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Abstract
Objective: Coronavirus disease 2019 (COVID- 19) has caused hundreds of thou-
sands of infections and deaths. Efficient diagnostic methods could help curb its 
global spread. The purpose of this study was to develop and evaluate a method 
for accurately diagnosing COVID- 19 based on computed tomography (CT) scans 
in real time.
Methods: We propose an architecture named “concatenated feature pyramid 
network” (“Concat- FPN”) with an attention mechanism, by concatenating feature 
maps of multiple. The proposed architecture is then used to form two networks, 
which we call COVID- CT- GAN and COVID- CT- DenseNet, the former for data 
augmentation and the latter for data classification.
Results: The proposed method is evaluated on 3 different numbers of magni-
tude of COVID- 19 CT datasets. Compared with the method without GANs for 
data augmentation or the original network auxiliary classifier generative adver-
sarial network, COVID- CT- GAN increases the accuracy by 2% to 3%, the recall 
by 2% to 4%, the precision by 1% to 3%, the F1- score by 1% to 3%, and the area 
under the curve by 1% to 4%. Compared with the original network DenseNet- 201, 
COVID- CT- DenseNet increases the accuracy by 1% to 3%, the recall by 4% to 
9%, the precision by 1%, the F1- score by 1% to 3%, and the area under the curve 
by 2%.
Conclusion: The experimental results show that our method improves the effi-
ciency of diagnosing COVID- 19 on CT images, and helps overcome the problem 
of limited training data when using deep learning methods to diagnose COVID- 19.
Significance: Our method can help clinicians build deep learning models using 
their private datasets to achieve automatic diagnosis of COVID- 19 with a high 
precision.

K E Y W O R D S
attention mechanism, concatenated feature pyramid network, COVID- 19, CT images, generative 
adversarial network
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1 |  INTRODUCTION

According to data released by the World Health 
Organization in November 2020, there have been more 
than 57.8 million confirmed cases of coronavirus dis-
ease 2019 (COVID- 19) worldwide, with nearly 1.3 mil-
lion deaths.1 Speeding up the diagnosis of COVID- 19 
is of great significance for saving millions of lives, and 
restoring the economic development of countries. The 
current tests commonly used to diagnose COVID- 19 
include reverse transcription- polymerase chain reac-
tion (RT- PCR), chest X- rays, and computed tomogra-
phy (CT). The average turnaround time for a RT- PCR 
test is 24 h, which greatly slows the testing process. 
Moreover, the test kits are limited in supply and are ex-
pensive. An investigation 1014 cases found that chest 
CT is highly sensitive to the diagnosis of COVID- 19, 
and the detection speed is faster than RT- PCR.2 In 
addition, the report from Fang et al.3 showed that the 
sensitivity of chest CT was greater than that of RT- 
PCR (98% versus 71%, respectively). However, as a 
new disease, COVID- 19 has similar manifestations 

with other types of pneumonia. Therefore, analyzing 
and diagnosing the characteristics of COVID- 19 in 
CT images relies heavily on clinical expertise, and is 
time- consuming.4 As shown in Figure 1, the most com-
monly reported CT finding in COVID- 19 is that infec-
tion can cause severe lower respiratory tract infection, 
accompanied by basal, bilateral, and peripheral domi-
nant ground- glass opacity, which is a typical feature of 
lung tissue damage from pneumonia.5 Diffuse airspace 
opacity and asymmetric patchiness were also reported 
in patients with COVID- 19.6 Such subtle abnormalities 
are difficult for clinicians, except expert radiologists, to 
interpret. Considering the limited number of profession-
ally trained radiologists, using automatic methods such 
as deep learning7 to identify such subtle abnormalities 
could assist in the diagnostic process and improve the 
early diagnosis rate.

Research in recent years has proven that deep learn-
ing can effectively diagnose diseases from medical im-
ages.8 Many recent studies have, therefore, used deep 
learning methods to analyze CT scan images to assist 
in the diagnosis of COVID- 19, and some of them have 

F I G U R E  1  Examples of CT images. (a– c) Novel coronavirus pneumonia (NCP), common pneumonia (CP), and normal controls 
(Normal) from dataset 1, respectively. (d and e) NCP and Non- NCP from dataset 2, respectively. (f and g) NCP and Non- NCP from dataset 
3, respectively. (h) The proportion of classes in the datasets
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published their datasets. The SARS- CoV- 2 CT- scan 
dataset9 is a publicly available dataset from COVID- 19 
containing 1252 CT scans from patients infected with 
SARS- CoV- 2 and 1230 from non- infected patients. By 
using an explainable deep learning approach (xDNN), 
the baseline result for that dataset is 0.973(F1 score). 
He et al. 10 assembled a COVID- 19 CT dataset that 
contains 349 positive and 397 negative CT scans. 
They also proposed a self- supervised transfer learn-
ing approach based on a deep learning model, such as 
DenseNet- 16911 to achieve an F1- score of 0.850. It is 
commendable that He et al.12 compiled a new dataset 
containing a total of 340,190 slices of 3993 scans from 
2698 patients, from a large COVID- 19 CT public data-
set called CC- CCII.13 They also used a series of state- 
of- the- art three- dimensional (3D) convolutional neural 
network (CNN) models (such as DenseNet3D- 12114) to 
achieve a good classification effect with an F1- score 
of 0.872. Coincidentally, Ouyang et al.15 also used a 
3D CNN model to diagnose COVID- 19 on CT scan im-
ages. They used two different sampling strategies to 
train two 3D ResNet34 networks14 with an attention 
mechanism, and finally integrated predictions from the 
two networks using ensemble learning. There have 
been some reports regarding diagnosing COVID- 19 
based on the infected regions in CT images. Wang 
et al.16 collected 453 CT scan images of COVID- 19 and 
used the inception migration- learning model to distin-
guish those cases from other cases of viral pneumo-
nia, based on manually labeled regions. Similarly, Xu 
et al.17 segmented the infected regions in scans from 
COVID- 19 using a V- Net model and classified the im-
ages using a ResNet- 18 network. Matsuyama et al.18 
proposed a ResNet- 50- based CNN model to discrim-
inate COVID- 19 from Non- COVID- 19 (No COVID- 19 
infection) using chest CT and used a gradient- weighted 
activation map to interpret the model visually. In addi-
tion, Song et al.19 extracted images with the relevant 
lung regions from slices of each group of processed 3D 
CT images, and they used ResNet- 50 to form a pre-
diction for each CT image. Kang et al.20 proposed the 
use of multi- view representation learning to diagnose 
COVID- 19. There was also a study tried to optimize the 
training process of the CNN model to improve the clas-
sification accuracy: Anwar et al.21 achieved an F1 score 
of 0.896 using EfficientNet deep learning architecture 
with three different learning rates strategies (i.e., cyclic 
learning rate, reducing the learning rate when model 
performance stops increasing, and constant learning 
rate).

So far, researchers can only train deep learning 
models using limited CT scan images to perform auto-
matic COVID- 19 diagnosis, because of the lack of pub-
licly available large- sample CT scan image datasets 
from COVID- 19 patients. As the most commonly used 
deep learning model, CNN can attain state- of- the- art 
performance in medical imaging if sufficient data are 

available.8,22 Such performance can be achieved by 
training on labeled data with its millions of parameters. 
However, due to the large number of training param-
eters, CNN is easy to overfit on small datasets. This 
phenomenon is especially obvious in medical image 
datasets that require radiologists to participate in label-
ing.23,24 Therefore, researchers usually use data aug-
mentation methods to expand datasets. The specific 
method involves making some simple modifications 
to the dataset images, such as rotating, translating, 
scaling, and flipping. It is a standard procedure to use 
these classic data augmentation methods in the field of 
computer vision to improve the training process of the 
network.25 Based on the above analysis, to solve the 
problem of limited samples in the COVID- 19 CT scan 
image dataset, we propose to use an improved gen-
erative adversarial network (GAN),26 which we called 
COVID- CT- GAN for data augmentation. The COVID- 
CT- GAN we designed is based on an auxiliary clas-
sifier GAN (ACGAN).27 To the best of our knowledge, 
this is the first attempt to augment COVID- 19 CT image 
data using a GAN, and to explore the impact of the net-
work architecture on the classification of the images 
generated. The main contributions of our work are sum-
marized as follows:

• We propose an optimized GAN to replace the tradi-
tional methods to augment COVID- 19 CT scan image 
training data.

• We propose a concatenated feature pyramid net-
work (Concat- FPN) with an attention mechanism, 
and apply it to a GAN and a DenseNet- 201 model 
for generating and classifying COVID- 19 CT scan im-
ages, respectively.

• We explore and summarize the impact of the number 
of upsampling layers of the generator and the size of 
the convolutional kernels on the performance of our 
proposed COVID- CT- GAN.

• We evaluate our methods on three COVID- 19 CT 
scan datasets of different numbers of images (magni-
tudes of 1 × 102, 1 × 103, and 1 × 104) and summarize 
the impact of dataset size on the use of a GAN for 
data augmentation.

In the rest of this paper, Sections 2 and 3 review 
related works and detail our method, respectively. 
Section 4 presents the experiments and discussion. 
Section 5 presents the conclusions.

2 |  RELATED WORKS

2.1 | Generative adversarial network

Since GANs were first proposed, they have been 
widely used in medical imaging.28 According to the 
characteristics of GANs composed of generator and 
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discriminator, they are primarily used in the following 
two ways in medical imaging. The first way is to use 
the generator to learn the feature distribution of the 
training data and generate new images, which helps 
solve the problem of insufficient samples in the medical 
image dataset. CT image denoising,29 transformation 
between brain CT images and magnetic resonance im-
ages,30,31 retinal image synthesis,32 and generation of 
dermoscopic images melanoma33 are some examples 
of generator- related applications. The second approach 
is to use the discriminator as a detector to distinguish 
abnormal images. One such example entails the de-
tection of anomalies in optical coherence tomography 
images of the retina.34

In the research into medical image classification, the 
generator and discriminator of GANs are usually used 
for image feature extraction, or the discriminator is di-
rectly used as a classifier by adding additional catego-
ries. Hu et al.35 unified InfoGAN36 and WGAN37 through 
the loss function for unsupervised feature learning in 
histopathology images, whereas Yi et al.33 combined 
CatGAN38 and WGAN for semi- supervised and unsu-
pervised feature learning in dermoscopy images. Both 
studies used the features extracted by the discrimina-
tor for classification. Moreover, a semi- supervised GAN 
also shows an advantage, compared with traditional su-
pervised CNNs, by achieving comparable performance 
with fewer labeled data. For example, Lahiri et al.39 and 
Madani et al.40 used the semi- supervised deep convo-
lutional generative adversarial network (DCGAN)41 for 
retinal vessel classification and cardiovascular abnor-
mality classification in chest X- rays, respectively. Madani 
et al.42 also used two DCGANs to generate normal and 
abnormal chest X- rays separately, which achieved 
higher classification accuracy than traditional data aug-
mentation methods. This may be due to the fact that 
traditional data augmentation methods cannot capture 
the biological variance of medical images, which may 
result in unrealistic images after augmentation. In ad-
dition, generating each class separately (i.e., N models 
for N classes) may lead to low computational efficiency. 
Therefore, a potential research direction is the use of 
a single model for multi- class conditional synthesis.43 
However, there are some special cases. For example, 
when Frid- Adar et al.44 used a GAN to synthesize liver 
lesions for classification, they found that the use of a 
separated GAN (DCGAN) produced better results than 
did a unified GAN (ACGAN). The reason may be the 
specificity of the dataset, but the deeper reasons need 
to be explored. Further, some researchers argue that the 
images generated by GANs may be effective for aug-
mentation in the low- data regime, but may not be help-
ful in the high- data regime.45- 48 Coincidentally, Karadağ 
et al.49 found that the performance of GANs for data 
augmentation is closely related to model hyperparame-
ters (e.g., learning rate and number of epochs) and the 
size of the dataset in the image classification problem. 

Aiming at the use of GANs for data augmentation,  
we conducted experimental exploration of three 
COVID- 19 CT image datasets.

2.2 | Layer fusion and 
attention mechanism

Even if CNNs and GANs can learn the differences be-
tween different types of COVID- 19 CT scan images, 
there are still some discrepancies due to the differences 
in features between different scans. In many works, 
fusing features of different scales is an important way 
to improve the performance of convolutional networks. 
Between these features, the low- level feature semantic 
information is limited, but the target location is accurate; 
the high- level feature semantic information is rich, but 
the target location is relatively coarse. According to the 
order of fusion and prediction, feature fusion is divided 
into early fusion and late fusion. Inside- Outside Net 
(ION)50 and HyperNet51 are examples of early fusion, 
whereas Single Shot MultiBox Detector (SSD),52 Multi- 
scale CNN (MS- CNN)53 and feature pyramid network 
(FPN)54 are examples of late fusion. These methods 
are mainly used for object detection in images, specifi-
cally to add and concatenate, to connect different lev-
els of feature extraction layers. Recent work has also 
shown that the connection of CNNs and the connection 
of GANs can effectively improve their performance. 
Huang et al.11 proposed the densely connected con-
volutional network (DenseNet), which concatenated 
the input layers with the output layers iteratively, and 
achieved significant improvements on four large clas-
sification datasets. Wang et al.55 proposed a concat-
enated 3D conditional GAN to improve the quality of 
generated images when extracting full- dose positron 
emission tomography images from low- dose ones. It is 
worth mentioning that the feature maps of two adjacent 
layers are resized to the same size through upsampling 
in the original FPN, which is generally used for object 
detection, and the two layers are merged by addition. 
We conducted comparative experiments and found that 
merging the two adjacent layers by concatenation can 
achieve better results. Therefore, we design a concat-
enated FPN that we call Concat- FPN, and applied it to 
GAN and DenseNet for COVID- 19 CT images genera-
tion and classification.

TA B L E  1  Statistics of the datasets

Dataset Patients Slices NCP

Non- NCP

CP Normal

① 2729 135,609 56,198 47,745 31,666

② 120 2482 1252 1230

③ 143 746 349 397
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To better capture the structure of objects, the 
human visual system will focus on salient parts se-
lectively.56 In view of this, an attention mechanism 
was then developed based upon human percep-
tion and applied to computer vision tasks, achieving 
great results.57– 59 Recently, researchers have used 
attention mechanisms to improve the classification 
performance of CNNs in several large- scale image 
classification tasks.60– 62 Unlike the way in which 
Woo et al.62 integrated the proposed Convolutional 
Block Attention Module (CBAM) with the ResBlock in 
ResNet, in this study, we integrated CBAM with our 
Concat- feature pyramid network.

3 |  MATERIALS AND METHODS

3.1 | Dataset

We evaluated the proposed method using three differ-
ent COVID- 19 CT scan datasets, all of which are down-
loadable. The statistics of the datasets are shown in 
Table 1. We aimed to diagnose COVID- 19 from a single 
CT scan image, using deep learning methods. The 
dataset published by He et al.12 and its original dataset 
CC- CCII13 contain a large number of COVID- 19 CT 
scan images. However, there are many CT images in 
the datasets that do not show the lesion, and even 
some images in which the lungs are completely invisi-
ble. We believe that this would have had a negative im-
pact on the classification effect, that is, it would mean 
that the neural network training process could not learn 
the lesion characteristics of COVID- 19 very well. 

Therefore, we excluded the images that did not contain 
lungs or lesions, and constructed dataset 1 based on 
these two large datasets. Dataset 1 contained three 
classes (i.e., novel coronavirus pneumonia (NCP), nor-
mal controls (Normal), and common pneumonia (CP)). 
Datasets 2 and 3 come from the work of Soares et al. 9 
and He et al.,10 respectively. Both of those datasets 
contained only positive and negative CT scan images 
of COVID- 19 (i.e., NCP and Non- NCP). For conveni-
ence, we denote datasets 1, 2, and 3 as,, and, respec-
tively. In our experiment, we divided each dataset into 5 
pieces. In each piece of data, the proportion of the 
classes of the CT image was consistent with that in the 
original dataset. In addition, the proportion of the train-
ing set, validation set, and test set was 3:1:1. The CT 
image data was transformed into an array, and then fed 
into the neural network we designed. The implemented 
code and the three datasets are downloadable*.

3.2 | Framework

The overall framework we propose is shown in Figure 2. 
It contains two stages: (1) based on ACGAN,27 we built 
a generator that can generate two or three classes of 
lung CT scan images (i.e., NCP, CP, and Normal) for 
data augmentation, and (2) we constructed a classifier 
for diagnosing COVID- 19 based on DenseNet- 201. In 
both stages, we used the Concat- FPN with the atten-
tion mechanism we proposed. The following sections 
detail our method.

 *https://github.com/lizon ggui/COVID - 19

F I G U R E  2  Overview of our proposed framework

https://github.com/lizonggui/COVID-19
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3.3 | Concat- feature pyramid network 
with attention mechanism

As shown in Figure 3, the original FPN was merged by 
addition, using lateral connections and top- down path-
ways. The position of the object on multiple scales could 
be predicted in the FPN. Starting from the last layer, 
upsampling the output feature map of the latter layer by 
a factor of 2 (using nearest neighbor upsampling) was 

performed, and then that output was merged by addition 
with the output feature map of the former layer, which 
underwent a 1 × 1 convolutional layer. In this study, we 
attempted to merge the two feature maps by concatena-
tion, instead of addition. Concatenation is an important 
operation in the design of network structure. It is often 
used to combine features, fuse features extracted by 
multiple convolution feature extraction frameworks, or 
fuse the information of the output layers, whereas add-
ing layers is more like the superposition of information. 
The network structure we built, called Concat- FPN, can 
develop an output on the final fusion feature map. Due to 
the structural difference between the classifier network 
and the generator of the GAN, the structure of Concat- 
FPN is slightly different when used in these two, and we 
describe them separately.

Consider yl is the output of the lth layer. Conv is the 
convolution operation. Up is the upsampling operation. 
⊗ represents the concatenation. For the classifier net-
work, the output of Concat- FPN with k layers is

(1)
Y =Convs=20,3×3[Convs=1,1×1(yk−1)⊗Up2×(yk )]

⊗Convs=21,3×3[Convs=1,1×1(yk−2)⊗Up2×(yk−1)]

⊗⋯⊗Convs=2k−2,3×3[Convs=1,1×1(y1)⊗Up2×(y2)],
F I G U R E  3  Traditional FPN architecture, merged by addition

F I G U R E  4  Layered architecture of COVID- CT- GAN generator [Color figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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where s is the stride of the convolution, 1 × 1 and 3 × 3 
are the sizes of the convolution kernels, and 2× denotes 
an upsampling factor of 2. It is worth noting that the 3 × 3 
convolution on each merged map serves two purposes. 
One is to reduce the aliasing effect caused by upsam-
pling, and the other is to resize feature maps of different 
sizes, to be the same size for concatenation.

For the generator of the GAN, in contrast to the clas-
sifier network, this is an upsampling process. To fuse 
feature maps of different sizes, we upsampled the pre-
vious feature maps to be the same size, first, and then 

performed fusion. As shown in Figure 4, the output of 
Concat- FPN with k layers is

where Up2k−1× denotes an upsampling factor of 2k−1.
Furthermore, we argue that resizing feature maps 

of different sizes through FPN, and then directly fusing 
them, may be slightly coarse. Merging the salient parts 

(2)
Y = [Up2×(yk−1)⊗Convs=1,1×1(yk )]

⊗ [Up22×(yk−2)⊗Convs=1,1×1(yk )]

⊗⋯⊗ [Up2k−1×(y1)⊗Convs=1,1×1(yk )],

F I G U R E  5  The structure of classifier network [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E  6  The structure of convolutional block attention module

www.wileyonlinelibrary.com
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of the feature maps may improve the performance of the 
network. Therefore, we attempted to use an attention 
mechanism in the process of feature fusion. Specifically, 
we used Concat- FPN in the generator of the GAN to 
merge attention maps of different sizes, as illustrated in 
Figure 4, whereas in the classifier network, Concat- FPN 
was used to merge all feature maps and then its attention 
map was sent to the classification layer, as illustrated in 
Figure 5. In the network, we used CBAM 62 to generate 
attention maps. The structure of the CBAM is shown in 
Figure 6. It is composed of a channel attention module 
and a spatial attention module. Given a feature map F, its 
attention map generated by CBAM is

where AvgPool and MaxPool denote the average- 
pooling operation and max- pooling operation, respec-
tively. σ is the sigmoid function. * is the element- wise 
multiplication. W1 and W0 are the weights of the 
shared network, which is a multi- layer perceptron with 
one dense layer. The size of the convolutional kernel 
is 7 × 7.

3.4 | COVID- CT- GAN

As shown in Figures 2 and 4, the generator of COVID- 
CT- GAN that we designed took a vector of random 
noise from latent space and the category label as 
input. The two inputs were concatenated and passed 
through one to four upsampling blocks. We explored 
the impact of the number of upsampling layers and the 
size of convolutional kernels on the performance of 

(3)
F��

= [�(W1(W0(AvgPool(F)))

+W1(W0(MaxPool(F))))]∗

[�(Conv7×7([AvgPool(F);MaxPool(F)]))],

Networks Optimizer Learning rate
Weight 
decay Epoch

Batch 
size

COVID- CT- DenseNet Adam 1e−4 (reduced 
with 0.8)

0.0001 50 32

COVID- CT- GAN Adam 1e−4 0.0001 40 000 4

TA B L E  2  Training parameters

Dataset Networks Accuracy Recall Precision
F1- 
score AUC

① VGG−19 0.83 0.78 0.84 0.80 — 

EfficientNet- B5 0.83 0.77 0.88 0.82 — 

ResNet−101 0.80 0.74 0.86 0.80 — 

ResNeXt−101 0.85 0.79 0.88 0.83 — 

DenseNet−169 0.85 0.79 0.90 0.84 — 

DenseNet−201 0.82 0.76 0.87 0.81 — 

COVID- CT- 
DenseNet

0.85 0.80 0.88 0.84 — 

② VGG−19 0.84 0.77 0.91 0.83 0.90

EfficientNet- B5 0.83 0.69 0.96 0.80 0.95

ResNet−101 0.82 0.77 0.87 0.82 0.90

ResNeXt−101 0.81 0.66 0.95 0.78 0.89

DenseNet−169 0.86 0.74 0.99 0.85 0.97

DenseNet−201 0.90 0.83 0.98 0.90 0.97

COVID- CT- 
DenseNet

0.91 0.92 0.91 0.91 0.97

③ VGG−19 0.72 0.81 0.68 0.73 0.81

EfficientNet- B5 0.75 0.81 0.72 0.76 0.83

ResNet−101 0.77 0.76 0.76 0.76 0.84

ResNeXt−101 0.76 0.84 0.72 0.77 0.86

DenseNet−169 0.77 0.83 0.74 0.78 0.87

DenseNet−201 0.79 0.79 0.79 0.79 0.88

COVID- CT- 
DenseNet

0.82 0.85 0.80 0.82 0.90

TA B L E  3  The results of different 
classifier networks
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the GAN through experiments. The upsampling blocks 
consisted of the upsampling layer, convolutional layer, 
instance normalization layer, leaky rectified linear units 
(ReLU) activation layer and the CBAM. The pool- size 
of each upsampling layer was 2 × 2. The numbers of 
filters in the convolutional layer were 1024, 512, 256, 
and 128 (corresponding to upsampling block numbers 
of one, two, three, and four, respectively). At the end of 
the network, a convolutional layer with three channels 
and a tanh activation layer were applied to the output. 
As mentioned before, we used Concat- FPN to concate-
nate the attention maps of different upsampling blocks, 
and then sent the concatenated map to the output.

The discriminator was a structure of down- sampling 
as shown in Figure 2. To train COVID- CT- GAN stably, 

the number of filters was set to 128, and the stride was 
set to 2 in each convolutional layer. The leaky ReLU ac-
tivation layer was used after each convolutional layer. 
The output of the last convolutional layer was flattened, 
followed by two dense layers as classifiers. The dis-
criminator had two main functions. One was to classify 
the images produced by the generator. The other was 
to promote the generator to produce images closer to 
the real ones in the process of adversarial training.

3.5 | COVID- CT- DenseNet

The original data and that generated by COVID- 
CT- GAN were used to train the classifier network to 

F I G U R E  7  The ROC curves of different classifier networks on ② and ③. The horizontal axis represents the false positive rate, and the 
vertical axis represents the true positive rate [Color figure can be viewed at wileyonlinelibrary.com]

Dataset Networks Accuracy Recall Precision F1- score AUC

① None 0.85 0.80 0.88 0.84 — 

ACGAN 0.84 0.81 0.86 0.83 — 

DCGAN 0.79 0.75 0.77 0.76 — 

COVID- CT- GAN 0.84 0.79 0.89 0.84 — 

② None 0.91 0.92 0.91 0.91 0.97

ACGAN 0.92 0.94 0.93 0.93 0.96

DCGAN 0.85 0.87 0.85 0.86 0.94

COVID- CT- GAN 0.93 0.96 0.93 0.94 0.98

③ None 0.82 0.85 0.80 0.82 0.90

ACGAN 0.84 0.85 0.81 0.83 0.92

DCGAN 0.81 0.80 0.79 0.79 0.88

COVID- CT- GAN 0.85 0.87 0.83 0.85 0.94

TA B L E  4  The results of GANS for 
data augmentation.
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diagnose COVID- 19. As shown in Figure 5, we used 
the DenseNet- 201 architecture11 as the backbone 
network. It has five dense blocks, which connect each 
layer to each other layer in a feed- forward fashion. 
We note that the concatenation operation was com-
pleted in each dense block separately, because the 
operation can only be used on feature maps of the 
same size. We argue that concatenating the feature 
maps of these five dense blocks at the same time 
may improve network performance. Therefore, we 
used Concat- FPN to fuse the output feature maps 
that had been concatenated separately in these five 
dense blocks. To highlight the extracted features, the 
fused output map was fed into the CBAM block, to 
generate the attention map, and then was input into a 
global average pooling layer and a batch normaliza-
tion layer, to prevent overfitting. Finally, a dense layer 
with SoftMax activation function was used to output 
the classification result to complete the diagnosis of 
COVID- 19. We call the designed classifier network 
COVID- CT- DenseNet.

4 |  RESULTS

4.1 | Experimental settings and 
evaluation measures

We implemented the network architecture of COVID- 
CT- DenseNet and COVID- CT- GAN in Keras.63 All 
the models were trained using NVIDIA GeForce RTX 

2080Ti GPU with 11GB memory and Intel Core i7 
9700K CPU with 32- GB RAM. The training parameter 
settings are shown in Table 2.

We used the following five metrics to evaluate our 
approaches: (1) Accuracy, which represents the propor-
tion of samples that the diagnostic predictions matched 
with the truth. (2) Recall, which is the proportion of all 
the true- positive samples that were predicted to be 
positive. (3) Precision, which is the proportion of all the 
samples with positive predictions that were true pos-
itives. (4) F1- score, which is defined as the harmonic 
mean of recall and precision. (5) AUC, which is the area 
under the receiver operating characteristic curve (ROC 
curve), whose ordinate is the true- positive rate and ab-
scissa is the false- positive rate. The higher these five 
metrics are, the better.

4.2 | Experimental results

First, we classified the three original COVID- 19 CT 
datasets using different classifier networks, including 
the COVID- CT- DenseNet that we designed. In this 
process, we only used traditional data augmenta-
tion methods, such as zooming with a factor of 0.3 
and horizontal flipping. Transfer learning was also 
used in the experiment, as He et al.10 found that the 
networks pretrained on large- scale datasets such 
as ImageNet can achieve better classification per-
formance on COVID- 19 CT dataset. Table 3 shows 
the results of the five metrics we mentioned above. 

F I G U R E  8  Examples of the three 
classes of CT images generated by 
COVID- CT- GAN. (a) NCP; (b) CP; (c) 
Normal
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Figure 7a,b shows the ROC curves of different clas-
sifier networks on ② and ③, respectively. The closer 
the curve is to the upper- left corner, the better the 
effect. Among the three datasets, ① contains three 
classes, so we only calculated the AUC of ② and ③. 
From the comprehensive results, it can be seen that 
our proposed COVID- CT- DenseNet achieved state- 
of- the- art classification performance on the three 
different datasets, compared with other CNN- based 
classifier networks.

We further used GAN to augment the training 
data, instead of using traditional methods. In the 
COVID- CT- GAN we designed, the loss functions 
used were binary cross entropy and sparse categor-
ical cross entropy. The former calculated the loss 

of the generated pseudo- images and the original 
images, and the latter calculated the category loss 
of the generated pseudo- images. The training pro-
cess of the generator and the discriminator is an ad-
versarial process. When the loss of the generator 
and the discriminator no longer changes or tends 
to be balanced, it means that the training of GAN 
is completed.26 We used the trained model to gen-
erate images for data augmentation in the classi-
fier. As mentioned above, Frid- Adar et al.44 argued 
that the separated GAN produces better results than 
the unified GAN. Accordingly, we used the ACGAN, 
DCGAN and our proposed COVID- CT- GAN to con-
duct comparative experiments on the three datasets. 
We used the trained GAN for augmentation, and the 

F I G U R E  9  The Grad- CAM 
visualizations for the ablation experiments 
of COVID- CT- DenseNet. The first and 
second rows are samples from ①. The 
third and fourth rows are samples from 
②. The fifth and sixth rows are samples 
from ③ [Color figure can be viewed at 
wileyonlinelibrary.com]
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COVID- CT- DenseNet for classification. The results 
are shown in Table 4. None means that only original 
data were used for classification. It can be seen that 
for the three datasets we used, the performance of 
the five metrics of the unified GAN was better than 
that of the separated GAN. Examples of the three 
classes of CT images generated by COVID- CT- GAN 
are shown in Figure 8. It illustrates that COVID- 
CT- GAN can learn the characteristics of the three 
classes of CT images, and the generated images 
can be used for training the classification network.

5 |  DISCUSSIONS

Since there were limited training data for diagnos-
ing COVID- 19 on CT images automatically by CNN, 
an improved architecture of GAN was used to gen-
erate images as data augmentation. As is shown in 
Table 4, it could be found that giving category labels 
to the generator is beneficial to the quality of gen-
erated COVID- 19 CT images, and finally improves 
the classification. Furthermore, when there are 
more original data in the dataset, the gain achieved 
by using GAN for data augmentation becomes less 
obvious, and may have a negative effect, which is 

consistent with the conclusion obtained by some of 
the studies45- 48 mentioned above. To further support 
our proposed method, we conducted ablation ex-
periments on COVID- CT- DenseNet and COVID- CT- 
GAN. Figure 9 shows the Grad- CAM64 visualizations 
for the ablation experiments of COVID- CT- DenseNet. 
The experimental results of the metrics are shown in 
Tables 5 and 6. In addition, we show the number of 
weight parameters in different networks, as shown in 
Table 7. In general, the Concat- FPN with an atten-
tion mechanism, which we proposed, improved the 
performance of the original model. As we had previ-
ously shown, using Concat- FPN to fuse feature maps 
of multiple scales directly was slightly coarse, since 
it could “drown- out” part of the feature information. 
Therefore, we used the attention mechanism (i.e., 
CBAM62) to highlight the fused feature information, 
and the experimental results validated our assumption 
and analysis. In addition, we also note that the per-
formance gains from applying our proposed Concat- 
FPN to DenseNet- 201 were greater than those from 
ACGAN. Even the performance of Concat- FPN with 
the ACGAN was somewhat reduced. We speculate 
that this may be due to differences between the net-
work architectures. In COVID- CT- DenseNet, the 
scale of the feature maps was unified through the 

TA B L E  5  Ablation experiments of COVID- CT- DenseNet

Metrics Networks

Dataset

① ② ③

Accuracy DenseNet−201 0.82 0.90 0.79

DenseNet−201 + 
Concat- FPN

0.85 0.90 0.83

DenseNet−201 + Concat- 
FPN +CBAM

0.85 0.91 0.82

Recall DenseNet−201 0.76 0.83 0.79

DenseNet−201 + 
Concat- FPN

0.80 0.91 0.79

DenseNet−201 + Concat- 
FPN +CBAM

0.80 0.92 0.85

Precision DenseNet−201 0.87 0.98 0.79

DenseNet−201 + 
Concat- FPN

0.90 0.89 0.85

DenseNet−201 + Concat- 
FPN +CBAM

0.88 0.91 0.80

F1- score DenseNet−201 0.81 0.90 0.79

DenseNet−201 + 
Concat- FPN

0.85 0.90 0.81

DenseNet−201 + Concat- 
FPN +CBAM

0.84 0.91 0.82

AUC DenseNet−201 — 0.97 0.87

DenseNet−201 + 
Concat- FPN

— 0.97 0.89

DenseNet−201 + Concat- 
FPN +CBAM

— 0.97 0.90

TA B L E  6  Ablation experiments of COVID- CT- GAN

Metrics Networks

Dataset

① ② ③

Accuracy ACGAN 0.84 0.92 0.84

ACGAN 
+Concat- FPN

0.82 0.89 0.80

ACGAN +Concat- 
FPN +CBAM

0.84 0.93 0.85

Recall ACGAN 0.81 0.94 0.85

ACGAN 
+Concat- FPN

0.77 0.92 0.82

ACGAN +Concat- 
FPN +CBAM

0.79 0.96 0.87

Precision ACGAN 0.86 0.93 0.81

ACGAN 
+Concat- FPN

0.84 0.92 0.80

ACGAN +Concat- 
FPN +CBAM

0.89 0.93 0.83

F1- score ACGAN 0.83 0.93 0.83

ACGAN 
+Concat- FPN

0.80 0.92 0.81

ACGAN +Concat- 
FPN +CBAM

0.84 0.94 0.85

AUC ACGAN - 0.96 0.92

ACGAN 
+Concat- FPN

- 0.92 0.93

ACGAN +Concat- 
FPN +CBAM

- 0.98 0.94
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convolution with different strides, whereas it is unified 
through the upsampling with different pooling sizes 
in the generator of COVID- CT- GAN. In the process 
of upsampling, the feature loss may be more seri-
ous than the process of convolution. In COVID- CT- 
GAN, we tried using the 3 × 3 convolution on each 
merged map to reduce the aliasing effect caused by 
upsampling as in COVID- CT- DenseNet. However, 
that greatly increased the number of parameters in 
the generator, making it difficult to train. This is also 
the reason why we used Concat- FPN to fuse the 

attention maps of different upsampling blocks. The 
CBAM parameter was very small compared with the 
generator network, and the shape of its output atten-
tion maps was consistent with the input. In the last 
part of the experiment, we explored a problem that 
we had encountered, that is, the impact of the number 
of upsampling layers of the generator and the size of 
the convolutional kernels on our proposed COVID- 
CT- GAN. To be consistent with the previous section, 
we used the generated images for data augmenta-
tion, and COVID- CT- DenseNet for classification. For 
convenience, we denote the five metrics (accuracy, 
recall, precision, F1- score and AUC) as M1 through 
M5, respectively. As is shown in Table 8, k is the size 
of the convolutional kernels and up is the number of 
upsampling layers of the generator. From the results 
of the comparison, we found that, as for ① and ②, 
when the number of upsampling layers of the gen-
erator was 3, and the size of the convolution kernels 
used was 5 or 7, our proposed COVID- CT- GAN could 
achieve better performance for data augmentation. 
As for ③, using 7 as the size of the convolution ker-
nels may be better. We think that, in the case of simi-
lar network parameters, multiple uses of upsampling 
may lead to partial feature information loss, whereas 
less upsampling means fewer initial input feature di-
mensions, thus affecting the quality of the generated 

TA B L E  7  Comparison of parameter numbers

Networks
Parameter 
numbers

VGG−19 20,027,971

EfficientNet- B5 28,527,859

ResNet−101 42,672,515

ResNeXt−101 42,280,899

DenseNet−169 12,654,531

DenseNet−201 18,355,427

COVID- CT- DenseNet 26,972,133

ACGAN 50,768,077

COVID- CT- GAN 53,159,061

TA B L E  8  The impact of the number of upsampling layers of the generator and the size of the convolutional kernels on the performance 
of COVID- CT- GAN

k = 3 k = 5 k = 7 k = 9

① ② ③ ① ② ③ ① ② ③ ② ② ③

up=1 M1 0.74 0.86 0.77 0.81 0.87 0.79 0.79 0.88 0.80 0.83 0.86 0.77

M2 0.71 0.87 0.79 0.72 0.89 0.78 0.74 0.90 0.79 0.72 0.89 0.80

M3 0.81 0.91 0.80 0.83 0.91 0.80 0.85 0.92 0.82 0.86 0.93 0.82

M4 0.76 0.89 0.79 0.77 0.90 0.79 0.79 0.91 0.80 0.78 0.91 0.81

M5 — 0.97 0.90 — 0.92 0.89 — 0.90 0.93 — 0.93 0.91

up=2 M1 0.80 0.87 0.78 0.82 0.89 0.82 0.81 0.92 0.83 0.82 0.84 0.76

M2 0.77 0.89 0.82 0.74 0.90 0.86 0.76 0.92 0.88 0.78 0.90 0.81

M3 0.86 0.90 0.80 0.88 0.94 0.81 0.89 0.94 0.81 0.85 0.91 0.82

M4 0.81 0.89 0.81 0.80 0.92 0.83 0.82 0.93 0.84 0.81 0.90 0.81

M5 — 0.94 0.90 — 0.95 0.92 — 0.97 0.94 — 0.96 0.95

up=3 M1 0.82 0.88 0.82 0.83 0.90 0.84 0.84 0.93 0.85 0.82 0.91 0.80

M2 0.73 0.94 0.84 0.80 0.97 0.86 0.79 0.96 0.87 0.77 0.97 0.84

M3 0.84 0.91 0.79 0.89 0.94 0.83 0.89 0.93 0.83 0.88 0.91 0.84

M4 0.78 0.92 0.81 0.84 0.95 0.84 0.84 0.94 0.85 0.82 0.94 0.84

M5 — 0.95 0.91 — 0.97 0.93 — 0.98 0.94 — 0.97 0.93

up=4 M1 0.79 0.91 0.80 0.84 0.90 0.83 0.82 0.92 0.84 0.81 0.90 0.79

M2 0.70 0.93 0.79 0.77 0.92 0.85 0.78 0.95 0.86 0.74 0.93 0.82

M3 0.83 0.89 0.81 0.84 0.90 0.81 0.90 0.92 0.84 0.87 0.90 0.80

M4 0.76 0.91 0.80 0.80 0.91 0.83 0.84 0.93 0.85 0.80 0.91 0.81

M5 — 0.93 0.89 — 0.96 0.93 — 0.96 0.93 — 0.95 0.90
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images. It is worth mentioning that in our previous 
experiments, we used 7 as the size of the convolution 
kernels, and 3 as the number of upsampling layers in 
the generator of COVID- CT- GAN.

6 |  CONCLUSIONS

In the study, we propose a Concat- FPN architecture 
with an attention mechanism, which can fuse features 
of different scales in the network. The Concat- FPN was 
further used to form COVID- CT- GAN and COVID- CT- 
DenseNet for generating and classifying COVID- 19 
CT scan images, respectively. On three COVID- 19 CT 
datasets of different magnitudes, our method achieved 
improved results in five metrics. We conducted compar-
ative experiments to explore the impact of the number 
of upsampling layers of the generator and the size of 
the convolutional kernels on the performance of COVID- 
CT- GAN. The results demonstrate that by using the new 
COVID- CT- GAN we could solve the problem of limited 
training data when using deep learning methods to au-
tomatically diagnose COVID- 19. Our work improves the 
accuracy of diagnosing COVID- 19 on CT images.
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