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Abstract: Physiological brain aging is characterized by gradual, substantial changes in cognitive
ability, accompanied by chronic activation of the neural immune system. This form of inflammation,
termed inflammaging, in the central nervous system is primarily enacted through microglia, the
resident immune cells. The endocannabinoid system, and particularly the cannabinoid receptor
2 (CB2R), is a major regulator of the activity of microglia and is upregulated under inflammatory
conditions. Here, we elucidated the role of the CB2R in physiological brain aging. We used CB2R−/−

mice of progressive ages in a behavioral test battery to assess social and spatial learning and memory.
This was followed by detailed immunohistochemical analysis of microglial activity and morphology,
and of the expression of pro-inflammatory cytokines in the hippocampus. CB2R deletion decreased
social memory in young mice, but did not affect spatial memory. In fact, old CB2R−/− mice had a
slightly improved social memory, whereas in WT mice we detected an age-related cognitive decline.
On a cellular level, CB2R deletion increased lipofuscin accumulation in microglia, but not in neurons.
CB2R−/− microglia showed an increase of activity markers Iba1 and CD68, and minor upregulation
in tnfa and il6 expression and downregulation of ccl2 with age. This was accompanied by a change in
morphology as CB2R−/− microglia had smaller somas and lower polarity, with increased branching,
cell volume, and tree length. We present that CB2Rs are involved in cognition and age-induced
microglial activity, but may also be important for microglial activation itself.

Keywords: cannabinoid receptor 2 (CB2R); microglia; inflammaging; memory; lipofuscin

1. Introduction

Inflammaging, low-grade age-dependent inflammation, has been named one of the
seven pillars of aging [1–3] and is one of the main causes of altered intracellular communi-
cation. In this type of inflammation, accumulating molecular signals produced throughout
life act as the primary stimuli that activate macrophages and microglia [2,3]. These molec-
ular signals can include a dysfunctional immune system that fails to efficiently clean
pathogens, enhanced pro-inflammatory tissue damage, cellular senescence, enhanced
NF-kB activation, or a defective autophagy response [4].

In the brain, inflammaging affects the activity of the resident innate immune cells—
microglia. In young mice, microglia scan their surroundings to react to changes in the
environment. Upon detection of neuronal damage or assault, they travel to the site of injury
to phagocytose debris and to potentially induce a neuroinflammatory signaling cascade.
However, this process is disturbed with aging. Aged microglia are less motile and have
deficits in their phagocytic capacity, but show increased secretion of pro-inflammatory
cytokines [5]. This age-induced priming of microglia is thought to influence their responses
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to infections or even stress [6,7]. Aged microglia also frequently become senescent, which
further hinders their protective functions [7].

Many studies indicated that the endocannabinoid system (ECS) is an important reg-
ulator of microglial activity [8–10] and age-related cellular and molecular changes. ECS
consists of two main receptors, the endocannabinoid receptors 1 and 2 (CB1R and CB2R);
their ligands the endocannabinoids (ECs) 2-arachidonoylglycerol and anandamide, as well
as EC-synthesizing and -degrading enzymes. Presynaptic CB1Rs are an integral part of a
synaptic feedback mechanism [11], whereas CB2Rs modulate immune cell functions and
microglia activity. Under basal conditions, CB2R expression in the brain is low and not
readily detectable with most conventional methods [12–16]. However, it is upregulated
under inflammation [17]. Moreover, recent findings also support the presence of functional
CB2Rs on neurons [13,18–22].

Mice lacking CB1R exhibit accelerated age-related cognitive decline, gliosis, and in-
creased expression of inflammatory cytokines in the brain [23–26]. At the same time, overall
endocannabinoid tone decreases with age, as 2-AG level and DAGLα expression declined
in 12-month old versus 2-month old mice alongside with CB1R binding to G-protein [27–29].
A chronic low-dose treatment of 18-month old mice with ∆9-THC, a CB1/CB2 agonist,
resulted in recovery of their cognitive impairment to the levels of 2-month old mice [30].
The change in cognition was accompanied by an increase in synaptic proteins and in
dendritic spine density in the hippocampus [30]. While these data suggest that the ECS is
an important player in brain aging, its precise function remains unclear. In particular, it
remains unknown if and how CB2Rs contribute to brain aging.

In this study, we characterized the role of CB2R in physiological brain aging, focusing
on cognition and inflammaging. We investigated cognitive performance of young, adult,
and old CB2R−/− mice, and subsequently analyzed age-induced changes in microglial
morphology and activity.

2. Results
2.1. CB2R Deletion Has a Moderate Age-Dependent Effect on Cognition

To investigate the age-related cognitive performance in CB2R−/− mice, we used the
partner recognition (PR) and Morris water maze (MWM). Anxiety-related behaviors were
analyzed in the o-maze test (Figure 1A). All experiments were performed with young
(3-months), adult (12-months), and old (18-months) male mice.

In the PR test, all groups showed intact sociability (Figure 1B), as evidenced by a
significantly increased preference for the caged mouse of the metal can (one sample-test
**** p < 0.0001 for each group). We detected no significant effects of genotype or age with
regard to sociability. WT mice recognized their previous partner after 30 min separation
and showed a preference for the novel partner in the 3-months and 12-months, but not in
the 18-months group (one sample t-test against a hypothetical mean (50%): 3-months WT
mice p = 0.0468; 12-months WT mice p = 0.0035; 18-months old CB2R−/− mice p = 0.0472)
(Figure 1C). We also detected a significant decrease in preference between 3-months and
18-months indicating an age-related cognitive decline (two-way ANOVA age x genotype
effect: F2,71 = 17; p = 0.0336). In contrast, the preference in CB2R−/− mice was higher
than the chance level exclusively in the 18-month group. Consistently, after 1 h separation,
we determined a preference for the novel partner in 3-month, but not in 12-months or
18-months old WT mice (one sample t-test against a hypothetical mean (50%): 3-months
WT mice p = 0.0021) (Supplementary Figure S1A). We also revealed a significant age-related
decrease in preference between 3-months and 12-months and 3-months and 18-months
WT mice. In comparison, preference of the CB2R−/− did not differ from the chance level
in any of the investigated age groups, but it was increased in the 18-months old group in
comparison to WT mice. Thus, CB2R deletion caused a moderate age-dependent change in
social memory.
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Figure 1. CB2R deletion has a moderate age-dependent effect on cognition. (A) Experimental timeline: Partner Recognition
(PR), O-maze, and Morris Water Maze (MWM). (B) Sociability in the PR test was calculated as interaction time with a partner
mouse over total interaction time. All groups were social as indicated by mean sociability >50%. (C) Preference for the novel
partner (after 30 min separation) was calculated as time with the novel partner mouse over total interaction time. Each
group was analyzed individually by one-sample t-test (hypothetical mean = 50). Significant difference from the 50% chance
level indicated learning (one sample t-test against a hypothetical mean (50%): 3-months WT mice p = 0.0021). * p < 0.05;
** p < 0.01; **** p < 0.0001. Each point represents a single mouse. Red line indicates the mean value ± SEM. Line indicates a
50% chance level. Grey box indicates 5% variance around the chance level. Two-way ANOVA followed by Sidak’s multiple
comparison test with # p < 0.05 significance between age groups within the same genotype. (D) Acquisition and reversal
phase of the MWM. Panels from left to right: 3-, 12- and 18-months old mice. Decrease in the average latency was detected
in all groups. RM ANOVA followed by Sidak’s multiple comparison test with exact p-value reported between genotypes
within the same age group. WT mice—white circle; CB2R−/− mice—grey circles. N = 14–15 mice/genotype/age group.

In the MWM test, all age groups of CB2R−/− mice and WT controls showed a
similar improvement during the acquisition phase and a similar performance during
the reversal phase of the test (RM ANOVA: 3-months acquisition time: F5,135 = 12.29;
p < 0.0001, reversal time: F2,54 = 8.366; p = 0.0007; 12-months acquisition time: F5,135 = 33.06;
p < 0.0001, reversal interaction: F2,54 = 3.92; p = 0.0257, time: F2,54 = 20.04; p < 0.0001, 18-
months acquisition time: F5,135 = 31.62; p < 0.0001, reversal time: F2,54 = 12.82; p < 0.0001)
(Figure 1D). Additionally, all groups showed preference for the target quadrant dur-
ing the probe trial (one sample t-test against a hypothetical mean (22.5 s): WT mice:
3-months p = 0.0088; 12-months p = 0.0002; 18-months p = 0.0421; CB2R−/− mice: 3-months
p = 0.0219; 12-months p = 0.0008; 18-months p = 0.0018) (Supplementary Figure S1B). More-
over, changes in memory performance cannot be explained by changes in motility, as we did
not detect any significant genotype effect in distance travelled or velocity in any of the tests
(Supplementary Figure S2B). Taken together, these provide no evidence for age-related,
CB2R-mediated effects on cognitive performance.
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2.2. CB2R Deletion Decreases Anxiety in an Age-Independent Manner

In the o-maze test, we determined a significant age and genotype effect for the time
spent in the open compartment (two-way ANOVA age effect: F2,82 = 10.26; p = 0.0001;
genotype effect: F1,82 = 4.427; p = 0.0384) (Figure 2A). Post hoc testing showed that the time
spent in the open compartments decreased significantly in adult and old mice. We did not
detect any significant genotype differences within the same age-group (Supplementary
Table S1). Furthermore, we measured a significant age and genotype effect for the distance
travelled in the open compartment. We revealed a significant decrease between 3- and
18-month old WT mice and 3- and 12-months old as well as 3- and 18-months old CB2R−/−

mice (two-way ANOVA age effect: F2,82 = 17; p < 0.0001; genotype effect: F1,82 = 7.009;
p = 0.0097). Post hoc analysis did not reveal any significant differences between genotypes
within the same age group, but we noted a trend for increased distance travelled in the
open compartment in CB2R−/− mice.

1 

 

 

 
Figure 2. CB2R deletion results in a decreased anxiety phenotype in O-maze. (A) Left panel: % of time spent in the
open compartment depended on the age and genotype of the mice. Decreased % of time indicates higher anxiety. Right
panel: distance travelled in the open compartment depended on the age and genotype of the mice. Decreased distance
indicates higher anxiety. (B) Left panel: number of stretched posture behaviors was dependent on genotype and age.
Increased number of stretched postures indicates higher anxiety. Right panel: number of head dipping behaviors in the
open compartment was increased in CB2R−/− mice independent of age. Decreased number of head dips indicates higher
anxiety. WT mice—white circle; CB2R−/− mice—grey circles. N = 14–15 mice/genotype/age group. Each point represents
a single mouse. Red line indicates the mean value ± SEM. Two-way ANOVA followed by Sidak’s multiple comparison test
with * p < 0.05, ** p < 0.01, *** p < 0.001 significance between genotypes within the same age group; # p < 0.05, ## p < 0.01,
### p < 0.001 significance between age groups within the same genotype.

Then, we assessed behaviors associated with anxiety and risk assessment (Figure 2B).
An increased number of stretched postures and a decreased amount of head-dipping is
interpreted as increased anxiety-like behavior. In contrast, we detected a genotype and
age effects for the number of stretched postures (two-way ANOVA age effect: F2,81 = 4.152;
p = 0.0192; genotype effect: F1,81 = 13.24; p = 0.0005). Additionally, we measured a genotype
effect and a significant increase of head-dipping behavior in CB2R−/−mice in all age groups
(two-way ANOVA genotype effect: F1,81 = 33.24; p < 0.0001).
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2.3. Age-Dependent Increase of Lipofuscin Affected by CB2R Deletion in Microglia, but Not in
Neurons in the Hippocampus

We next measured the accumulation of lipofuscin in hippocampal pyramidal neurons
as age-related lipofuscin accumulation is associated with neuronal loss [31].

The age-related accumulation of lipofuscin, as measured by the area covered and
particle density (Figure 3A,B), was similar in WT and CB2R mice (two-way ANOVA
area covered, age effect: F2,66 = 81.41, p < 0.0001, particle density age effect: F2,65 = 82.98,
p < 0.0001) (Supplementary Table S1). 

2 

 Figure 3. Accumulation of Lipofuscin in hippocampal pyramidal neurons during aging is not altered by CB2 deletion.
Representative microscopy images of Lipofuscin accumulation in hippocampal pyramidal neurons with a scale bar of 50 µm
(A). The area covered with lipofuscin (B) and the particle density (C) show a significant increase but is not different between
WT and CB2R−/− mice. WT mice—white circle; CB2R−/− mice—grey circles. N = 6 mice/genotype/age group, two
substacks per animal. Each point represents a single substack. Red line indicates the mean value ± SEM. Two-way ANOVA.

We next analyzed the accumulation of lipofuscin in microglia from hippocampal
stratum radiatum as age-related lipofuscin accumulation is also associated with microglial
functional decline [32,33].

Lipofuscin accumulation in hippocampal radial microglia as measured by the area
covered increased significantly with age in both WT and CB2R−/− (two-way ANOVA
area covered, age effect: F2,419 = 47.06, p < 0.0001) (Figure 4A,B). In WT mice lipofuscin
increased from on average 0.68% (3-months) to 1.06% (12-months) and reached 3.72%
(18-months), while in microglia from CB2R−/− mice increased from 0.21% (3-months) to
3.35% (12-months) and reached 4.4% (18-months). The age-related increase of lipofuscin-
accumulation was higher in CB2R−/− mice (two-way ANOVA area covered, genotype
effect: F1,419 = 7.857, p = 0.0053) which resulted in an interaction effect (two-way ANOVA
area covered F2,419 = 7.514; p = 0.0006) (Figure 4B). Aligned with the enhanced covered area,
the particle density significantly increased with age in both genotypes (two-way ANOVA
particle density, age effect: F2,429 = 48.34, p < 0.0001) (Figure 4C) but was not significantly
different between WT and CB2R−/− mice (Supplementary Table S1).
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3 

 Figure 4. Accumulation of Lipofuscin in microglia is increased after CB2 deletion. Representative microscopy images of
Lipofuscin accumulation in microglia in the stratum radiatum of the hippocampus. Scale bar represents 50 µm (A). The
microglial somatic area covered with lipofuscin (B) and the particle density (C) show a significant increase with age in
both genotypes. Microglia from CB2R−/− mice show enhanced lipofuscin accumulation in comparison to WT mice, which
resulted in an interaction effect. WT mice—white; CB2R−/− mice—grey. N = 6 mice/genotype/age group. Data displayed
as median (full line) with 25 and 75 percentiles (dotted lines). Two-way ANOVA followed by Sidak’s multiple comparisons
with *** p < 0.001 significance between genotypes within the same age group; #### p < 0.0001 significance in relation to
3-months old group within the same genotype.

2.4. Age-Induced Microglial Activity Is Altered in CB2R−/− Microglia

Next, we analyzed Iba1 intensity and CD68 area fraction in the somas of hippocampal
radial microglia from WT and CB2R−/− mice to characterize microglial activity.

Iba1 intensity increased in both WT and CB2R−/− microglia with age (two-way
ANOVA MGV, age effect: F2,345 = 11.43, p < 0.0001) (Figure 5A,B). This was accompanied
by an age-induced increase in CD68 expression in both WT and CB2R−/− microglia (two-
way ANOVA area covered, age effect: F2,334 = 18.11, p < 0.0001) (Figure 5C). Interestingly,
CB2R−/− microglia showed significantly enhanced Iba1 intensity when compared with WT
microglia (two-way ANOVA MGV, genotype effect: F1,345 = 36.48, p < 0.0001, interaction
effect: F2,345 = 3.525, p = 0.0305) (Figure 5B). This was further supported by enhanced CD68
content in CB2R−/− microglia from 18-months old mice (Figure 5C).
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We also analyzed the expression of the inflammatory mediators: tnfa, il6, ccl2, arg1
and nos2 in the hippocampus as markers of inflammaging.

Expression of tnfa (two-way ANOVA age effect: F2,28 = 7.804, p = 0.002) (Figure 6A),
il6 (two-way ANOVA age effect: F2,28 = 15.08, p < 0.0001) (Figure 6B) and ccl2 (two-way
ANOVA interaction genotype × age effect: F2,29 = 4.738; p = 0.0166; age effect: F2,29 = 12.29;
p = 0.0001) increased with age in the hippocampus. In WT mice, we observed a steady
increase of tnfa expression. The expression of il6 increased from 3- to 12- months but then
decreased from 12- to 18- months, back to the il6 expression levels at 3- months (Figure 6B). 

4 

 Figure 5. Iba1 and CD68 intensity is enhanced in CB2R−/− microglia. Representative microscopy images from pyramidal
microglia of 3-, 12- and 18- month old WT and CB2R−/− mice with a scale bar of 10 µm (A). Iba1 intensity increased with
age in both genotypes and was also enhanced in CB2R−/− microglia when compared to WT microglia (B). CD68 expression
was measured by area covered and increased significantly with age (C). Data displayed as median (full line) with 25 and
75 percentiles (dotted lines) (B,C). WT mice—white; CB2R−/− mice—grey. N = 6 mice/genotype/age group. Two-way
ANOVA followed by Sidak’s multiple comparisons with * p < 0.05, **** p < 0.0001 significance between genotypes within
the same age group.

The age-dependent increase of tnfa expression was more prominent in CB2R−/−

with significant increase between 3-months and 12-months and 3-months and 18-months
(Figure 6A). Similarly, il6 expression increased from 3- to 12- months, but in contrast to WT
mice, it did not significantly decrease between 12-months and 18-months (Figure 6B). How-
ever, there was no significant difference between 3-months and 18-months old CB2R−/−

mice. Expression of ccl2 increased significantly between 3- and 18-months and 12- and
18-months exclusively in WT mice (Figure 6C). This resulted in a lower expression of ccl2
in 18-month old CB2R−/− mice in comparison to WT controls.
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The expression of arg1 was not altered by aging or CB2R deletion (Figure 6D), whereas
for the expression of nos2, we detected an age effect, but no genotype effect (Figure 6E;
two-way ANOVA age effect: F2,26 = 4.275; p = 0.0248).

Thus, CB2R deletion did not majorly alter cytokine expression in the hippocampus,
but subsided an age-related increase in the ccl2 expression.

To characterize the role of CB2R microglial activation in the context of inflammaging,
we analyzed 3D microglial morphology of WT and CB2R−/− hippocampal microglia.

The soma size of microglia significantly increased with age in both WT and CB2R−/−

(soma size, age effect: F2,1000 = 22.97; p < 0.0001) (Figure 7B). However, the increase was
significantly less prominent in CB2R−/− microglia as we detected a significant decrease in
soma size in microglia from 18-months CB2R−/− old mice. 

5 

 Figure 6. Age-dependent alteration in expression of inflammatory mediators. Expression of tnfa (A) and
il6 (B) in hippocampal tissue increases with age but does not differ between WT and CB2R−/−.
Expression of ccl2 (C) increases with age in WT, but not in CB2R−/−. Expression of arg1 (D) did
not differ between age groups and genotypes, whereas nos2 expression (E) decreased with age. WT
mice—white circle; CB2R−/− mice—grey circles. N = 4–6 mice/genotype/age group. Each point
represents a single mouse. Red line indicates the mean value ± SEM. Data were analyzed with
two-way ANOVA followed by Sidak’s multiple comparison test, with * p < 0.05, significance between
genotypes within the same age group; ## p < 0.01, ### p < 0.001, #### p < 0.0001 significance between
age groups within the same genotype.
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 Figure 7. CB2R deletion changes hippocampal microglial morphology. Representative reconstruction
images with a scale bar of 20 µm (A). Microglia morphology was analyzed by measuring the
soma size (B), volume (C), ramification index (D), polarity index (E), tree length (F), and average
branch length (G). Microglia morphology differs between CB2R−/− mice and WT mice. Soma
size increased with age in both WT and CB2R−/− microglia. Data displayed as median (full line)
with 25 and 75 percentiles (dotted lines). WT mice—white circle; CB2R−/− mice—grey circles.
N = 6 mice/genotype/age group. Two-way ANOVA followed by Sidak’s multiple comparisons
with * p < 0.05, ** p < 0.01, *** p < 0.001, significance between genotypes within the same age group,
# p < 0.05, #### p < 0.0001 significance between age groups within the same genotype.
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Volume, ramification index, polarity index, tree length, and average branch length
(Figure 7C–G) were not significantly altered with age (Supplementary Table S1). In contrast,
microglia from CB2R−/− mice showed an altered morphology with significant differences
in volume, ramification index, polarity index, tree length, and average branch length
(genotype effect, soma size: F1,1000 = 15.99; p < 0.0001; volume: F1,316 = 11.6; p = 0.0007;
ramification index: F1,317 = 15.18; p = 0.0001; polarity: F1,340 = 15.27; p = 0.0001; tree length:
F1,329 = 13.02; p = 0.0004; average branch length: F1,326 = 5.847; p = 0.0161) (Figure 7C–G),
which was most prominent at the age of 3 months.

3. Discussion

We report that CB2R deletion, in contrast to CB1R deletion, has little to no effect on age-
related changes in cognitive or anxiety-related behaviors. Nevertheless, we detected subtle
genotype effects on inflammaging and microglial function. CB2R−/− microglia exhibited
an increased age-related lipofuscin accumulation and enhanced Iba1 and CD68 levels.
Molecular changes were accompanied by altered microglial morphology, and moderately
changed secretion of proinflammatory cytokines.

Several studies have shown that administration of THC to old animals was able to
reverse many of the adverse consequences of aging on brain physiology and cognitive
functions [30,34,35]. Whereas it has been established that CB1 receptors are the main target
for these pro-cognitive effects of THC, the involvement of CB2 is less clear. Our results
now suggest that CB2 receptors have little influence on the age-related decline of cognitive
functions. However, they modulate age-related changes in the brain’s inflammatory milieu
and thus may be involved in the effects of THC on brain inflammaging.

Recent reports confirming the presence of functional CB2R on neurons prompted us
to investigate if CB2R deletion also results in an accelerated aging phenotype with early
cognitive impairment, similar to what has been observed in CB1R−/− mice. We found
no evidence for an accelerated age-dependent memory decline in CB2R−/− mice. On the
contrary, we observed that the changes of social memory were inversely correlated with
age in CB2R−/− mice. While young CB2R−/− mice showed a slight decrease in social
memory, old mice performed slightly better than age-matched controls. In agreement
with the former, we have recently reported an impairment in social memory in CB2R−/−

mice of both sexes aged between 4 and 6-months [34]. In contrast, we did not observe
any significant differences in long-term spatial memory, although we detected trends
indicating a slightly better performance of 18-month CB2R−/− mice. The impairment in
social memory in young mice did not arise due to altered anxiety-like behaviors. Contrary
to previous reports, we measured an age-independent decrease in anxiety-like behavior in
CB2R−/− mice [35].

In agreement with our findings, other studies done on young CB2R−/− mice showed
a decrease in hippocampus-dependent fear memory [36,37]. Synaptic changes might
underlie the cognitive deficits that we and others observed in younger CB2R−/− mice, as
CB2R deletion decreased dendritic spine density in the hippocampus [36,38].

Previous studies have investigated CB2R age-related changes in the context of
Alzheimer’s disease (AD), where modulating CB2R function impacted microglia activity,
amyloid plaque load and cognitive abilities of AD-related model mice [39–41]. Whether
cognitive changes were due to a direct modulation of the CB2R on neurons or through
microglia activity regulation remains unclear. Likewise, it is possible that either or both
neuronal and microglial CB2Rs contributed to the social memory phenotype that we
observed in our study. Nevertheless, our study strengthens an important role of CB2R in
microglia activity in the context of inflammaging as we observed that the deletion of the
CB2R increased accumulation of lipofuscin and CD68 levels in aged microglia.

CB2R expression is increased in microglia and macrophages in many diseases and
acute inflammatory states, but also during aging, which may be due to inflammag-
ing [41,42]. Aged microglia frequently have dystrophic morphology, with increased
pro-inflammatory and decreased neuroprotective functions [33,43–45]. Therefore, we
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investigated age-related microglial activation by assessing Iba1 expression and cell mor-
phology. Microglia from young CB2R−/− mice had slightly increased cell surface, processes
tree-length, number of branches, and ramification index, while their polarity index was
decreased. These morphological changes were in line with a less-reactive microglial state
and became less pronounced with aging. Microglial soma size increased with age, which
is in line with previous studies [46]. However, the somas of CB2R−/− microglia were
smaller than those of WT microglia—especially in old mice—which could indicate reduced
microglial activity. The aforementioned morphological changes were consistent with a
less reactive state of microglia observed in young CB2R−/− mice. It is in agreement with
previous findings showing a dampened immune response to a pro-inflammatory stimu-
lus [40], thus indicating that CB2R signaling is required for an efficient microglia activation
in young mice. Furthermore, a subtle decrease in an average branch length in addition to
an increase in whole-cell Iba1 levels and CD68 levels, was detected in old mice. Age-related
increases in Iba1 levels [47,48] and enhanced CD68 levels [49] were reported previously,
supporting the idea that microglial reactivity in older CB2R−/− mice was accompanied
by increased phagocytic activity. However, we did not observe corresponding changes
in microglial morphology that would indicate a more reactive microglial state. Thus, it
is possible that in CB2R−/− mice, the upregulation of Iba1 and CD68 did not result in a
functional change of microglia.

One of the key characteristics of aging is a disturbed proteostasis, which can be
observed by an intracellular accumulation of potentially damaging protein aggregates [4].
Among others, lipofuscin has been shown to accumulate both in neurons and microglia in
an age-dependent manner and impair cognition [31,50–52]. One main hypothesis states
that lipofuscin accumulation in microglia occurs due to an increased phagocytosis of
neuronal debris [53,54]. This is supported by findings that accumulation of lipofuscin-like
lysosomal particles in microglia is connected with increased phagocytosis of myelin and
suggests microglial degradative pathways as a critical target [32]. This accumulation in turn
possibly leads to impaired microglial functions [55]. A loss of CB1R accelerated lipofuscin
accumulation in the hippocampus [56]. Therefore, we hypothesized that the age-dependent
effect of CB2R deletion on cognition could be a result of altered lipofuscin accumulation
in either neurons or microglia. We detected an age-related increase of lipofuscin in both
WT and CB2R−/− hippocampal microglia, as reported previously [32,33,56]. However,
exclusively CB2R−/− microglia showed enhanced lipofuscin accumulation, suggesting a
deficit in lysosomal degradation. This idea is supported by a recent study that showed
that CB2R activation promotes the autophagy flux in macrophages and that the autophagy-
lysosome pathway was involved in CB2R-mediated HMGB1 (High mobility group box 1)
degradation [57]. Nevertheless, the role of CB2R in lysosomal pathways is still not well
understood. Future studies should therefore include a more detailed analysis as to whether
CB2R deletion impacts microglial phagocytosis and autophagy and whether these processes
are also modulated by enhanced lipofuscin-accumulation.

We also analyzed the expression of inflammatory mediators tnfa, il6, ccl2, nos2, and
arg1. Tnfa, ccl2, and il6 expression increased with age as reported previously [33,58],
whereas arg1 expression was not changed with age. In our study, il6 expression increased
up to the age of 12 months and then decreased again at the age of 18 months. Since
astrocytes also produce il6, we cannot exclude the possibility that astrocytes might dilute
the direct effects of microglia. Interestingly, the age-induced increase of tnfa expression was
even more pronounced in CB2R−/− mice when compared to WT mice. In contrast, ccl2
expression was significantly lower in CB2R−/− mice than in WT at the age of 18 months.
We observed similar effects before in vitro and in an AD mouse [40], supporting our idea
that CB2R deletion alters inflammaging.

CB2R mediated signaling in microglial response during aging was previously investi-
gated only in the context of age-related neuroinflammatory diseases (including Alzheimer’s
disease). CB2R activation decreased microglial activity [41,59,60]. Similar results were also
observed in AD-related mouse models after CB2R deletion [40,41]. However, one should
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consider that pharmacological CB2R activation/inhibition represents acute effects, whereas
CB2R deletion represents chronic effects, which might be highly variable, especially during
long-term processes such as inflammaging. We have recently shown that CB2R is necessary
for toll like receptor (TLR)-mediated microglial activation [61]. Stimulated microglia from
CB2R−/− mice had distinct gene expression patterns, disturbed downstream signaling,
and failed to show morphological signs of reactivity [61]. The findings suggest that CB2R
activation is not only able to shift microglial activity from a pro- to an anti-inflammatory
state but is also necessary to induce microglial activation in general. These recent data
suggest that the role of CB2R on microglial activation is crucial and significantly more
complex than previously thought and therefore needs to be investigated more thoroughly.

Taken together, we report that CB2R deletion has no effects on long-term spatial
memory but has mild effects on short-term social memory during aging. Furthermore, we
showed an age-dependent increase of lipofuscin in CB2R−/− microglia but not in CB2R−/−

neurons. Enhanced lipofuscin accumulation in CB2R−/− hippocampal microglia was
accompanied by increased Iba1 and CD68 levels. Microglial morphology was not majorly
altered with age as aging exclusively increased microglia soma size but did not alter other
investigated parameters. However, CB2R−/− microglia showed morphological differences
independent of age with increased cell volume, ramification index, and process tree length,
and decreased polarity and soma size. We conclude that CB2R plays a role in cognition
and microglial regulation in an age-dependent manner. Furthermore, our data suggest
that CB2R deletion contributes to microglial activity and might be crucial for microglial
activation itself.

4. Materials and Methods
4.1. Animals

The generation of CB2R−/− mice has been previously described [62]. C57BL/6J were
originally obtained from a commercial breeder (Charles River) and bred in house. CB2R−/−

mice were bred homozygous and backcrossed to the C57BL/6J line every six generations
to minimize the risk of genetic drift.

All animals were housed in specific-pathogen-free conditions in the main animal
facility of the University of Bonn. After weaning, mice were housed grouped in standard
laboratory cages, with an automatic ventilation system, and ad libitum water and food
access, under 12 h light-dark cycle (lights on at 09:00 a.m.). Cages were monitored daily
and bedding, water, and food were changed weekly. Experiments were carried out with
male mice at the age of around 3, 12, and 18 months.

Care of the animals and conduct of the experiments followed the guidelines of the
European Communities Directive 86/609/EEC and the German Animal Protection Law
regulating animal research and were approved by the Landesamt für Natur-, Umwelt-,
und Verbraucherschutz (LANUV NRW), Germany (AZ 84-02.04.2017.A231).

4.2. Behavioral Testing

A week before the first behavioral test, mice were single-housed and transferred to a
room with a reversed light-dark cycle (lights off at 9:00 a.m.). Tests were interspersed with
7-day intervals. Groups with 3, 12, and 18 month-old mice were tested independently and
analyzed using Ethiovision XT 8.5 and 13 (Noldus, RRID:SCR_000441). The experimenter
was blind to the genotype.

4.3. Partner Recognition

Partner recognition (PR) paradigm was used to assess social memory. The test was
performed in an open-field box (44 cm × 44 cm) containing a thin layer (about 1 cm) of
sawdust. For three consecutive days, mice were allowed to explore the arena freely for
10 min, and habituate to the environment. On the test day, mice underwent two trials. In
trial 1, mice were given 9 min to freely explore the arena containing an object (metal can)
and a grid cage (diameter about 10 cm, height about 12 cm) with an unfamiliar C57BL6/J
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male partner mouse. The can and the cage were in opposite corners, each placed about
6–7 cm from the wall. Partner mice were approximately 10 weeks old. Interaction was
noted when the mouse nose point was within 2 cm of the cage/object. The time spent
on top of any of the objects was deducted from the interaction time. After trial 1, mice
were returned to their home cages for 30 min (Figure 1) or 1 h (Supplementary Figure S1A).
Sociability in trial 1 was calculated as follows: sociability (%) = Tp/(Tp + Tc) * 100, where
Tp is the time of interaction with a partner mouse, and Tc is the time of interaction with
the object.

The mean sociability value was tested with a one-sample t-test against the chance level.
Values above 50% indicated that the mouse spent more time interacting with a partner than
with an object. In trial 2 the metal can was replaced by a grid cage with a novel mouse
and the test mouse was given 3 min to freely explore and interact with both caged mice.
Preference for the novel mouse was calculated as: preference (%) = Tn/(Tf + Tn) * 100,
where Tf is the time spent with the familiar mouse and Tn is the time spent with a novel
mouse. A preference for the new partner was interpreted as evidence for social memory. To
detect learning in each group, we analyzed if the preference for the novel partner deviated
statistically from the chance level with a one-sample t-test against a hypothetical mean
(50%). Mice with sociability≤55% were excluded from the analysis. If partner mice showed
any signs of aggression, they were excluded from the analysis.

4.4. 0-Maze (Elevated Zero Maze)

The zero maze consisted of a circular runway with a diameter of 47 cm and width
of 5.6 cm, elevated 30 cm above the ground. It was divided into four equally sized
compartments, two of which were enclosed by 24 cm high walls. Mice were allowed
to explore the maze for 5 min. Light intensity was around 200 lx. Head-dipping in the
open compartment and stretched-attend postures were counted manually as described
previously [59].

4.5. Morris Water Maze

The Morris water maze (MWM) was used (Morris 1981) to assess spatial learning and
memory. In this paradigm, mice learn to locate a submerged and invisible platform in a
round basin filled with turbid water, based on spatial cues. The experiment consisted of
three phases: acquisition (days 1–6), probe trial (day 7), and reversal phase (days 8–10).
During the acquisition phase the hidden platform remained in a fixed location and animals
swam four times per day from different entry points. Inter-trial interval time was 1 h. The
cut-off time for each swim was 90 s. If the mouse located the platform within the time limit,
then it remained on it for an additional 5 s before being taken out of the maze. Otherwise,
after the time limit passed, the mouse was guided to swim to the platform and remained
there for an additional 20 s. The decrease of the time required to find the hidden platform
indicated spatial learning. In the probe trial, the platform was removed and the time spent
in the platform-associated quadrant was measured for 90 s. For the reversal phase, the
platform was placed into the opposing quadrant, thus necessitating a re-learning of the
position. Similar to the acquisition phase, mice swam four times daily and the latency
to the platform was recorded. One mouse that stayed close to the wall at all times was
excluded from the analysis.

4.6. Organ Extraction

Mice were anesthetized and perfused transcardially with PBS. Brains were hemisected
and one hemisphere was post-fixed in 4% w/v formaldehyde for 3.5–4 h on ice. Afterwards,
left hemispheres were incubated overnight in 10% sucrose, followed by an overnight
incubation in 30% sucrose. The hemispheres were then frozen in dry ice-cooled isopentane
and stored at −80 ◦C. The hippocampus was dissected from the right hemisphere and
snap-frozen in liquid nitrogen.



Molecules 2021, 26, 5984 14 of 19

4.7. RNA Isolation and DNase I Digestion

Total RNA was isolated from PBS-perfused, right hemispheric hippocampi (n = 6
hemispheric hippocampi per genotype per age group) using the TRIzol® protocol. Briefly,
frozen tissue was homogenized in 1 mL or 800 µL TRIzol (Invitrogen, Camarillo, CA,
USA). Tissue homogenates were centrifuged and mixed with 160 µL chloroform. RNA was
precipitated with 400 µL ice-cold isopropanol, washed twice with 75% ethanol, and the
resulting pellet was dried. Subsequently, RNA was incubated with 2 µL DNase buffer, 10U
DNase I and RNase free water in a total volume of 20 µL for 30 min at 30 ◦C, followed by a
DNase inactivation at 75 ◦C for 5 min. RNA samples were stored at −80 ◦C.

4.8. cDNA Synthesis

For cDNA synthesis, 1080 ng RNA was incubated for 5 min at 65 ◦C and then reverse
transcribed at 42 ◦C for 50 min. A total volume of 20 µL included 4 µL first-strand buffer
(Invitrogen), 2 µL 0.1 mol/L DTT, 1 µL 10 mmol/l dNTPs, 0,5 µL oligo(dT) 20 primer
(Invitrogen), and 200 U Super-Script II reverse transcriptase (Invitrogen).

4.9. Quantitative Real Time PCR (qPCR)

Analysis by qPCR of cDNA samples was performed using a BioRad CXF384 Cycler
and ThermoFisher TaqMan® Gene Expression system. A 30 ng quantity of cDNA was used
per reaction. A standard program was applied as follows: step 1 (1×) 95 ◦C, 10 min; step 2
(40×) 95 ◦C, 15 s and 60 ◦C, 1 min. TaqMan primer (all Applied Biosystems, Foster City,
CA, USA): hprt (Mm03024075_m1), tnfa (Mm00443258 _m1), il6 (Mm00446190 _m1), ccl2
(Mm00441242_m1), arg1 (Mm00475988_m1), nos2 (Mm00440502_m1).

4.10. Immunohistochemistry and Imaging

Mouse brains were sectioned coronally at a thickness of 50 µm using a cryostat. Five
dorsal hippocampal sections per mouse were stained as free-floating sections. Sections
were post-fixed in 4% PFA for 2 h at room temperature (RT). After three washing steps with
PBS, slides were blocked overnight at 4 ◦C in 10% w/v bovine serum albumin (BSA), 2%
normal goat serum, and 0.5% Triton X-100 in PBS. Blocked sections were incubated with
primary antibodies for 48 h at RT in the dark and, after several washing steps, incubated
with secondary antibodies for 4 h at RT. Finally, slices were incubated with 0.1 µg/mL
DAPI for 15 min and mounted on a slide using Fluoromount-G™ Mounting Medium. The
following antibodies were used: Iba1 (AB_839504), CD68 (AB_322219), goat-anti-rabbit
AF647 (AB_2535813), and goat-anti-rat AF488 (AB_2534074). High-resolution images were
acquired with a confocal laser scanning microscope (Leica TCS SP8) using a 63x water-
immersion objective lens (NA = 1.2). In each experiment, two z-stacks (about 30 µm; step
size 0.5 µm; 0.18 µm/px; resolution 1024 × 1024 px) were acquired per mouse of the strata
radiatum and pyramidale in the CA1 hippocampal region. Lipofuscin accumulation was
measured as autofluorescence (576–640 nm).

4.11. Image Analysis

Quantitative cellular parameters were determined using ImageJ (FIJI ver. 2.0, and
higher). Two z-stacks with at least 5 microglia/stack were analyzed for each animal. Stacks
from 6 mice/genotype were analyzed per age group.

4.12. CD68 Area Fraction

The CD68 content was determined within each microglial soma. Briefly, maximum
intensity projections of the CD68 channel z-stacks were generated using the ‘z project’
command. Images were binarized with the ‘threshold’ command. Mean grey value
threshold was kept constant among all groups. The threshold used was determined as
an average individual threshold of all WT images. The area fraction of CD68 signal was
measured within each microglial soma using the ‘measure’ command.
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4.13. Microglial 3D Reconstruction and Analysis of Microglial Branching

Microglial morphology was quantified using a custom-written ImageJ toolbox de-
signed to reconstruct and analyze microglial cells, similar to previous studies from
Plescher et al. (2018) and Schmöle et al. (2018) [41,60]. The toolbox consists of three
ImageJ plugins for single-cell image generation, image segmentation, and cell analysis. Per
group in each genotype, at least 50 microglial cells were selected in all z-slices of confocal
z-stacks using the single-cell selection plugin by an investigator who was blind to the
experimental conditions. The resulting single-cell images were segmented using the image
segmentation plugin. An intensity threshold (algorithm: “Huang”) was calculated in an
8-bit converted, 0.5-fold scaled, and maximum-intensity projected copy of the original
image. The threshold was applied to the unmodified original image. Segmented images
were analyzed using the cell analysis plugin after applying a particle-filter (Length cal-
ibration = 0.3608 µm/pixel, Voxel Depth = 0.5 µm/voxel, minimum particle volume =
10,000 voxels). The microglial mean Iba1 intensity was determined as the mean intensity
of all voxels in the original image that were positive in the particle-filtered, segmented
image. The 3D microglial ramification index was defined as: cell surface area/(4π·[((3·cell
volume)/(4π))]ˆ(2/3)), which describes the ratio of cell surface to cell volume and serves
as a sensitive measure for cell shape complexity. To determine the “Branch number” and
“Tree length”, the segmented images, after particle filtering, were Gauss-filtered (Sigma
XY = 1.0 and Sigma Z = 0.0), skeletonized using the Fiji plugin “Skeletonize3D” [63], and
analyzed using the Fiji plugin “Analyze Skeleton” [63]. The polarity index indicates how
equally the process tree is distributed around the cell soma. It was defined as the length
of the vector from the center of mass of the microglial cell to the center of the convex hull
around the microglial cell, normalized to the size of the convex hull: polarity index = vector
length/(2· 3

√
3·spanned volume/(4π)).

4.14. Lipofuscin Analysis

Neuronal accumulation of lipofuscin was measured in the stratum pyramidale of
the hippocampal CA1 region from a binarized max z-projection (7 image planes) with
a defined start. Number of lipofuscin particles of a size >0.5 µm was counted using the
‘particle analyzer’ plugin in ImageJ. Density was calculated as the number of lipofuscin
particles divided by area of selection. Lipofuscin levels were measured in the soma of
single stratum radiale microglia using binarized maximum z-stack projections as described
above for the CD68 area fraction with at least 12 cells per mouse.

4.15. Soma Size and Iba1 Intensity

The somas of microglia were manually delineated using the ‘polygon selection’ tool
and saved as ‘regions of interest’ (ROI). Iba1 intensity and soma size were measured within
each ROI with the ‘measure’ command. Soma size was measured in both Lipofuscin and
CD68 area fraction experiments and both datasets were pooled together.

4.16. Statistical Analysis and Data Presentation

Microsoft Excel (v 16.43) was used for data analysis followed by statistical analysis and
data visualization in GraphPad Prism version 7.0.0 and 9.1.2 for Mac, GraphPad Software,
San Diego, CA, USA, www.graphpad.com. Figures were created in Adobe Illustrator
(v 24.0.2). For presentation, representative images were post-processed in ImageJ (Fiji)
to adjust brightness and contrast. All images within one experiment were adjusted the
same way. Behavioral data were analyzed using Ethiovision XT 8.5 and 13 (Noldus,
RRID:SCR_000441).

For datasets consisting of more than two groups with two independent variables
(e.g., genotype and gender), two-way analysis of variance (ANOVA) was used followed
by Sidak’s multiple comparison test. For MWM repeated measurement (RM) ANOVA
was used. For PR, the mean of the group was tested against a theoretical mean (50)
with one-sample t-test. For single microglia analysis, an outlier test was performed with

www.graphpad.com
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ROUT = 5% prior to the analysis, with the detected outliers excluded. For expression
analysis, an outlier test was performed with ROUT = 10% prior to the analysis, with the
detected outliers excluded. Datasets with more than 20 points were depicted using a
violin plot to precisely visualize the distribution of the data, whereas datasets with fewer
than 20 points were depicted as scatter plots. Statistical significance was stated when
p-value < 0.05 at a 95% confidence interval. Detailed results of statistical analysis are
presented in Supplementary Table S1.

Supplementary Materials: The following are available online, Figure S1: Memory; Table S1: Statisti-
cal analysis; Figure S2: Motility.
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