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Interleukin-1 (IL-1) is a primary cytokine of innate immunity and inflammation. IL-1 belongs
to a complex family including ligands with agonist activity, receptor antagonists, and an
anti-inflammatory cytokine. The receptors for these ligands, the IL-1 Receptor (IL-1R)
family, include signaling receptor complexes, decoy receptors, and negative regulators.
Agonists and regulatory molecules co-evolved, suggesting the evolutionary relevance of a
tight control of inflammatory responses, which ensures a balance between amplification of
innate immunity and uncontrolled inflammation. IL-1 family members interact with innate
immunity cells promoting innate immunity, as well as with innate and adaptive lymphoid
cells, contributing to their differentiation and functional polarization and plasticity. Here we
will review the properties of two key regulatory receptors of the IL-1 system, IL-1R2, the
first decoy receptor identified, and IL-1R8, a pleiotropic regulator of different IL-1 family
members and co-receptor for IL-37, the anti-inflammatory member of the IL-1 family. Their
complex impact in pathology, ranging from infections and inflammatory responses, to
cancer and neurologic disorders, as well as clinical implications and potential therapeutic
exploitation will be presented.

Keywords: inflammation, toll-like-receptors, negative regulation, innate immunity, interleukin 1
INTRODUCTION

The pro-inflammatory cytokine interleukin-1 (IL-1) was discovered during the 1970s and
recognised for its functions in inflammation, in particular in fever, lymphocyte activation, and
hematopoiesis (1). Gene cloning and molecular identification of IL-1- and IL-1-receptor-related
molecules allowed the identification of the entire IL-1 family, which is now considered a “system”
comprising evolutionarily conserved ligands and receptors. A new nomenclature of the family
receptors has been recently proposed and reported here, followed by previously used names. The IL-
1 system includes ligands endowed with agonist activity (IL-1a, IL-1b, IL-18, IL-33, IL-36a, IL-36b,
and IL-36g), receptor antagonists (IL-1Ra, IL-36Ra, and IL-38) and an anti-inflammatory cytokine
(IL-37), and receptors acting as signalling molecules (IL-1R1, IL-1R4/ST2, IL-1R5/IL-18Ra, IL-1R6/
org February 2022 | Volume 13 | Article 8046411
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IL-1Rrp2/IL-36R), accessory proteins (IL-1R3/IL-1RAcP, IL-
1R7/IL-18Rb), decoy or negative regulatory receptors (IL-1R2,
IL-1R8/SIGIRR/TIR8). Finally, the system includes receptors
which are still considered orphan or whose function is poorly
defined (IL-1R9/TIGIRR-2, IL-1R10/TIGIRR-1).

After gene transcription and translation in response to
inflammatory signals or tissue damage, ligands of the IL-1
family, in particular IL-1b and IL-18, remain in the cytoplasm
as precursors, and are then cleaved intracellularly by the
inflammasome and Caspase-1 (2), or processed extracellularly
by proteases, such as neutrophil protease proteinase-3, elastase,
matrix metalloprotease 9 and granzyme B, reaching their optimal
biological activity. In contrast with other members of the family,
IL-1a is constitutively expressed by several cell types, and can act
as an alarmin also in its precursor form, when released upon
tissue damage or exposed as an integral membrane protein (3–5).

IL-1-family receptors have a structure comprising a ligand-
binding extracellular portion consisting of three Ig-like domains,
and an intracellular TIR domain (originally an acronym for Toll/
IL-1-resistance and now for Toll/IL-1R domain), which is
essential for signaling via the MyD88 adaptor and shared by
TLRs. Upon ligand-binding, the main receptor chain and the
accessory protein chain assemble in a heterodimer and the TIR
domains activate a phylogenetically conserved signaling cascade.
The signaling pathway includes the TIR-containing adaptor
molecule MyD88, downstream protein kinases (e.g. IL-1R
associated kinases (IRAKs), and tumor necrosis factor
receptor-associated factor 6 (TRAF6)) and leads to NF-kB
translocation to the nucleus and activation of mitogen
−activated protein kinases (MAPKs), such as p38, c−Jun N
−terminal kinases (JNKs) and extracellular signal−regulated
kinases (ERKs), resulting in amplification of innate immunity
and inflammation (6).

Five signaling receptor complexes, constituted by a main
receptor chain and an accessory receptor chain, are responsible
of cell activation after the interaction with IL-1 family members: the
IL-1 receptor (IL-1R1 and IL-1R3/IL-1RAcP) which binds IL-1a
and IL-1b; the IL-33 receptor (IL-1R4/ST2 and IL-1R3/IL-1RAcP);
the IL-18 receptor (IL-1R5/IL-18Ra and IL-1R7/IL-18Rb); the
IL-36 receptor (IL-1R6/IL-1Rrp2 and IL-1R3/IL-1RAcP) which
binds IL-36a, b and g; and the recently identified IL-37 receptor
(IL-1R5/IL-18Ra and IL-1R8).

The IL-1 system is generally associated with inflammation
and innate immunity. However, the members of this family, in
particular IL-1, IL-33 and IL-18, are now known to play broader
and complex roles, which include orienting innate immunity and
inflammation in response to microbial or environmental
challenges, and promoting differentiation and polarization of
myeloid cells and innate or adaptive lymphoid cells.

Phylogenetic analysis showed that agonists, receptor
antagonists, anti-inflammatory molecules and IL-1 receptor
family members coevolved, since most of them (IL-1b, IL-1Ra,
the IL-36 subgroup, IL-38 and IL-37, IL-18) are present in all
vertebrates (7). This suggests the relevance in evolution of IL-1
system regulation, mediated by antagonists and anti-
inflammatory cytokines, as well as by decoy or regulatory
Frontiers in Immunology | www.frontiersin.org 2
receptors. Among these, IL-1Ra and IL-36Ra are receptor
antagonists that compete with the agonists IL-1 and IL-36 for
the interaction with IL-1R1 and IL-1R6, respectively, thus
reducing their activity (2), whereas IL-18BP is a soluble
molecule that binds IL-18, preventing the interaction with its
receptor (8). IL-1R2 lacks a signaling TIR domain and acts in a
membrane or soluble form as a decoy receptor for IL-1 (9). IL-
1R8, also known as TIR8 or SIGIRR, behaves as a negative
regulator of the signal transduction by other members of the
family, by interfering with the association of TIR-containing
adaptor molecules to the receptor complex (10). In addition, in
association with IL-1R5/IL-18Ra, IL-1R8 has been shown to act
as co-receptor for the anti-inflammatory cytokine IL-37 (11),
thus opening several new lines of research on the role of IL-1R8
in immunopathology.

Decoy receptors are also strategies of immune evasion
adopted by pathogens. For instance, DNA viruses encode
proteins homologous to mammal decoy receptors; in
particular, Poxviruses express a soluble version of IL-1R (12).
In addition, several bacteria (e.g. Brucella melitensis, Escherichia
coli, Salmonella enterica, Pseudomonas denitrificans and
Pseudomonas aeruginosa) have evolved TIR-containing
proteins (Tcps) that dampen TIR-related pathways (13–16).
These data suggest that genomic recombination events
originated pathogens endowed with anti-inflammatory
molecules from the host genome, which may favor infection
and pathogen persistence.

Here we review the regulatory roles of IL-1 receptor family
members, focusing on IL-1R2, the first “decoy” receptor
identified, and IL-1R8, which being expressed by different cell
types and acting as negative regulator of several IL-1 family
members, as well as of TLRs, has pleiotropic functions in several
pathophysiological contexts involving inflammation and innate
and adaptive immune responses.
THE DECOY RECEPTOR IL-1R2

IL-1R2 Mode of Action
The IL-1R2 gene is located in chromosome 2, in the locus
including the IL-1R cluster, e.g. IL-33, IL-18, and IL-36
receptors. Like other IL-1R family members, IL-1R2 protein is
composed of an extracellular portion containing three
extensively glycosylated immunoglobulin (Ig)-like domains,
and showing 28% amino-acid homology with IL-1R1
extracellular portion. But in contrast with the other members
of the family, IL-1R2 lacks the characteristic intracellular TIR
domain, that is replaced by a 29 amino acid-long tail. Due to this
peculiarity, this receptor is unable to initiate signal transduction
following the interaction with its ligands (9, 17).

IL-1R2 affects several steps along the IL-1-mediated signaling
cascade (Figure 1). First, IL-1R2 acts as dominant negative
molecule since it prevents the formation of IL-1R1//IL-1R3
complex by sequestering IL-1R3 (9, 18, 19). Then, IL-1R2//IL-
1R3 competes with IL-1R1//IL-1R3 for the interaction with the
February 2022 | Volume 13 | Article 804641
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ligands, since both receptor complexes recognize the pro-
inflammatory cytokines IL-1a and IL-1b (20, 21). In addition,
the enzymatic cleavage of IL-1R2 or alternative splicing generate
a soluble form of the receptor (sIL-1R2) that exhibits anti-
inflammatory activity by sequestering IL-1 (22–25). The
enzymat ic c leavage of IL-1R2 is mediated by the
metalloproteinase ADAM17, which is activated by pro-
inflammatory stimuli such as TNFa, LPS, leukotriene B4 and
fMLF (26–28). sIL-1R2 is physiologically released into the
bloodstream, where it binds IL-1a and IL-1b (18, 29), as well
as pro-IL-1b preventing its enzymatic cleavage by caspase-1 (30).
The interaction of sIL-1R2 with the soluble form of IL-1R3
(detectable at high circulating concentration, 300ng/ml) further
increases the binding affinity for pro-IL-1b. In addition, cytosolic
IL-1R2 interacts with pro-IL-1a preventing its enzymatic
cleavage by calpain and other inflammatory proteases, thus
tuning IL-1a-dependent sterile inflammation (31). This
complex is abrogated by caspase-1 which cleaves IL-1R2,
Frontiers in Immunology | www.frontiersin.org 3
allowing cleavage and secretion of IL-1a and restoration of its
activities. Low intracytoplasmic expression of IL-1R2 was
described in vascular smooth muscle cell (VSMC) and
activated macrophages and was considered implicated in
necrosis-associate inflammation (31).

Recently, a cell-surfacepro-formof IL-1a (csIL-1a)was identified
inmacrophages (32). IL-1R2 and glycosylphosphatidylinositol (GPI)
were reported to anchor csIL-1a on the plasma membrane
restraining its activation and release. IL-1R2-deficient Bone
Marrow-Derived Macrophages (BMDMs) displayed low levels of
csIL-1a, highlighting the contribution of IL-1R2 in tethering IL-1a.
Moreover, IL-1a trafficking from the cytoplasm to the plasma
membrane was specifically inhibited by the stimulation with IFNg,
suggesting that macrophage polarization plays a crucial role in the
regulation of csIL-1a (32).

Collectively, these studies show that IL-1R2 may regulate IL-1
through different mechanisms, acting at the cell membrane level,
intracellularly or as a soluble molecule.
Decoy effect for the ligands Dominant Nega�ve

Caspase-1
Pro-IL-1α

Pro-IL-1β IL-1β

IL-1α
sIL-1R2

Pro-IL-1β

Pro-IL-1α

sIL-1RAcP
IL-1β
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FIGURE 1 | Negative regulation of IL-1-mediated pathways by IL-1R2. IL-1R2 differs from the other ILRs for the absence of the characteristic intracellular TIR
domain, thus being incapable of signaling. IL-1R2 influences several mechanisms involved in the IL-1-mediated signaling cascade. IL-1R2 interacts with IL-1R3,
acting as a dominant negative and impeding the formation of the IL-1R1//IL-1R3 signaling receptor complex; then, IL-1R2//IL-1R3 prevents the interaction between
the ligands and the IL-1R1//IL-1R3 complex, by competitive binding to the pro-inflammatory cytokines IL-1a and IL-1b, thus acting as a decoy for the ligands. In
addition, sIL-1R2 acts as a soluble decoy by binding IL-1a and IL-1b, as well as pro-IL-1b, blocking its enzymatic cleavage by caspase-1. The interaction of sIL-1R2
with the soluble form of IL-1R3 further increases the affinity for the ligands. Finally, in cytosol soluble form, IL-1R2 regulates the pro-inflammatory activity of IL-1a by
preventing the enzymatic cleavage of pro-IL-1a, acting as an intracellular decoy.
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IL-1R2 Expression
IL-1R2 was first identified on neutrophils, monocytes,
macrophages, dendritic cells (DCs) and B cells in both human
and mice (26, 33). Polarization of myeloid cells strongly
influences the expression of IL-1R2, emphasizing its relevance
in immune response orientation. In particular, “M2” anti-
inflammatory stimuli such as IL-4, IL-13, IL-10, IL-27,
glucocorticoid hormones, prostaglandins and aspirin up-
regulate IL-1R2 (9, 34–38). In contrast, stimulation with “M1”
pro-inflammatory molecules (e.g. LPS, IFNg and TNFa),
chemoattractants and reactive oxygen intermediates leads to
down-regulation of IL-1R2 (22, 28).

Regulation of IL-1R2 expression has been described in
different cell types as a mechanism which counterbalances
exacerbated inflammation in response to exogenous stimuli.
For instance, up-regulation of IL-1R2 in microglial cells and
brain endothelial cells attenuated central nervous system (CNS)
inflammation in experimental models of IL-1b-induced-
neurotoxicity (e.g. central administration of IL-1b, kainic acid
administration, cerebral ischemia) (39–41). Human
atherosclerotic vessels and monocytes/macrophages were
reported to express low levels of IL-1R2 in hyperlipidemic
patients (42). Moreover, IL-1R2 was down-regulated in THP-1
cells stimulated with acetylated low density (ac-LDL) and very
low density (VLDL) lipoproteins, suggesting a mechanistic link
between familial hyperlipidemia and susceptibility to IL-1b-
mediated inflammation (42).

In the context of inflammation-dependent bone remodeling,
IL-1R2 was poorly expressed by large osteoclasts, a cell
population involved in exacerbation of bone loss in response to
IL-1, compared to small osteoclasts (43). Similar observations
have been reported in osteoarthritis (OA), a disease in which IL-
1b contributes to joint inflammation and progressive tissue
destruction. Human OA chondrocytes, synovial and epithelial
cells express low levels of IL-1R2 on the cell membrane.
However, sIL-1R2 significantly inhibited the pro-inflammatory
activity of endogenous IL-1b, thus influencing proteoglycan
biosynthesis, as well as nitric oxide (NO) and prostaglandin E2
(PGE2) production in immortalized cell lines and chondrocytes
from OA patients (44), confirming its anti-inflammatory role.

Complex and sometimes conflicting results have been
reported on IL-1R2 expression by lymphocytes. Regulatory T
cells (Tregs) have been shown to express IL-1R2 following TCR
stimulation (45). In the mouse, IL-1R2+ was expressed by a
subset of activated Tregs which recirculate from thymus to
tissues. By inhibiting IL-1b, this subset contributed to thymus-
derived FOXP3+ Treg maturation (46). Ritvo et al. showed that
IL-1R2 is expressed by a subset of FOXP3+ Follicular regulatory
T (Tfr) cells and that it contributed in tuning IL-1b-dependent
activation of Follicular helper T (Tfh) cells, as well as their
proliferation and cytokine production, thus limiting the germinal
center (GC) reaction. Flow cytometric analysis confirmed that
Tfr cells of human lymphoid tissues express IL-1R2, which in
contrast with previous studies, was not detected in Treg (47).

In association with IL-23, IL-1 promotes IL-17 production by
human and murine T cells, contributing to Th17-related diseases
Frontiers in Immunology | www.frontiersin.org 4
(10). IL-1R2 was shown in a subset of TCR-stimulated IL-1R1+

CD4+ T cells, and to regulate Th17 functional activation by
limiting IL-1b responsiveness. In this context, IL-1R2 expression
is regulated by the NFAT/FOXP3 complex which binds to the IL-
1R2 promoter (48). Since IL-1R2 may be expressed by both Th17
cells and Tregs, based on these results, IL-1R2 has been proposed
to be involved in the plasticity of these cells, in particular in the
trans-differentiation of Th17 into Treg and contributing to the
resolution of inflammation (48, 49).

Taking advantage of single cell-RNA (scRNA) sequencing, it
has been shown that tumor-infiltrating Tregs express high levels
of IL-1R2 compared to other lymphocytes, in particular in breast,
colorectal or non-small-cell lung cancers (50, 51). Conversely,
low percentage of IL-1R2+ Treg cells was reported among
circulating CD45RO+ lymphocytes from colorectal cancer
patients (52). IL-1R2+ Treg clonality was investigated by
combining scRNA-sequencing with TCR sequencing in an
experimental model of skin graft, mimicking human
papillomavirus (HPV)–associated epithelial hyperplasia (53).
This inflammatory condition was associated with increased
recruitment of non-antigen specific Tregs, which displayed two
major functional states characterized by high expression of Il1r2
or Klrg1, and associated with a tumor-infiltrating and a tissue-
resident signature, respectively (53). Analysis of Treg
heterogeneity by scRNA-sequencing revealed a subset of potent
immunosuppressive cells governed by the transcription factor
IRF-4 in non-small-cell lung cancer (NSCLC), which expressed
high levels of IL-1R2 (54). Along the same line, in another
scRNA-sequencing study of NSCLC, IL-1R2 was one of the most
upregulated gene in a cluster of tumor antigen experienced Treg
cells characterized by the expression of TNFRSF9+ (4-1BB) and
was associated with poor prognosis (55). Collectively, these
results suggest that IL-1R2 expression is associated with
specific Treg cell clusters, representing differential maturation
or activation states, developed in pathological conditions, in
particular in cancer. However, the stimuli that promote IL-1R2
expression in tumor-infiltrating Treg cells and the function of IL-
1R2 in this subset are still to be identified.

Finally, IL-1R2 was induced by IL-33 in Group 2 Innate
lymphoid cells (ILC2s) and was associated with decreased Il5 and
Il13 transcripts following IL-33 stimulation, suggesting it acts as
an activation-induced negative regulatory feedback mechanism
that decreases ILC2 responsiveness to IL-33 (56).

IL-1R2 in Infections
Even though inflammation is necessary to fight infections,
deregulated immune reactions contribute to infection severity
leading to tissue damage and spreading of pathogens from
compartmentalized anatomical sites to circulation (57). Indeed,
contrasting results emphasize the context-dependent role of IL-
1b-mediated inflammation and regulation by IL-1R2 in different
infective conditions, as described below (Figure 2).

In an experimental model of Listeria monocytogenes infection,
higher frequency of bone marrow (BM) CD115dimIL-1R2+

monocytes was reported in lethal versus sub-lethal infections
(58). In particular, up-regulation of IL-1R2 was associated with
February 2022 | Volume 13 | Article 804641
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reduced production of IL-6 and ROS after stimulation with LPS,
suggesting IL-1R2 contributes to the behavior of monocytes,
which act as Trojan horses rather than bactericidal effector cells
in this infection (58). In addition, Staphylococcus aureus was
reported to evade from the immune surveillance by affecting the
circulating levels of sIL-1R2 protein (59). Indeed, the virulence
factor protein A triggered IL-1R2 shedding from monocytes and
neutrophils through the activation of ADAM17. High levels of
sIL-1R2 attenuated IL-1b-mediated inflammation and the anti-
microbial response, including the production of IFNg and TNFa
(59). Porphyromonas gingivalis infection, which is associated
with oral squamous cell carcinoma (OSCC), influenced
myeloid polarization favoring the “M2”-like phenotype in
macrophages and the upregulation of IL-1R2 and protumor
molecules in cancer cells (60).

A scRNA-sequencing study of urinary-tract infection (UTI)
patients identified IL-1R2 as one of the markers of a subset of
CD14+, HLA-DRlow monocytes, which expand in different sepsis
cohorts (61). In addition, IL-1R2+ cells were functionally exhausted
as suggested by poor TNFa production upon stimulationwith LPS.
By mimicking sepsis-induced myelopoiesis, it was shown that IL-
1R2+ monocytes originate from bone marrow mononuclear cells
differentiated/activated by pathogen associated molecular patterns
(PAMPs) (61). Along the same line, analysis of immune cells
collected from COVID-19 patients indicated that “sepsis-
Frontiers in Immunology | www.frontiersin.org 5
associated” myeloid cells significantly increased in COVID-19
patients (62). As described in sepsis, HLA-DRlow IL-1R2+ cells
showed impaired activation upon stimulation with LPS, suggesting
thatmonocytes underwent function exhaustionas a consequence of
the viral infection (62). Whether IL-1R2 is only a marker of
monocyte dysfunction or is functionally implicated in this cell
state, is still to be defined.

IL-1R2 in Sterile Inflammation
Over the past decade, the biological role of IL-1R2 in the
regulation of inflammation has been investigated by taking
advantage of IL-1R2-deficient or overexpressing mice and
experimental models of inflammatory diseases (Figure 2).
Pioneering experiments demonstrated that transplantation of
sIL-1R2-secreting keratinocytes ameliorated collagen-induced
arthritis in mice (63). In agreement with this observation,
increased susceptibility to arthritis was confirmed in Il1r2-/-

mice, which was associated with increased production of
inflammatory mediators such as IL-6, CXCL2, NOS2, and
IL-1b by IL-1R2-deficient macrophages (64). The relevance of
IL-1R2 in tuning inflammation was further highlighted in the
K/BxN serum transfer arthritis model (65). Neutrophils express
high levels of IL-1R2, but no significant difference in the effector
functions of IL-1R2-deficient neutrophils was reported.
However, neutrophils were shown to act in trans by releasing
FIGURE 2 | Roles of IL-1R2 in pathology. Experimental animal models, in vitro and ex vivo experiments, as well as scRNA-sequencing and transcriptomic analysis
demonstrated the role of IL-1R2 as a key modulator and as a biomarker of acute and chronic inflammation in several pathological contexts. In particular, IL-1R2
plays a non-redundant role in regulating macrophage polarization, anti-microbial response and infections (such as sepsis and COVID-19), sterile inflammation (such
as arthritis, liver, skin and CNS inflammation), neurodegenerative disorders and cancer. Full-length and sIL-1R2 have also been proposed as novel biomarkers for
prognosis in infectious diseases, neurodegenerative disorders, rheumatoid arthritis, ulcerative colitis and cancer.
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sIL-1R2, which in turn inhibited IL-1b-mediated activation of
fibroblasts, thus regulating the expression of inflammatory
molecules (e.g. IL-1b, IL-6, CXCL-1 and CXCL-2) in ankles. In
contrast, IL-1R2-deficiency did not affect severity and mortality
following acute administration of IL-1b or LPS, suggesting that
IL-1R2 is primarily involved in regulating local inflammation
(65). In support of this concept, IL-1R2 was described as a critical
molecule in resolving liver inflammation (66). In particular,
neutrophils up-regulated IL-1R2 in a liver injury model and
contributed to protecting mice from hepatic deterioration, as
confirmed by the adoptive transfer of this subset in the early
stage of liver damage (66).

In experimental models of skin inflammation, constitutive
expression of IL-1R2 by transgenic keratinocytes was associated
with reduced production of granulocyte/macrophage colony-
stimulating factor (GM-CSF) upon stimulation with IL-1b (67).
Moreover, PMA-induced vascular permeability was reduced in IL-
1R2 transgenic mice (67). In an experimental model of
endometriosis, sIL-1R2 inhibited the expression of adhesion
molecules (e.g. av and b3 integrins), vascularization and tissue
growth of transplanted human endometrium in nude mice (68).

Overexpression of IL-1R2 in the heart ameliorated cardiac
allograft survival by controlling the production of pro-
inflammatory mediators (e.g. IL-1b, TNFa, prostaglandin E2
synthase, cyclooxygenase, and CCL1) and Th17 polarization (69,
70). Recently, the transcription factor PAX6 was demonstrated to
regulate IL-1R2 in cardiac fibroblasts. PAX6 promoted the
expression of the anti-fibrotic factors IL-1R2 and CXCL10 and
downregulated the pro-fibrotic molecule TGFb1. In contrast,
angiotensin II repressed PAX6/IL-1R2 thus triggering
differentiation of fibroblast and cardiac fibrosis (71).

IL-1R2 in Human Cancer
IL-1 is involved in carcinogenesis and metastasis, contributing to
oncogene-driven and microenvironment-driven cancer related
inflammation (72). Several studies investigated IL-1R2
expression in cancer cells or in the tumor microenvironment,
to elucidate whether the IL-1R2 could be involved in tuning IL-1-
dependent cancer-related inflammation. Data generated until
now show that IL-1R2 is generally up-regulated in tumor tissue
(Figure 2). In particular, IL1R2 gene was up-regulated in
pancreatic ductal adenocarcinoma (PDAC) and was proposed
to protect cancer cells from apoptosis induced by IL-1 (73). In
addition, IL1R2 was included in a signature consisting of 9 genes
that predicted tumor stages and survival of PDAC patients (74).
In acute myeloid leukemia (AML), IL1R2 gene expression was
associated with bad prognosis (75), in ovarian cancer, IL1R2 was
upregulated in recurrent compared to primary cancer (76) and in
prostate the molecule was expressed in prostatic cancer cells but
not in normal cells (77). In gastric cancer, high expression of IL-
1R2 in tumor tissue and increased levels of sIL-R2 in plasma
were associated with poor prognosis (78). Moreover, gastric
cancer ascites scRNA-seq analysis suggested that IL-1R2-
expressing tumor cells contributed in tuning tumor-associated
macrophage-dependent IL-1b-mediated inflammation (79).

In addition, as reported above, IL-1R2 recently emerged as a
tumor-infiltrating Treg associated marker in scRNA sequencing
Frontiers in Immunology | www.frontiersin.org 6
studies, in breast, colorectal or non-small-cell lung cancers,
together with several immune-checkpoints (50, 51). However,
further studies are needed to elucidate the functional role of IL-
1R2 in tumor-infiltrating Treg cells and other immune cells.

Collectively, these results suggest that IL-1R2 is induced in
cancer cells, often correlating with bad prognosis, and in tumor
infiltrating leukocytes. However, genetic analyses in mouse or
humans formally proving the actual role of IL-1R2 in cancer are
still lacking. In particular, functional studies are needed to
address whether IL-1R2 is part of a signature associated with
immunosuppression as suggested by data on Tregs, or whether
its induction reflects cancer-related inflammation, thus
explaining the link with poor prognosis.

IL-1R2 as a Potential Prognostic Biomarker
The soluble formof IL-1R2 is released from the cells in inflammatory
conditions. For this reason, sIL-1R2 has been investigated as a
potential biomarker of inflammatory disease. Results collected over
the last years show that several inflammatory diseases are associated
with increased release of sIL-1R2 (Figure 2). In particular, high
concentration of circulating sIL-1R2 was reported in necrotizing
enterocolitis (80), acute respiratory distress syndrome (81), acute
meningococcal infection (82), Dengue (83) and sepsis (84). In these
conditions, sIL-1R2 often reflected the severity of the condition.

In other contexts, such as rheumatoid arthritis, sIL-1R2
concentration negatively correlated with the severity of the
condition, indicating that endogenous sIL-1R2 may constitute
a natural anti-inflammatory factor in chronic polyarthritis (85).
In agreement, monocyte production of sIL-1R2 correlated with
favorable prognosis and efficacy of TNFa blockade with
Etanercept in arthritis (86). Similarly, in multiple sclerosis, sIL-
1R2 concentration increased in cerebrospinal fluid in response to
steroid therapy, suggesting a beneficial effect of the molecule
(87). Finally, islet transplantation outcome and insulin
independency positively correlated with IL-1R2 expression (88).

At the transcriptional level, IL1R2was part of a signature related
to myeloid cell activation which was highly expressed in non-
responder Kawasaki patients following immunoglobulin infusion
(89), and of a signature associated with immune infiltrate in acute
myocardial infarction (90). Finally, transcriptional and protein
analysis showed that IL-1R2 was a favorable prognostic marker in
ulcerative colitis, beingup-regulated in intestinalmucosal cells from
ulcerative colitis patients in remission phase (91).

Collectively, these studies indicate that IL-1R2 is induced in
several conditions, but that the link with prognosis or severity of
the disease is variable, possibly depending on the underlying
pathogenetic mechanisms, the cell type involved and the
mechanisms of induction. For these reasons, the development
of IL-1R2 as biomarker or prognostic tool seems unlikely.
IL-1R8 (TIR8/SIGIRR)

IL-1R8 Mode of Action
IL-1R8 is a well conserved gene among vertebrates, including fish,
located on human chromosome 11 and on mouse chromosome 7.
The protein differs from other members of the family since IL-1R8
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has a single Ig domain in the extracellular region which is N- and
O-glycosylated, an unconventional intracellular TIR domain with
two amino-acid substitutions in Ser447 and Tyr536, replaced by
Cys222 and Leu305, influencing IL-1R8 signalling activity, and a
long tail of 95 residues (Figure 3).

IL-1R8 is expressed by several cell types, in particular
epithelial cells of the liver and kidney, and in lymphoid organs.
Among leukocytes, IL-1R8 is highly expressed by DC, NK cells
and T lymphocytes, and it is also expressed in platelets (92–95).
In general, inflammatory conditions, such as treatment with LPS,
are associated with downregulation of IL-1R8 expression (95–99)
through the inhibition of SP1 binding on IL-1R8 promoter
(96, 100).

Different IL-1R8 isoforms have been described, but their
function is unknown. A longer isoform called IL-1R8L1 was
characterized in tumor epithelial cell lines, in a neuroblastoma
cell line, in leukemic cell lines, and in human healthy
tissues (101).

The first functional roles described for IL-1R8 concern the
inhibition of the signalling pathways downstream ILRs and TLRs
(e.g. IL-1R1, IL-1R5/IL-18Ra, IL-1R4/ST2, TLR1, TLR2, TLR4,
TLR7, TLR9, TLR3), leading to the reduction of NF-kB and JNK
activation (94, 95, 102–107), (Figure 3). The molecular
Frontiers in Immunology | www.frontiersin.org 7
mechanism proposed indicates that IL-1R8 is recruited to the
ligand-receptor complex, and the BB-loop structure of IL-1R8 TIR
domain inhibits the dimerization of MyD88 (92, 93, 102, 104, 108,
109), or causes retention of the Myddosome complex on receptors
without driving the pro-inflammatory cascade (110). In addition,
the IL-1R8 extracellular domain has been shown to inhibit the
interaction between IL-1R1 and IL-1R3 (104). In the case of TLR3
signalling, IL-1R8 blocked TRAM homodimerization and TLR4-
TRAM and TRIF-TRAM interactions (110–112). IL-1R8 is also
involved in the regulation of the mTOR pathway in lymphoid and
not lymphoid cells (e.g. Th17, NK cells and intestinal epithelium)
(94, 113, 114).

In addition, IL-1R8 is part with IL-1R5 of the signalling
receptor of IL-37, an anti-inflammatory molecule of the IL-1
family, inducing an immunosuppressive pathway, inhibiting
MAPK, NF-kB, mTOR, TAK1 and Fyn, and activating STAT3,
Mer, PTEN and p62(dok) signaling (11, 115) (Figure 3). Upon
ligation, IL-37 induced activation of glycogen synthase kinase 3b
which promoted IL-1R8 phosphorylation, internalization, and
degradation by the ubiquitin-proteasome system (116). Several
studies showed that IL-1R8 is necessary for the anti-
inflammatory potential of IL-37 in different pathologic
conditions, including LPS-induced endotoxemia, Aspergillus
FIGURE 3 | Mechanisms of negative regulation mediated by IL-1R8. IL-1R8 is characterized by a single extracellular Ig domain, a transmembrane domain, an
intracellular TIR domain and an unusually long tail of 95 residues. The IL-1R8 TIR domain differs from the TIR domains of other ILRs for the substitution of two
conserved residues (Ser447 and Tyr536 with Cys222 and Leu305), suggesting unconventional signaling. IL-1R8 inhibits the signalling pathways downstream ILRs
and TLRs by competing with the recruitment of MyD88 and IRAK at the TIR domain, thus dampening the signaling pathways involved in NF-kB and JNK activation.
In addition, in T, NK and epithelial cells, IL-1R8 negatively regulates the activation of the mTOR pathway. IL-1R8, together with IL-1R5, is part of the signaling
receptor of the anti-inflammatory molecule IL-37. The IL-37//IL-1R5//IL-1R8 tripartite complex inhibits MAPK, NF-kB, mTOR, TAK1 and Fyn, and activates STAT3,
Mer, PTEN and p62(dok) signalling, thus leading to an anti-inflammatory pathway.
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fumigatus pulmonary infection (11, 117), allergic responses
(118), neuroinflammatory diseases, such as multiple sclerosis
(119) or spinal cord injury (120), and DSS-induced colitis (121).
Further, IL-37 inhibited b-glucan-dependent trained innate
immunity, an innate immune memory program induced in
monocytes/macrophages by exposure to pathogens or vaccines,
associated with protection against infections. In this context, IL-
1R8 was required for the inhibitory role of IL-37 in the
production of inflammatory mediators by monocytes (122).
Finally, IL-37 alleviated endothelial cell apoptosis and
inflammation via IL-1R8, by inhibiting ERK and NF-kB
activation (123).

Activation of the IL-1R5//IL-1R8 receptor complex by IL-37
was also involved in tuning of mTOR signaling and activation of
STAT6 and Foxo transcription factor family, with effects on
metabolism, insulin response and glucose tolerance (11, 124). IL-
1R8 was finally necessary for the activity of IL-37 in muscle cells,
where it orchestrated the AMPK pathway and improved exercise
performance and fatigue tolerance (125).

The regulatory role of IL-1R8 is conserved in evolution: for
instance, in zebrafish IL-1R8 sequesters TRIF competing with its
recruitment at the TLR3/TLR22 receptor complex, thus
contributing to the maintenance of liver homeostasis under
inflammatory conditions (126). In veterinary medicine, several
reports show the expression and relevance of IL-1R8 in
inflammatory and infectious conditions, including infection by
porcine circovirus 2 in pigs (127) and Staphylococcus aureus
mastitis in goat (128), inflammation in forestomach wall and
mammary cells of ruminants (129–131), or intestinal epithelial
cells and APCs from Peyer’s patches in pigs (132–134).

IL-1R8 in Infections
IL-1R8 plays dual roles in different infections. Depending on the
type of infection, IL-1R8 deficient mice developed more severe
inflammation and tissue damage in several models of
experimental infections, or on the other hand showed
increased protective innate immune responses leading to
higher resistance to the infection (Table 1 and Figure 4). In a
model of Mycobacterium tuberculosis infection, IL-1R8 deficient
animals presented an increased mortality mainly due to an
exaggerated inflammatory response with enhanced leukocyte
infiltration in lung and higher levels of proinflammatory
cytokines. The phenotype was rescued by the preventive
administration of IL-1 and TNFa blocking antibodies (135). A
genome wide association study aimed at identifying genetic
variants associated with resistance to tuberculosis in bovine, an
infection representing a risk to public health, identified IL-1R8
among genes associated with resistance to the infection (154). In
line with these results, a strong association between 3 IL1R8
SNPs (rs10902158, rs7105848, rs7111432) and tuberculosis
infections was described in a study involving more than 600
patients and negative controls (155).

In Pseudomonas aeruginosa lung infection IL-1R8 deficient
mice showed higher mortality, bacterial load and systemic and
local levels of cytokines (IFNg, IL-1b, TNFa, IL-6) compared to
wild type mice. The phenotype was reverted by IL-1R1-
deficiency, demonstrating that IL-1R8 prevented P. aeruginosa
Frontiers in Immunology | www.frontiersin.org 8
associated inflammation by negatively regulating IL-1R1, the
major signaling pathway involved in the pathogenesis of this
infection (98). In a model of E. coli pneumonia, the pro-resolving
mediator 15-epi-lipoxin A4 induced the expression of A20 and
IL-1R8 through a lipoxin A4 receptor/formyl peptide receptor 2
dependent mechanism, dampening lung inflammation and
promoting pathogen clearance (156).

In fungal infections by Candida albicans and Aspergillus
fumigatus, IL-1R8 deficient mice showed an increased
susceptibility in terms of pathogen dissemination in tissues,
mortality, and increased Th17 cell activation mediated by IL-1
signaling (136). Furthermore, as stated above, IL-1R8 was
essential for the anti-inflammatory role of IL-37 in
pulmonary aspergillosis.

On the other hand, in a model of E. coli pyelonephritis, the
stronger inflammatory response of kidney epithelial cells to
bacteria and PAMPs (LPS) protected IL-1R8 deficient mice
from renal dysfunction, thanks to an increased recruitment of
neutrophils in the early phase of infection (137). Along the same
line, IL-1R8 deficiency protected mice from mortality in
Streptococcus pneumoniae pneumonia and sepsis, and was
associated with reduced bacterial load and dissemination (138).

IL-1R8 is highly expressed in gut epithelium and this has been
linked to tuning of TLR reactivity against commensal bacteria;
IL-1R8-deficiency in mice infected with Citrobacter rodentium
was associated with exaggerated IL-1R1 signaling-dependent gut
inflammation, causing a severe loss of commensal bacteria and
facilitated secondary infection by Salmonella typhimurium (139).
Along the same line, some probiotic bacteria used in the
treatment of gut infections and diseases, beneficially regulated
host immune responses by modulating TLR negative regulators,
including IL-1R8 (157, 158).

An in vitro study demonstrated that IL-1R8 acts as a negative
regulator of the immune response to Chlamydia trachomatis, by
reducing the expression of IL-8 in infected epithelial cells (159).

In HIV infection, a significant correlation between TLR4 and
IL-1R8 gene expression in brain and HIV-associated
neurodegeneration was observed (160). Moreover, the IL-37/
IL-1R8 axis was impaired in HIV infected subjects and associated
with increased inflammation and viral replication, thus
suggesting the therapeutic potential of the IL-37/IL-1R8 axis in
HIV infection (140).

Thus, IL-1R8 emerges as a tuner of innate and inflammatory
responses, and depending on specific infections, its role results in
protection from immunopathology or limitation of protective
immune responses against the pathogen.

IL-1R8 in Sterile Inflammation:
Autoimmunity, Graft Rejection and Allergy
IL-1R8 is involved in the regulation of TLR-dependent sterile
inflammation associated with autoimmunity, in several models
(Table 1 and Figure 4). In C57BL/6-lpr/lpr mice, that develop a
progressive lymphoproliferative syndrome followed by severe
autoimmune disease and lupus nephritis, IL-1R8 deficiency was
associated with higher activation of DCs and expression of IL-6,
IFNb, TNF, IL-12, and B cell survival factors Baff/BlyS and Bcl-2,
as well as production of lupus autoantibodies (141). In the
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hydrocarbon oil-induced systemic lupus erythematosus (SLE)
murine model, IL-1R8-deficiency was associated with unleashed
TLR-7-mediated activation of DCs and consequent more severe
autoimmune tissue injury (161). In SLE patients, the percentage
of circulating IL-1R8+CD4+ cells inversely correlated with SLE
severity and nephritis biomarkers concentration (162), and with
the percentage of Th17 circulating cells, which proportionally
increase with SLE severity (163).

In two different rheumatoid arthritis (RA) mouse models, IL-
1R8-deficiency was associated with overactivation of myeloid
and synovial cells, leading to a more severe disease in terms of
clinical score or joint cellular infiltration (112). Based on the high
expression of the IL-37//IL-1R5//IL-1R8 complex in CD4+ cells
of RA patients, IL-37 has been proposed as a promising
therapeutic target in RA (164, 165).

In psoriatic arthritis (PsA), a gene expression profile of
PBMCs from patients and healthy controls showed that
negative regulators of innate responses, including IL-1R8, are
Frontiers in Immunology | www.frontiersin.org 9
the genes that undergo the greatest reduction in expression
(166). In line with these data, IL-1R8-deficient mice developed
severe psoriatic inflammation in both chemical and cytokine-
induced psoriasis mouse models, compared to wild type mice.
These models depend on high IL-17A-expressing gdT cells,
whose activity was suppressed by IL-1R8 (142). In addition,
IL-1R8 negatively regulated IL-36-dependent psoriatic
inflammation in humans and mice, acting in particular in
dendritic cells and keratinocytes and modulating neutrophil
chemo-attractants (143). The deficiency of IL-1R8 resulted in
enhanced Th17 cell polarization in vivo in a multiple sclerosis
(MS)mouse model (experimental autoimmune encephalomyelitis,
EAE) and increased disease severity, characterized by higher
leukocyte activation and infiltration in the brain and spinal
cord (113). In this model, IL-1R8 was involved in the
regulation of Th17 cell differentiation, expansion and
functions, due to its inhibitory effects on IL-1 signaling leading
to JNK and mTOR activation (113).
TABLE 1 | Pathophysiological roles of IL-1R8 in disease.

Pathological
context

Disease* Role of IL-1R8 Modulated
target**

Selected
ref.

Infection Mycobacterium tuberculosis Prevention of liver necrosis, IL-1b/TNF mediated inflammation IL-1R (135)
Pseudomonas aeruginosa (lung infection) Prevention of high bacterial load and excessive inflammation IL-1R (98)
Candida albicans/
Aspergillus fumigatus

Prevention of Th17 response and pathogen dissemination IL-1R (136)

Escherichia coli
(pyelonephritis)

Susceptibility to renal dysfunction TLR4 (137)

Streptococcus pneumoniae Susceptibility to mortality induced by pneumonia and sepsis Unknown (138)
Citrobacter rodentium Prevention of commensal bacteria loss and gut inflammation IL-1R (139)
Human Immunodeficiency Virus (HIV) Regulation of inflammation by IL-37 in HIV infected cells IL-37 (140)

Autoimmunity Lupus Nephritis/Systemic Lupus Erythematosus
(SLE)

Prevention of autoantigen presentation and lupus autoantibodies
production/Control of Th17 response

TLRs (TLR7) (141)

Rheumatoid Arthritis (RA) Control of activation of myeloid and synovial cells IL-1R
TLRs

(112)

Psoriatic Arthritis (PsA) Prevention of IL-17A gd T cell –mediated inflammation and IL-36 IL-1R and IL-
36R

(142,
143)

Multiple Sclerosis (MS) Control of Th17 polarization, leukocyte infiltration in the brain and
spinal cord

IL-1R (113)

Myasthenia Gravis (MG) Control of Th and B cells proliferation and autoantibody secretion IL-37 (144)
Graft rejection Control of donor antigen presentation, Th1 and Th17 responses IL-1R (145,

146)
Allergy Hyperallergic pulmonary inflammation Control of Th2 responses and prevention of severe disease IL-33R; IL-37 (106,

118)
House dust mite (HDM) asthma Stimulation of Th2 responses, eosinophilic inflammation, mucus

and HDM-specific IgG1 production
TLR-4 (147)

Thrombosis Prevention of platelet and neutrophil-platelet aggregation TLRs/IL-1R/
IL-18R

(95)

Neurological
Dysfunctions

Regulation of neuron synapse morphology, plasticity and
functions.
Regulation of hyppocampal function

IL-1R/TLR4/
TLR2

(107,
148)

Colitis Modulation of gut microflora and prevention of intestinal
inflammation

TLRs (103,
149)

Cancer Colitis-associated cancer Prevention of intestinal inflammation-associated cancer TLRs (114,
149, 150)

Breast Cancer Negative regulation of a protective tumor immune infiltrate Unknown (151)
Hepatocellular carcinoma/Sarcoma lung
metastasis/Colon Cancer metastasis

Immunocheckpoint in NK cells IL-18R (94)

Chronic Lymphocytic leukemia/Diffuse large B-cell
lymphoma

Prevention of monoclonal B cell expansion Unknown (152,
153)
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Recombinant IL-37 has been proposed as a novel therapeutic
strategy for MS, since patients, despite the low production of
endogenous IL-37, still present the receptor complex IL-1R5//IL-
1R8 on their PBMCs and brain lesions (119). Along the same
line, patients affected by myasthenia gravis (MG) presented
lower IL-37 serum levels compared with healthy controls,
which were associated with high follicular T helper and B cell
numbers. Both populations express high levels of IL-1R8 and
their stimulation with IL-37 results in reduced proliferation,
cytokine production and secretion of autoantibodies, suggesting
its therapeutic potential in MG (144).

In a model of kidney allotransplantation, IL-1R8-deficiency
was associated with graft rejection, in contrast with IL-1R8-
competent grafts which were spontaneously accepted. In this
context, a major role was played by graft-resident DCs, which,
when deficient of IL-1R8, exerted improved donor antigen
presentation and stimulated the production of higher amounts
of IFNg by allogenic T cells (145). IL-1R8 overexpressing DCs
also contributed to prolonged survival of allografts in an islet
transplantation mouse model, by inducing weak systemic Th1
and Th17 responses that were counterbalanced by a strong Treg-
mediated immunoregulation, leading to allografts survival (146).

The involvement of IL-1R8 in allergy appears at the moment
controversial. Bulek K. et al. originally showed that IL-1R8-
Frontiers in Immunology | www.frontiersin.org 10
deficiency is associated with more severe hyperallergic
pulmonary inflammation and that IL-1R8 is involved in T cell-
mediated type 2 response by negatively regulating the IL-33/ST2
complex (106). In a mouse model of acute asthma, intranasal
administration of rIL-37 ablated allergic airway inflammation,
cytokine production, mucus hyperproduction and airway hyper-
responsiveness, and these benefits were completely lost in IL-1R8
or IL-18Ra deficient mice (118). In contrast with these results, in
a house dust mite (HDM) asthma model, which relies on the
activation of TLR4 on epithelial cells and subsequent exacerbated
Th2 specific response, IL-1R8-deficiency was associated with
decreased production of Th2 cytokines in lung and draining
lymph nodes, reduced eosinophilic inflammation, mucus
production by goblet cells, HDM-specific IgG1 and airway
hyperreactivity compared with wild type mice. The mechanism
proposed was the up-regulation upon HDM sensitization of IL-
1F5, a putative IL-1R8 ligand, an IL-4 inducer (147). Finally, a
human genetic study based on exome sequencing on a cohort of
Japanese patients with asthma excluded any association with IL-
1R8 alleles or haplotypes (167).

Collectively, these studies in mouse underline the involvement
of IL-1R8 in tuning inflammatory and immune responses activated
in sterile conditions through engagement of TLRs or IL-1R family
members. Even if fragmentary, evidence in human suggests the
FIGURE 4 | Roles of IL-1R8 in pathology. IL-1R8 fine tunes innate and adaptive immune responses in different pathological conditions, thus acting as a key modulator
of inflammation. IL-1R8 plays a non-redundant role in bacterial and fungal infections, allergy, autoimmune diseases, renal inflammation, thrombosis, neuro-inflammation
and neuronal plasticity, intestinal inflammation, and cancer (colorectal cancer, breast cancer, prostate cancer and CLL). Recently, IL-1R8 has emerged as a novel
checkpoint molecule in NK cells. In particular, IL-1R8 modulates maturation and activation of murine and human NK cells, thus regulating their antiviral and antitumor
potential. In infections, IL-1R8 plays a dual role: in green, the conditions in which IL-1R8 has a protective role by preventing immunopathology; in red, the specific
infections in which by negatively tuning innate responses, IL-1R8 prevents the development of effective anti-microbial resistance. Similarly, in cancer, IL-1R8 tunes
cancer-related inflammation in specific tumors (in green), or acts as a checkpoint for NK cells, restraining their anti-tumor and anti-metastatic (and anti-viral) potential.
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conservation in evolution of the regulatory functions of
this molecule.

IL-1R8 in Platelet Activation and
Thromboembolism
IL-1R8 is expressed on different blood leukocytes, but platelets
show the highest level of expression, both in humans and mice.
High levels were also observed in megakaryocytes of both species
(95). IL-1R8 deficiency was associated with platelet hyper-
activation in basal conditions, increased platelet aggregation
after prothrombotic stimulation and increased neutrophil-
platelet aggregation induced by LPS, IL-1b and IL-18 in vitro.
Indeed, platelets also express TLRs and IL-1 family members and
IL-1R8 can regulate their signaling (95). In a model of ADP-
induced pulmonary thromboembolism, IL-1R8 deficient mice
were more susceptible mainly due to deregulated IL-1 signaling
(95). Platelets from patients affected by SIRS/sepsis showed
reduced IL-1R8 surface expression compared to platelets from
healthy donors, reflecting the severity of the disease.
Interestingly, expression of IL-1R8 in microvesicles released
from platelets in vitro or found in plasma of sepsis patients
suggests that IL-1R8 may be rapidly shed by the release of
microvesicles in inflammatory conditions, contributing to
platelet dysfunction observed in this inflammatory
condition (95).

IL-1R8 in the Central Nervous System
IL-1R8 is expressed in different types of cells in the brain such as
neurons, astrocytes, and microglia. IL-1R8 deficient mice
demonstrated impaired CNS development, leading to altered
hippocampal capacity: difficulties in novel objective recognition,
spatial reference memory and long-term potentiation (148)
(Table 1 and Figure 4). Neurological dysfunctions were
associated to increased activation of IRAK1, JNK and NF-kB
via IL-1R1 and TLR4 signaling after binding respectively to IL-
1a and HMGB1 (148). Moreover, IL-1R8-deficiency and the
consequent hyperactivation of the IL-1R pathway affected
neuron synapse morphology, plasticity and function (107). IL-
1R8-deficient hippocampal neurons displayed an increased
number of immature, thin spines and a decreased number of
mature, mushroom spines, along with a significant reduction of
spine width, and reduced amplitude of miniature excitatory
postsynaptic currents. The phenotype of IL-1R8-deficient
neurons was associated with IL-1R1-driven hyperactivation of
the PI3K/AKT/mTOR pathway, and increased expression of
methyl-CpG-binding protein 2 (MeCP2), a synaptopathy
protein involved in neurological diseases, such as Rett
syndrome and MeCP2 duplication syndrome (168). Deficiency
of IL-1R1 or treatment with IL-1Ra (Anakinra) normalized
MeCP2 expression and cognitive deficits in IL-1R8-deficient
mice, demonstrating that IL-1R8 fine tunes IL-1R1 signalling,
is involved in synaptopathies and is required for correct long-
term potentiation (107). In line with these results, the treatment
with Anakinra of patients with cryopyrin-associated periodic
syndrome (CAPS), in addition to reduce signs and symptoms of
IL-1-dependent inflammation, reversed mental defects in
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patients (169). A further evidence of the relevance of IL-1R8 in
the brain is provided by genetic studies on schizophrenia, which
identified SIGIRR as one of the genes associated with genetic
alterations in this psychiatric condition (170).

Finally, IL-1R8 also regulated b-amyloid peptide-dependent
TLR2 activation in microglial cells and the release of the pro-
inflammatory cytokines TNFa and IL-6 (171).

IL-1R8 in Cancer
Intestinal Inflammation and Cancer
IL-1R8 plays an important role in gut homeostasis, intestinal
inflammation and tumorigenesis (Table 1 and Figure 4). In
healthy mice, IL- 1R8 was shown to modulate gut microflora-
mediated activation of ILRs and TLRs, which regulated the
proliferation and survival of intestinal epithelial cells in colonic
crypts. IL-1R8-deficient mice showed constitutive activation of
NF-kB and JNK and increased expression of Cyclin D1 and Bcl-
xL (149). The phenotype has not been confirmed by all the
studies performed in healthy mice, probably due to animal
house-dependent microflora variation (103, 150).

In a murine model of dextran sulfate sodium (DSS)-induced
colitis, IL-1R8 deficiency is associated with increased local
leukocyte infiltration and higher levels of proinflammatory
cytokines (TNFa, IL- 6, IL- 1b, IL- 12p40, IL- 17), chemokines
(CXCL1, CCL2), and prostaglandins, leading to an exacerbated
intestinal inflammation. At the mechanistic level, this phenotype
appears to be primarily due to the regulatory function of IL-1R8
in epithelial cells. These changes result in increased weight loss,
intestinal bleeding, local tissue damage and reduced mice
survival (103, 149), and susceptibility to Ulcerative Colitis-
associated E. coli pathobionts (172). In addition, as reported
above, IL-1R8 was essential for the anti-inflammatory role of IL-
37 in this model in vivo, as well as in colonic organoids (173). In
agreement with results obtained in mice, SIGIRR genetic variants
and reduced expression of IL-1R8 as well as of IL-37 were shown
to be associated with necrotizing enterocolitis in human
(174, 175). In particular, a SIGIRR stop mutation (p.Y168X)
was observed in an infant who died of severe necrotizing
enterocolitis (174) and its functional effect was identified (176).
The study showed that the p.Y168X mutation disrupted IL-1R8-
mediated STAT3-dependent expression of miR-146a and miR-
155, leading to deregulated IRAK1 activation and inflammation
(176), thus identifying a new molecular mechanism underlying
the regulatory role of IL-1R8.

In agreement with the concept that cancer-related
inflammation contributes to cancer development and
progression, IL-1R8 has been described to protect from cancer
development in different murine tumor models. In a model that
mimics intestinal cancer developed in Ulcerative Colitis patients,
IL-1R8 deficiency was associated with increased intestinal
inflammation and enhanced susceptibility to cancer
development. IL-1R8 reduces the expression of NF-kB-induced
genes critical for cell survival and proliferation (Bcl-xL and
Cyclin D1), the local production of proinflammatory cytokines,
chemokines and prostaglandin E2, and intestinal permeability.
Interestingly, the expression of IL-1R8 solely in gut epithelial
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cells rescues the phenotype of IL-1R8-deficient mice, reducing
their susceptibility to colitis-associated cancer development and
suggesting that the activity of IL-1R8 on tumorigenesis is mainly
through its function on gut epithelial cells (149, 150).

In the genetic Apcmin/+ model, which resembles the Familial
Adenomatous Polyposis syndrome (177), IL-1R8 deficiency led
to increased tumorigenesis. IL-1R8-deficient mice show more
sustained activation of the Akt/mTOR pathway in response to
TLR or IL-1R ligands, leading to increased proliferation and
chromosomal instability in cells of the colon crypts (114).

In human colorectal cancer, it has been shown that IL-1R8
expression is reduced compared with non-tumor tissues. Zhao
et al. identified a dominant-negative isoform of IL-1R8 (IL-
1RdE8), originated from a transcript lacking the exon 8, which
is not modified by complex glycans and is retained in the
cytoplasm. This isoform acts as a dominant-negative on IL-
1R8, inhibiting its glycosylation, localization to the surface of
colon epithelial cells and function. Indeed, in human colon
cancer tissues IL-1R8 is cytoplasmic while in non-tumor tissue
it has been found at the cell membrane. Importantly, transgenic
mice expressing this mutant form of IL-1R8 in the colonic
epithelium are more susceptible to colon cancer development
in the colitis-associated tumor model, presenting higher local
levels of inflammatory cytokines (IL-17A and IL-6) and the
activation of transcription factors STAT3 and NF-kB. Taken
together, these results suggest that complex glycan modifications
and cell surface expression are required for IL-1R8 to reduce
intestinal inflammation and tumorigenesis in vivo (178).

Breast Cancer
In breast cancer, the immunomodulatory role of IL-1R8 resulted
in inhibition of IL-1-dependent NF-kB activation and
production of pro-inflammatory cytokines in vitro and in vivo.
In the genetic MMTVneu mouse model of breast cancer, IL-1R8-
deficiency was associated with reduced mammary tumor growth
and lung metastasis (151), protective tumor immune infiltrate
characterized by higher frequency of DCs, NK cells and CD8+ T
cells and reduced frequency of TAMs. According to these results,
RNAseq analysis in 1102 clinical samples of breast tumors
revealed that high IL-1R8 expression was associated with a
non-T cell inflamed molecular signature, lower expression level
of proinflammatory cytokines and chemokines, DC and NK cell
metagenes, components of the peptide presenting machinery,
cytolytic enzymes and type I interferon (IFN)-induced genes
(151). Taken together these results suggest that IL-1R8
expression in breast tumors negatively regulates the
mobilization and activation of immune cells and therefore
promotes tumor growth and metastasis.

IL-1R8 as a Novel Checkpoint in NK Cells
Our group recently demonstrated that IL-1R8 is expressed by
murine and human NK cells and its expression increases during
NK cell differentiation. IL-1R8-deficiency was associated with
increased frequency of mature NK cells in blood, spleen, bone
marrow and liver. IL-1R8 deficiency resulted in enhanced
expression of activating NK cell receptors and increased IFNg,
granzyme B, Fas ligand expression and degranulation. IL-1R8
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directly acted on NK cells regulating responsiveness to IL-18, a
key cytokine involved in NK cell activation, since the phenotype
of IL-1R8 deficient mice was abrogated upon depletion of IL-18
or in IL-1R8/IL-18 double deficient mice. From a molecular
point of view, IL-1R8 regulated IL-18-dependent activation of
mTOR and JNK pathways. In agreement with these results,
RNASeq and protein phosphorylation analysis showed that the
response to IL-18 was affected in IL-1R8-deficient cells, in
particular in the pathways involved in NK cell activation,
degranulation, cytokine production and antiviral response. The
relevance of these data was shown in models of hepatocellular
carcinoma, sarcoma lung metastasis and colon cancer-derived
liver metastasis, where IL-1R8 deficiency was associated with
reduced liver disease severity, and lung and liver metastases.
Further, in a model of murine cytomegalovirus (MCMV)
infection, IL-1R8 deficient mice were more protected from the
viral infection thank to enhanced NK cell degranulation and
IFNg production. Importantly, the adoptive transfer of IL-1R8
deficient NK cells was protective in the tumor metastasis and
viral infection models. In human primary NK cells, IL-1R8
expression inversely correlated with IFNg production, while IL-
1R8 silencing resulted in increased IFNg production and CD69
expression (94). Taken together, these results suggest that IL-1R8
blockade in NK cells, by tuning IL-18 signaling, may represent a
novel therapeutic approach to unleash NK cell activity and
strengthen NK cell antitumor and antiviral potential (Table 1
and Figure 4).

Leukemia and Lymphoma
Deregulated TLR signaling has been associated with different B
cell malignancies. In a mouse model of spontaneous chronic
lymphocytic leukemia (CLL), IL-1R8 deficiency was associated
with early onset of the monoclonal B cell expansion and reduced
life span (152). In agreement, CLL cells expressed lower levels of
IL-1R8 compare to B cells from healthy donors (101).

Chronic inflammation and in particular autoimmune
disorders are linked with B-cell lymphoma development. In
addition to inducing more severe autoimmunity in lpr mice
(lupus prone strain), IL-1R8 deficiency increased the onset of
DLBCL in aging mice due to a constitutive activation of NF-kB
in splenocytes (153). Interestingly, IL-1R8 was downregulated in
DLBCL compared to normal B cells, and its expression was
positively associated with overall survival (153).

Contribution of IL-1R8 in the Antitumor Potential
of IL-37
IL-37 has been shown to exert several inhibitory functions on
tumor angiogenesis, migration and progression. As reported
above, IL-37 interacts with IL-1R5/IL-18Ra and IL-1R8 to
exert its anti-inflammatory activity (11). Further, IL-37 has
been shown to compete with IL-18 for IL-1R5/IL-18Ra. For
instance, in Oral Squamous Cell carcinoma (OSCC), IL-37
inhibited the proinflammatory effects of IL-18 and the
increased IL-18/IL-37 ratio in serum predicted shorter overall
and disease-free survival (179). In other contexts where IL-37
exerts an antitumor effect, it has not been proven yet whether it
acts through IL-1R8. These include hepatocellular carcinoma,
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where IL-37 exerted an antiangiogenic role (180) or modulated
the phenotype of TAMs by suppressing M2 polarization and
regulating proinflammatory cytokine production (181), and
Acute Myeloid Leukemia where IL-37 regulated IL-6
expression (182).
CONCLUDING REMARKS

In the last 50 years, since the discovery of IL-1, the complexity of
this cytokine family has been investigated and dissected, leading
to the identification of a large number of molecules acting as
accelerators and others acting as brakes (receptor antagonists,
decoy receptors, negative regulatory receptors, anti-
inflammatory ligands). This complexity underlines the
relevance of fine tuning of IL-1 family-dependent functions
both in homeostasis and disease. Further, unexpected functions
for this family have emerged, demonstrating that its involvement
is not restricted to infections and inflammation, but also impact
degenerative conditions and cancer. Finally, the therapeutic
potential of some members of the IL-1 system or, on the
opposite, of their targeting, has been demonstrated in the last
years, suggesting that fine dissection of their role, regulation and
genetic variants may lead to the development of novel
intervention strategies. In this general context, IL-1R8 and IL-
1R2 emerge as tuners in various physiological and pathological
Frontiers in Immunology | www.frontiersin.org 13
conditions, which play essential functions to prevent
immunopathology. On the other hand, their regulatory role
may be exploited by escape mechanisms developed by
pathogens and tumors, suggesting that their cell- and context-
specific function must be dissected for the development of
innovative therapeutic strategies.
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