple circles), which

were used to determine the Herb-Feature and the Compound-Meridian matrices from the Herb-Meridian and Compound-Feature matrices. The features of herbs and

compounds were determined from the chemical fingerprints and ADME properties. Machine learning methods were utilized to predict the Meridian classes for herbs

and compounds respectively, by parameter optimization, model selection and feature selection.

https://doi.org/10.1371/journal.pcbi.1007249.g001
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Xiang (Agastache rugose) belongs to Lung, Spleen and Stomach simultaneously [30], as this

herb is known to relieve the symptoms of Lung, Spleen and Stomach diseases [31]. On the

other hand, there are relatively fewer herbs that target only one Meridian. For example, 42 of

the 384 (11%) Liver herbs are classified exclusively as Liver herbs and 26 of all the 260 (10%)

Lung herbs do not target other Meridians. In contrast, all the herbs that belong to Stomach,

Spleen and Large Intestine also target other Meridians. At the compound level, similar patterns

was observed, where the Liver Stomach and Lung are again the top abundant Meridians (Fig

2B).

In order to quantify the overall similarity between these seven major Meridians, we calcu-

lated the Jaccard coefficients using the R package ‘Corrplot’ [32, 33]. The Jaccard coefficient,

also known as Jaccard index, is a measure of overlap between two sets, with a value of zero for

complete non-overlap while a value of one for identical sets [34, 35]. As shown in Fig 2C and

Fig 2. Herb-Meridian and Compound-Meridian distributions. (A-B) The color bars at the bottom left represent the frequency of herbs or compounds for each of the

seven major Meridians, which can be further collapsed into subclasses depending on whether an herb or a compound is shared by one or several Meridians. The vertical

bars show the frequency of herbs or compounds for a particular subclass of Meridian combination, as indicated by the connected lines below the x-axis between the

Meridians. (C-D) The Jaccard coefficients between the Meridian pairs at the herb and the compound levels. The size of blue circles on the upper diagonal shows the

degree of the similarity.

https://doi.org/10.1371/journal.pcbi.1007249.g002
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2D, the Jaccard coefficients between the Meridians are generally low, with the lowest score

found between Heart and Large Intestine (0.04 at the herb level and 0.14 at the compound

level), and the highest score found between Spleen and Stomach (0.31 at the herb level and

0.42 at the compound level). The average pairwise Jacaard coefficients are 0.15 and 0.26 for the

herb level and for the compound level respectively, indicating that there are weak correlations

between Meridians in term of the herb and compound distributions. Therefore, we considered

the prediction of each Meridian separately in the following machine learning tasks. Ultimately,

for a given new herb or a compound, its Meridians can be predicted using the best machine

learning models.

Prediction accuracy of Meridians using machine learning approaches

We carried out the prediction of the seven major Meridians at two data levels including herb

level and compound level, for which their features were determined based on structure-based

fingerprints and ADME properties. At the herb level, the ADME properties were also utilized

to filter out those compounds with low water solubility or low gastrointestinal absorption (see

Materials and Methods for more details). As a result, only 583 herbs remained after the filter-

ing, covering 4,922 compounds. We evaluated the prediction performance under scenarios of

different machine learning methods, feature types and data levels. More specifically, for each

one of the seven Meridians, 84 machine learning-based models were constructed including all

possible combinations from the four machine learning methods (SVM, DT, RF and kNN),

seven feature configurations (Ext, PubChem, Sub, MACCS, ADME, Ext + ADME and All fin-

gerprints + ADME) and three data levels (compound level, herb levels with or without ADME

filtering). The model was trained by a five-fold cross validation using 70% data and then tested

for its prediction accuracy using the remaining 30% data (see Materials and Methods for more

details). To benchmark the model performance for each Meridian, we permutated the Merid-

ian labels while keeping the ratio of positive and negative cases unchanged. The model perfor-

mance for the permutated data was considered as the baseline.

As shown in Fig 3A, all the major Meridians achieved the top Balanced accuracy close to

0.65. Note that we pooled all the 84 machine learning models that differ in their feature combi-

nations and machine learning methods, some of which were sub-optimal and therefore led to

poorer prediction results. Still, these machine learning models performed significantly better

than the baseline prediction of permutated models, in terms of Balanced accuracy and Mat-

thews coefficient (S1 Fig, p-value < 0.0001, Wilcoxon rank-sum test). These results supported

the general feasibility of using machine learning approaches to relate chemical information of

herbs and compounds to explain Meridians (S3 Table).

Furthermore, using the Balanced accuracy metric, we found that the compound-level pre-

diction performed significantly better than the herb-level predictions (Fig 3B, p-value < 0.001,

Wilcoxon rank-sum test). The same trend has been observed by the AUROC and AUPRC

metric (S2 Fig and S3 Fig, respectively). At the herb level, filtering out compounds with poor

ADME properties improved the prediction significantly in Heart and Stomach (p-

value < 0.05, Wilcoxon rank-sum test), while for Kidney, Lung and Spleen only the top

machine learning models achieved higher prediction accuracy. In contrast, the ADME filtering

seemed not helping the prediction of Large Intestine and Liver Meridians. In order to deter-

mine the chemical fingerprint features for an herb, we took the average of its compound fea-

tures, based on the assumption that all the ingredient compounds are equally contributing to

the pharmacology of the herb. This was likely an oversimplification of the actual mechanisms

of action for a majority of herbs. However, the biological roles about the ingredient com-

pounds were largely missing from TCMID and other resources, suggesting that the actual
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contributions of these ingredient compounds have not been thoroughly resolved. In contrast,

the compound-level data was more reliable, as each compound was treated independently

when determining its molecular features and Meridians. This may explain the superior perfor-

mance of compound-level predictions compared to the herb-level predictions. We anticipated

that the herb-level prediction may be further improved when the actual composition and bio-

activity of the compounds can be determined using modern high-throughput techniques e.g.

mass spectrometry or HPLC (High performance liquid chromatography) [36].

Fig 3. Evaluation of the machine learning model predictions. (A) The overall Balanced accuracy for the seven Meridians. Dashed line indicates the level of 0.65. (B)

The Balanced accuracy at the three data levels (compound-level, herb-level before and after ADME filtering). (C) The balanced accuracy for the four machine learning

methods at the compound level. (D) The balanced accuracy for the ADME and fingerprint feature types at the compound level. Wilcox rank sum test. �: p< 0.05; ��:

p< 0.01; ���: p< 0.001; ����: p< 0.0001.

https://doi.org/10.1371/journal.pcbi.1007249.g003
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As the compound-level prediction showed better performance than the herb-level predic-

tion, we further compared the prediction accuracy between different machine learning meth-

ods at the compound level. As shown in Fig 3C, top models of RF performed better than kNN,

DT and SVM across all the seven Meridians, suggesting that RF was able to detect the predic-

tive features due to the use of ensemble learning techniques. We also evaluated the prediction

accuracy of the machine learning methods using different feature types. As shown in Fig 3D,

models with the different fingerprint types resulted in similar performance, while Ext and Pub-

Chem fingerprints achieved the top Balanced Accuracy (0.67 and 0.66, respectively). This

result was expected as the Ext fingerprint and PubChem fingerprint contains 1024 bits and

881 bits, respectively, which are the longer than MACCS (166 bits) and Sub (307 bits) finger-

print types. Furthermore, models using all the fingerprint types combined with ADME

achieved higher top accuracies, compared to the use of ADME alone (Fig 3D). Taken together,

we concluded that the combination of all fingerprints with ADME features may carry the most

comprehensive information to predict the Meridians at the compound level, for which the RF

method achieved the best balanced accuracy compared to other machine learning methods

(Table 2).

Important fingerprint and ADME features to explain Meridian at the

compound level

After determining RF as the best model, we determined the feature importance score accord-

ing to its contribution to the change of model prediction accuracy at the compound level: if

the removal of a feature resulted in a much worse prediction by the model, then the feature

will be given a higher importance score. We selected the top 30 most important features for

each Meridian, resulting in 59 unique features in total, including 27 ADME properties and 32

fingerprints. We confirmed that the 59 important features were significantly more predictive

than the other features across all the seven Meridians (p< 0.0001, Wilcoxon rank-sum test),

with the median importance score for these 59 top features ranging from 2.77 for Large Intes-

tine to 6.4 for Spleen (Fig 4A).

To evaluate the top features across the Meridians, we generated the bi-clustering heatmaps

for the top ADME and fingerprint features separately. As shown in Fig 4B, lipophilicity fea-

tures including iLOGP, WLOGP, MLOGP are among the top ADME features across all the

seven Meridians, with the mean Z-score of feature importance of 1.66, 0.74 and 0.67, sepa-

rately. This suggested that lipophilicity plays important roles for the Meridian classification of

compounds. Molar refractivity (MR), a measure of the total polarizability of a substance, was

identified as another important feature (mean Z-score 0.96). In addition, Solubility features

predicted by the multiple methods using SwissADME have also shown relatively higher impor-

tance, with mean Z-scores ranging from 0.92 to 1.14. Lipophilicity is known to affect

Table 2. The balanced accuracy that was achieved for each Meridian at the compound level by Random Forest

using all the available features.

Meridian Feature Method Balanced Accuracy
Heart ADME + All fingerprint RF 0.65

Kidney ADME + All fingerprint RF 0.65

Large intestine ADME + All fingerprint RF 0.62

Liver ADME + All fingerprint RF 0.65

Lung ADME + All fingerprint RF 0.64

Spleen ADME + All fingerprint RF 0.67

Stomach ADME + All fingerprint RF 0.65

https://doi.org/10.1371/journal.pcbi.1007249.t002
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pharmacokinetic properties and the overall suitability of drug candidates [37]. Molar refractiv-

ity and Solubility are known to play important roles for the absorption and subsequent bio-

availability of a drug in vivo. Our results suggest the rationale of including the ADME

evaluation for understanding the pharmacology and pharmacokinetics of ingredient com-

pounds in herb medicine.

Fig 4. Important features determined at the compound-level prediction of Meridian. (A) The distribution of importance scores for the top 59 features as

compared to all features. (B-C) The bi-clustering of the importance scores for the 27 ADME features and 32 fingerprints.

https://doi.org/10.1371/journal.pcbi.1007249.g004

Machine learning of Meridian in Chinese traditional medicine

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007249 November 25, 2019 9 / 21

https://doi.org/10.1371/journal.pcbi.1007249.g004
https://doi.org/10.1371/journal.pcbi.1007249


We also evaluated the importance scores of the chemical fingerprints. As shown in Fig 4C,

the fingerprint features from the same types tend to cluster together, with a Rand Index of 0.66

when comparing the similarity between the clustering by cutting the hierarchical tree at 1.5

and their actual feature types [38]. For example, the most important fingerprint features for

Stomach Meridian formed a cluster (Cluster I in Fig 4C), which consisted of mainly Ext finger-

print features (Ext169, Ext483, Ext157 and Ext1016); The most important fingerprint features

for Kidney are PubChem fingerprint features (PubChem228, PubChem189, PubChem839 and

PubChem860) (Cluster II). Similar patterns were also found for Spleen (Cluster III as an Ext

fingerprint dominant cluster) and for Lung (Cluster IV as a MACCS fingerprint dominant

cluster). In general, the importance scores for the Ext fingerprints were higher among all the

four fingerprint types (S4 Fig), which is also consistent with the better machine learning per-

formances of Ext fingerprints described earlier in section 3.2 (Fig 3D).

Finally, we determined the important substructure fragments based on the top fingerprints.

As shown in S4 Table, the representative fragments for each Meridian are quite different from

each other, which is in line with the limited overlap of herbs between the Meridians (Fig 2).

This result indicates that there might be enrichment of basic chemical structures that differs

between Meridians, which can be further explored using pharmacophore modeling

approaches [39].

Discussion

Traditional Chinese Medicine (TCM) has gained increasing popularity in the drug discovery

field, as shown by a few successful examples including the discovery of artemisinin for treating

malaria and arsenic trioxide for treating acute promyelocytic leukemia [40]. Currently, there

are around 1000 clinical trials on TCM herb medicine registered in the Clinicaltrials.gov [41]

(retrieved in January, 2019), suggesting that the therapeutic potential of TCM has been actively

researched through more rigorous scientific investigation. While the TCM theory is largely

self-consistent as a philosophical narrative, the scientific rationale of why and how it is work-

ing remains elusive. For example, the interpretation of five elements and qi is rather metaphys-

ical than physical, which makes many of the TCM concepts difficult to be translated into

modern physiological and medical entities [9]. Furthermore, TCMs usually involve many

active compounds that modulate various biological targets, where little is known about how

these interactions lead to therapeutic relevance under a specific disease context. With the

development of molecular profiling technologies, the extraction and characterization of the

herb constituents is now possible and is expected to provide a comprehensive source of phar-

macology data. Therefore, there have been strong needs for data integration to deconvolute

the mechanisms of action of herb medicine in relation to the disease biology, so that a formal

framework for testing and understanding of TCM can be established [42].

In this study, we built a computational framework to study the concept of Meridians, which

has been long established for the classification of TCM herbs and thus constitutes the funda-

mental basis of treatment strategy in TCM. We collected the Meridian information for major

TCM herbs and determined their features based on the chemical fingerprints and ADME

properties. We found that an herb is commonly classified into multiple Meridians and that the

correlations between them were generally low (Fig 2). Therefore, we decided to apply the one-

vs-the-rest strategy to build classifiers for each meridian separately. Using supervised classifi-

cation methods including Random Forests, Support Vector Machines, Decision Trees and

K-Nearest Neighbor algorithms, we showed that the Meridians can be accurately predicted

especially at the compound level, with a top balanced accuracy of 0.67 (Fig 3; S3 Table). There-

fore, we concluded that molecular features of the compounds can be considered as the
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essential information for an herb to be classified as a particular Meridian. In particular, we

showed that the ADME properties improved the prediction accuracy, suggesting the relevance

and reliability of the in-silico predicted ADME properties for the understanding of Meridians.

For example, we found that Random Forests utilizing ADME features alone produced an

AUPRC ratio of 2.29 for Large Intestine, topping the other Meridians, suggesting that indeed

there is an evidence that ADME properties tend to be more predictive for this Large Intestine

(Table 3). Ideally, experimentally-validated ADME properties for the ingredient compounds

would be needed to confirm the prediction results. Furthermore, we considered 36 ADME fea-

tures that were determined by SwissADME, assuming that TCM herb compounds become

active when absorbed in the bloodstream. However, the therapeutic efficacy of herb medicine

may be induced on gut microbiota, which do not necessarily interact with the bloodstream

[43]. More relevant factors that may affect the ADME of herb medicine are expected to

enhance the model prediction results. For example, another popular tool called admetSAR has

been recently updated, which can provide 47 models for a more comprehensive evaluation of

ADME [44, 45]. On the other hand, we evaluated four major structure-based fingerprint types,

and found that their performances were similar. Despite that certain fingerprint types contain

more bits than the others (e.g. 1024 bits for Ext fingerprint as compared to 166 bits for

MACCS fingerprint), it seemed that all of them captured the essential structural information

of TCM herbs and compounds.

We found that the compound-level prediction is in general more accurate than the herb-

level prediction. There might be three reasons for that. Firstly, the exact compound composi-

tion for a given herb might not be accurate, as the extraction and detection of active compo-

nents from herb medicine remains a challenge [46]. Secondly, even though certain

compounds can be detected from a given herb, they may not be absorbable due to their poor

ADME properties. As a result, the features that were determined for these compounds may

play no therapeutic roles and thus do not affect the Meridian of the herbs. Thirdly, although

the same compounds can be found from different herbs, their actual abundance may differ. In

our construction of binary herb-feature matrix, there is lack of information to differentiate the

different levels of compound abundance and their bioactivity. We expected the prediction

accuracy at the herb level can be improved, providing that more accurate compound composi-

tion and activity data become available. In our modeling framework, the extraction of key fea-

tures at the herb level can be done easily by first extracting the key features at the Compound

level, and then combining them for a particular herb, using the Compound-Feature matrix

and Herb-Compound matrix. With this framework, we may predict not only the Meridian for

new herbs, but also for approved synthetic compounds for which their disease indications are

already known. The link between Meridian and disease indications may provide more physio-

logical understanding of Meridian.

Table 3. The AUPRC ratio that was achieved for each Meridian at the compound level by Random Forest using

ADME features only.

Meridian Method AUPRC ratio
Large intestine RF 2.29

Heart RF 1.67

Spleen RF 1.51

Kidney RF 1.68

Stomach RF 1.40

Lung RF 1.45

Liver RF 1.29

https://doi.org/10.1371/journal.pcbi.1007249.t003
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We identified that Random Forest (RF) as the best classification method, corroborating the

superior performance of RF in similar machine learning tasks [47]. As an Ensemble Learning

method, RF averaged the predictions from multiple decision trees and thus lowered the risk of

overfitting. In the future, more advanced machine learning methods such as Deep Learning

may be worth trying [48]. To make sense of TCM, the ultimate objective is not only a predic-

tive model but also an interpretable model that can help understand the underlying mecha-

nisms of action. Here, we identified the predictive features that may provide initial evidence

for the molecular basis of Meridians, which may facilitate the discovery of novel active com-

pounds from TCM herbs. As the main focus of our work is to provide the first evidence that

machine learning approaches are feasible for interrogating the concepts of Meridians, we have

not evaluated other more advanced methods including artificial neural networks. By further

improving the knowledge of active ingredients for TCM herbs and the accuracy of machine

learning algorithms, we expected that the machine learning framework can be greatly

expanded towards a more systematic understanding of Meridians as well as other concepts in

TCM.

TCMID is currently the largest database of TCM that collects over 49,000 prescriptions

including 8,159 herbs and 25,210 ingredients. However, the majority of these herbs are lack of

appropriate annotation on their Meridian information, highlighting the limited understanding

of the topic. We extracted a subset of herbs from TCMID (n = 646) with known Meridian

information and then included their ingredient compounds with known chemical structures

(n = 10,053), with which the most predictive machine learning models and features were deter-

mined. To be able utilize our machine learning framework to predict the unknown Meridian

for a given herb, the structural information of its ingredient compounds need to be provided

as input data. With the structural information, it is then possible to determine the fingerprint

and ADME features. In the future, we envisage that more comprehensive structural informa-

tion about the active ingredients in herbs can be determined, so that the Meridian annotation

of herbs can be done more systematically and more accurately. The advanced machine learn-

ing approaches that are tailored for analyzing such complex datasets may hold the key to the

understanding of TCM rationale, which may ultimately provide novel insights for drug discov-

ery and disease treatment [39].

Materials and methods

The entire workflow of the present study was illustrated in Fig 1. First, herbs and their ingredi-

ent compounds were extracted from public databases. Molecular fingerprints and ADME

properties were determined based on the chemical structures of the ingredient compounds,

and were used to construct an Herb-feature matrix and a Compound-Meridian matrix. After

obtaining all the features and Meridian classification for the herbs and the compounds, the

prediction of Meridians at the herb and compound levels was implemented using four

machine learning methods, including Support vector machine (SVM) [49], Decision tree (DT)

[50], Random forests (RF) [51, 52] and K-nearest neighbor (kNN) [53]. The predication per-

formance was further evaluated by cross-validation, based on which we identified the best

models and feature types to predict the Meridians. The most predictive fingerprint features

and ADME properties were identified for each Meridian separately.

Data collection

Meridian and ingredient compound information for TCM herbs. We extracted the

information of TCM herbs including the Meridian and the chemical components from the

newly published database called TCMID [54], which is the largest database of TCM with over
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49,000 prescriptions including 8,159 herbs and 25,210 ingredients. However, not all the herbs

were included in our data analysis. As the aim of the study was to predict the Meridians based

on the structural fingerprints of the herb ingredients, we focused on the herbs with known

Meridian information from TCMID. Furthermore, for each herb we included only those

ingredient compounds with known SMILES information, such that their structural finger-

prints and ADME properties can be determined. The herbs with missing Meridian as well as

missing chemical structure information of their ingredient compounds were discarded in this

study. The curated dataset contained 18,140 herb-compound pairs including 646 herbs and

10,053 ingredient compounds.

Chemical structural fingerprints for the ingredient compounds. The canonical SMILES

representations for the compound structures were determined using Open Babel [55]. We

used the PaDEL-Descriptor software [56] to encode SMILES into a list of binary fingerprint

features that indicate whether a particular substructure is present or absent in the compound.

We considered four common fingerprint types including PubChem [57], MACCS (Molecular

ACCess System) [58], Substructure (Sub) [59] and Extended fingerprint (Ext) [60]. PubChem

fingerprint was extracted from the PubChem database (n = 881 bits) while MACCS fingerprint

was originated from the cheminformatics system provided by the MDL company (n = 166

bits). Substructure fingerprint was used to represent the specific substructures based on

SMARTS Patterns for Functional Group Classification (n = 307 bits) [59, 61]. Extended finger-

print complements the Substructure fingerprint with additional bits describing circular topo-

logical features (n = 1024).

ADME properties for the ingredient compounds. ADME properties play important

roles to determine the pharmacokinetics of a compound, constituting the key factors that

determine the hit and lead optimization processes in drug discovery. ADME properties

describe how a compound deposits inside the human body in terms of the processes of absorp-

tion, distribution, metabolism and excretion. For instance, water solubility, usually measured

as the decimal logarithm of solubility (log S) in the units of mol/l or mg/ml, indicates the maxi-

mum dissolvable concentration of a compound in water. After oral administration, a drug

reaches the initial portion of the gastrointestinal tract, where the level of gastrointestinal

absorption affects the fraction of the drug dose that enters the bloodstream. Lipophilicity, on

the other hand, represents the affinity of a compound in a lipophilic environment and thus

determines how easily the compound can pass through the lipid membrane of cells. For the

TCM herbs, the ADME properties for their ingredient compounds have been largely unchar-

acterized. Therefore, we resorted to computational methods as an alternative, which have been

shown previously to be able to reliably and efficiently determine ADME. For example, the

Lipinski’s Rule-of-five has been long used for evaluating the bioavailability based on the struc-

ture information of compounds [62]. Classical QSAR (Quantitative Structure-Activity Rela-

tionship) approaches also rely heavily on computational prediction of bioactivity properties

based on the compound structures [56]. We determined the ADME properties of the ingredi-

ent compounds using an online tool SwissADME [63]. In the original publication, the authors

of SwissADME showed that the prediction of Lipophilicity achieved an accuracy of r (correla-

tion) = 0.72, MAE (Mean absolute error) = 0.89 and RMSE (root mean square error) = 1.14

against experimental data for 11,993 compounds. SwissADME also showed superior perfor-

mance on the water solubility prediction with R2 (coefficient of determination) of 0.75, 0.69

and 0.81 based on three different models including the FILTER-IT model [63], the ESOL

model [64] and the Ali model [65]. Notably, SwissADME has been recently applied to the

study of plant-derived compounds including anticancer polyphenols from Syzygium alternifo-
lium [66], PTPN1 (protein tyrosine phosphatase non-receptor type 1) inhibitors from several

plant extracts [67] and a TCM called Zhi-zhu Wan [68]. Therefore, we considered the use of
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SwissADME as a reliable method to probe the ADME properties for TCM herb compounds.

The SMILES of each compound was loaded as input to SwissADME, and the result consisted

of 36 ADME features including 6 drug likeness features, 5 lipophilicity features, 4 medicinal

chemistry features, 9 pharmacokinetics features, 9 physicochemical properties and 3 water sol-

ubility properties (S5 Table).

Construction of Compound-feature matrix and Herb-feature matrix

In this study, the features of a compound were considered as the combination of its fingerprint

and ADME features, including 2378 fingerprint features (1024 Ext bits, 881 PubChem bits,

307 Sub bits and 166 MACCS bits) and 36 ADME property features. The four fingerprint types

(Ext, PubChem, Sub and MACCS) were first evaluated separately in the machine learning

models to determine the best fingerprint type. Then, we combined this best fingerprint type

with the ADME features to check whether model performance can be further improved. The

resulting Compound-feature matrix XC contained 10,053 rows of compounds and 2,414 col-

umns of features.

Based on a previous study, a drug combination’s molecular features can be represented by

merging the features of its component drugs [69]. We considered also an herb as a mixture of

different ingredient compounds, and determined the herb features as below:

Let Cj = (c1,c2,. . .,ck) denote the set of ingredient compounds for herb j, where k is the num-

ber of compounds. For each compound, its compound feature vector is denoted as Fcompound =

(f1,f2,. . .,fn), where n is the number of features. We modelled the herb feature Fherb = (g1,g2,. . .,

gn) as the average of its compound features, i.e.

gi;i¼1;...;n ¼

P
c1 ;c2 ;...;ck

fi

k
ð1Þ

We collected 646 herbs and determined 2414 features including 2378 fingerprints and 36

ADME properties for their ingredient compounds. The Herb-feature matrix (HF) thus was

size of 646x2414:

HF ¼

F1

F2

F3

F4

. . .

0:2 0:1 0:3 0 0

0 0:1 0:1 0 0:8

0:1 0:6 0 0:1 1

0:5 0 0:1 0:3 0:1

0 0:4 0:2 0 0

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

646�2414

Furthermore, to evaluate whether filtering out the compounds with poor ADME properties

affects the model prediction, we removed compounds that were predicted with logS lower

than -6 by all the three water solubility models (the FILTER-IT model [63], the ESOL model

[64] and the Ali model [65]) as well as low gastrointestinal absorption below 30%, which was a

commonly accepted threshold to separate well-absorbed from poorly- absorbed compounds.

After the filtering, 583 herbs and 4922 compounds were retained. We compared the model

prediction accuracies before and after the ADME filtering.

Construction of Herb-Meridian matrix and Compound-Meridian matrix

TCM herbs can be assigned to one or more of the 12 Meridians as shown in Table 1. For each

herb, its Meridian vector is denoted as Mherb = (m1,m2,. . .,m12). From the 646 herbs that we
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collected from TCMID, the Meridian classification for the herbs was represented as a binary

Herb-Meridian matrix (HM) for the 12 Meridians as below:

HM ¼

Lung Spleen Stomach Kidney . . .

M1

M2

M3

M4

. . .

1 1 0 0 0

0 1 1 0 0

1 0 0 1 1

0 0 1 0 1

0 0 1 0 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

646�12

We denoted that Hj = (h1,h2,. . .,hp) is a set of p herbs that contain the compound j. The

Meridian vector for this compound Mcompound = (l1,l2,. . .,l12) was determined as the union of

the Meridians of the herbs in Hj, i.e.

li;i¼1;...;12 ¼ Ið
P

h1 ;h2 ;...;hp
mi > 0Þ; ð2Þ

where I(�) is an indicator function. The full Compound-Meridian (CM) matrix was con-

structed accordingly for the 10,053 compounds on the 12 Meridians:

CM ¼

Lung Spleen Stomach Kidney . . .

C1

C2

C3

C4

. . .

1 1 0 0 1

0 1 1 1 1

1 0 0 1 1

1 0 1 0 1

0 0 1 1 0

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

10053�12

Training the machine learning models

We set up the machine learning framework for each Meridian with binary response variables.

Four supervised classification methods including SVM, DT, RF and kNN [70] were employed

to predict the Meridians. These methods were implemented using the R package caret [71],

with the default parameters listed in S6 Table. SVM is an algorithm which can determine a

hyper plane to maximize the separation between the classes with minimal error. DT constructs

a decision tree by representing an observation as a branch node and its classification result by

a leave node. kNN is a distance-based learning algorithm where an object is classified accord-

ing to a majority vote of its neighbors. RF is a decision tree-based ensemble learning approach

where each tree votes for its preferred classification and the majority vote classification returns

as the final prediction. We used five-fold cross validation to avoid overfitting when evaluating

the model performance. Initially the data was split randomly to the training (70%) and testing

(30%) sets. A five-fold cross-validation was applied to split the training data randomly into five

equally sized folds. At each iteration, one unique fold was hold out while the remaining four

folds were used to train a machine learning model. The model performance was then evaluated
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on the hold-out fold. Such a process was repeated five times, after which the model that pro-

duced the highest accuracy was selected as the best model to predict the testing set, which com-

prise 30% of the total data. The model performance on the independent testing set was

reported. The R scripts and input data for the machine learning framework are publically

accessible at https://github.com/herb-medicne/meridian-prediction.

Evaluating the prediction accuracy

We obtained a confusion matrix to evaluate the prediction accuracy for the test data. To avoid

the inflated overall accuracy for imbalanced data, Balanced accuracy was also used to evaluate

the performance of models, which is the average of sensitivity and specificity:

Balanced accuracy ¼
TP

TPþFNþ
TN

FPþTN

2
ð3Þ

True positive (TP) is the number of positive samples (i.e. herbs or compounds) which are

correctly identified for a given Meridian; False positive (FP) is the number of positive samples

which are not correctly identified. True negative (TN) is the number of negative samples

which are correctly identified and false negative (FN) is the number of negative samples which

are not correctly identified. Furthermore, Matthews correlation coefficient (MCC) and the

Area Under the Receiver Operating Characteristic curve (AUROC) were also utilized for the

model evaluation, defined separately as:

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ; ð4Þ

and

AUROC ¼
R 1

x¼0
TPRðFPR� 1ðxÞÞdx: ð5Þ

The true positive rate (TPR) and false positive rate (FDR) were defined as TPRðtÞ ¼
R1

t f1ðxÞdx and FPRðtÞ ¼
R1

t f0ðxÞdx for a given classification threshold t, where f1(x) and f0(x)

are the probability density functions for the predicted score for an instance if it belongs to pos-

itive and negative class, separately. Similarly, we evaluated the Area Under the Precision Recall

curve (AUPRC) to focus on the prediction accuracy of positive cases.

Identification of key features for the prediction of Meridians at the

compound level

To find the most important features which play important roles for the Meridian classification,

we used the varImp package [72] to estimate the variable importance based on the best models.

Furthermore, the SARpy [73] tool was employed to detect key substructures (fragments) that

emerge the most frequently as important features when predicting a specific Meridian. SARpy

evaluates the significance of each substructure based on the likelihood ratio:

likelihood ratio ¼
TP=FP
P=N

ð6Þ

, where TP and FP stand for the number of compounds which contain the substructure and

belong, or do not belong to the Meridian, respectively. We selected the top ten important sub-

structures ranked by the likelihood ratio score for each Meridian. These substructures can be

therefore considered as the most frequent fragments among the compounds of a specific

Meridian.
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Supporting information

S1 Fig. Balanced Accuracy (A) and Matthews correlation (B) for all the machine learning

methods on the real data as compared to permutated data at the compound and herb levels.
����: p-value < 0.0001.

(TIF)

S2 Fig. Evaluation of the machine learning model predictions by AUROC (The area under

the receiver operating characteristic curve). (A) The overall AUROC for the seven Meridi-

ans. (B) The AUROC at the three data levels (compound-level, herb-level before and after

ADME filtering). (C) The AUROC for the five machine learning methods at the compound

level. (D) The AUROC for the ADME and fingerprint feature types at the compound level.

Wilcox rank sum test. �: p< 0.05; ��: p< 0.01; ���: p< 0.001; ����: p< 0.0001

(TIF)

S3 Fig. Evaluation of the machine learning model predictions by AUPRC ratio, defined as

the actual AUPRC divided by the baseline of random prediction. (A) The overall AUPRC

ratio for the seven Meridians. (B) The AUPRC ratio at the three data levels (compound-level,

herb-level before and after ADME filtering). (C) The AUPRC ratio for the five machine learn-

ing methods at the compound level. (D) The AUPRC ratio for the ADME and fingerprint fea-

ture types at the compound level. Wilcox rank sum test. �: p< 0.05; ��: p< 0.01; ���:

p< 0.001; ����: p< 0.0001.

(TIF)

S4 Fig. The importance scores grouped by the feature types according to Random Forest

predictions for the seven Meridians at the compound level.

(TIF)

S1 Table. The Meridians and other TCM annotations for the 646 herbs.

(XLSX)

S2 Table. The numbers of positive and negative samples for each Meridian at the herb and

the compound levels

(XLSX)

S3 Table. The prediction performances for the combinations of data levels, feature types

and machine learning methods.

(XLSX)

S4 Table. Top 30 important ADME features, fingerprint bits and important substructure

fragments for each Meridian determined at the compound level.
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S5 Table. The 36 ADME properties based on the chemical structure of compounds.
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S6 Table. Parameters of the machine learning models.
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