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ABSTRACT

Detection of DNA sequence variation is critical to
biomedical applications, including disease genetic
identification, diagnosis and treatment, drug dis-
covery and forensic analysis. Here, we describe an
arrayed primer extension-based genotyping method
(APEX-2) that allows multiplex (640-plex) DNA ampli-
fication and detection of single nucleotide poly-
morphisms (SNPs) and mutations on microarrays
via four-color single-base primer extension. The
founding principle of APEX-2 multiplex PCR requires
two oligonucleotides per SNP/mutation to generate
amplicons containing the position of interest. The
same oligonucleotides are then subsequently used
as immobilized single-base extension primers on a
microarray. The method described here is ideal for
SNP or mutation detection analysis, molecular diag-
nostics and forensic analysis. This robust genetic
test has minimal requirements: two primers, two
spots on the microarray and a low cost four-color
detection system for the targeted site; and provides
an advantageous alternative to high-density plat-
forms and low-density detection systems.

INTRODUCTION

Single nucleotide polymorphisms (SNPs), DNA variations
in a single nucleotide position are often genetic determi-
nants of disease; therefore, they have become predominant
genetic markers in genome research. The labor intensive
field of SNP identification and detection has been fueled

by numerous intellectual and financial resources (1). While
development of high and low multiplex methods (2) has
received considerable attention and effort, there is cur-
rently a lack of much needed intermediate systems.
Recent technological advances have provided platforms

(Affymetrix and Illumina Inc.) that allow parallel analysis
of potentially millions of SNPs, making large-scale asso-
ciation studies a reality (3,4). However, genome-wide asso-
ciation analysis (GWA) relies on multiple time intensive
replication screens using only a small subset of SNPs,
those with high P-values. Moreover, clinical diagnostic
testing will require identification of hundreds of SNPs,
not millions. Therefore, alternative methods that are flex-
ible, fast and inexpensive are urgently needed (5–8).
Primer extension on microarrays, first reported over a

decade ago (9), has become mainstream technology (10).
Originally it comprised of four steps: (i) targeted DNA
amplification; (ii) fragmentation and array-based hybridi-
zation; (iii) enzymatic single-base extension (SBE) on the
array and (iv) signal detection (11). Considering the cap-
ability of PCR amplicon detection in a single reaction tube
is routinely 2–10 (5,6) and maximally 48 (7) amplicons per
reaction, reliable multiplex PCR template amplification
remains challenging (12).
Here, we report an improved arrayed primer extension

genotyping method (APEX-2) capable of identifying hun-
dreds of SNPs and mutations in parallel using efficient
homogeneous multiplex PCR (up to 640-plex) and SBE
on microarrays (Figure 1). In the present report, we out-
line and justify the principle of the APEX-2 reaction,
describe APEX-2 primer construction and validate the
applicability of the APEX-2 principle using 640-plex
amplification and genotyping.
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MATERIALS AND METHODS

Oligonucleotide design and synthesis

SNP-specific primers were designed by retrieval of 50-bp
regions flanking either side of the SNP genomic sequence.
A 50-bp reverse complement of the 30!50 strand was gen-
erated, and truncated at the 50 end until an optimal melt-
ing temperature (57–628C) was achieved. Melting
temperature was calculated using a formula from
Primer3 software (13). Primer pair specificity was verified
using GenomeTester 1.3 (14), which predicted generation
of a single product (up to 1000 bp) per primer pair based
on the human genome. Primer sequences were further

assessed for the presence of SNPs using SNPmasker soft-
ware (15). APEX-2 primers were generated upon addition
of a universal sequence (50-GATCAGGCGTCTGTCG
TGCTC-30) to the 50 end of each SNP-specific primer.
APEX-2 primers were then amino modified at the 50 end
(for sequence see Table 1, small letters), attached via a
linker, to enable primer immobilization on a solid surface.
Oligonucleotides [de-salted, 100 pmol/ml in TE (10mM
Tris–HCl pH 8.0, 1mM EDTA)] were purchased from
Metabion International AG, Martinsried, Germany and
stored at �208C. All oligonucleotides were analyzed by
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI) to control the length and

Figure 1. The APEX-2 principle. (A) APEX-2 primers (APEX-2 primers 1 and 2) bind to specific genomic DNA sequences immediately upstream of
the position of interest. After primer extension, the synthesized sequence contains the complement of the respective APEX-2 primer and the position
of interest (SNP/mutation). The second cycle of primer extension generates a complement of the universal sequence. (B) The universal primer
hybridizes to the 30 end of the previously generated product during template amplification, followed by genotyping on the microarray. (C) APEX-2
primers have a 50-amino modification, enabling spotting and immobilization on the microarray. The purified phase 2 PCR product hybridizes to the
immobilized APEX-2 primers. Genotyping is then performed as a four-color single-base extension reaction.

Table 1. Details of APEX-2 primers for this study (5 examples)

Primer name Modification Sequence (50–30) Tm (8C)
specific

Tm (8C)
full

Primer
Length

1_F_rs3760629 C6-Aminolink gatcaggcgtctgtcgtgctcAAAGAGTTGTCTTAGGAAGAGGGGTCAGA 59.5 84 50
1_R_rs3760629 C6-Aminolink gatcaggcgtctgtcgtgctcCTTTTGCCCAGCACCCTTGTC 56.6 84 42
2_F_rs204467 C6-Aminolink gatcaggcgtctgtcgtgctcCCCCGTCTCTTCTGTCTTTGTGAGTC 59.6 85 47
2_R_rs204467 C6-Aminolink gatcaggcgtctgtcgtgctcCAGATGGGGAGAGAGAGGAGGG 57.4 86 43
3_F_rs10413089 C6-Aminolink gatcaggcgtctgtcgtgctcGCAGTTTGTATTTATAGCTGAGAGCGCAG 59.3 84 50
3_R_rs10413089 C6-Aminolink gatcaggcgtctgtcgtgctcCAGCCTCACTGCAACCCCA 56.4 84 40
4_F_rs5127 C6-Aminolink gatcaggcgtctgtcgtgctcGGCACTGCTTTTCTGAGGACTCAAG 58.5 84 46
4_R_rs5127 C6-Aminolink gatcaggcgtctgtcgtgctcGTCAGCCCCTCCATCTTGGC 57.2 85 41
5_F_rs16979595 C6-Aminolink gatcaggcgtctgtcgtgctcCATAAGCCTGCAGAGCTCTGACCA 58.7 84 45
5_R_rs16979595 C6-Aminolink gatcaggcgtctgtcgtgctcTCATGGCTGCTGGGCCTTC 57 84 40
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purify. Quality controls of lyophilized universal primers
were verified by DMT monitoring (Metabion Int. AG).
Prior to use, lyophilized probes were dissolved in distilled
water (500 pmol/ml).

Multiplex PCR with specific primers

Genomic sample DNA was relatively intact and free
of PCR inhibitors, including high concentrations of
heme compounds and chelating agents. Genomic DNA
(50–100 ng/ml in TE buffer) was denatured for 5min at
988C, and then cooled to 48C prior to PCR analysis.
Multiplex PCR reactions had a final volume of 15 ml,
which contained PCR buffer [60mM Tris–HCl pH 8.3,
60mM KCl, 15mM (NH4)2SO4], 0.2mM of each dNTP
(N=G, C, A, T) (Fermentas, Vilnius, Lithuania),
5.75mM MgCl2, 2U TrueStartTM Taq DNA polymerase
(Fermentas), 30 nM of each SNP-specific primer
(Metabion Int. AG) and not < 150 ng denatured genomic
DNA. PCR amplification was conducted in TProfessional
Basic (Biometra, Göttingen, Germany), PTC-200 (MJ
Research, Waltham, MA, USA) or PIKO (Finnzymes,
Espoo, Finland) thermocyclers under the following ampli-
fication conditions: 988C/1min (initial denaturation); 25
cycles of 958C/15 s (denaturation), 638C/1min, 648C/
1min, 658C/1min, 668C/1min, 678C/15 s, 688C/15 s
(annealing) and 728C/15 s (extension). PCR amplification
conditions using a GeneAmp� PCR System 9700 thermo-
cycler (Applied Biosystems, Foster City, CA, USA) dif-
fered and are as follows: 988C/45 s (initial denaturation);
25 cycles of 958C/20 s (denaturation), 608C/2min
(annealing) and 728C/20 s (extension). The time between
annealing and extension steps using the GeneAmp� PCR
System 9700 thermocycler was approximately 6min, as
ensured by a 3% ramp speed.

Universal primer-based amplification and
product purification

A nested PCR approach was conducted using universal
primers. The final volume of the phase 2 PCR reaction
was 150 ml, and contained 15 ml of the phase 1 PCR
product, PCR buffer [80mM Tris pH 9.5, 20mM
(NH4)2SO4, 0.2% w/v Tween-20] (Solis Biodyne, Tartu,
Estonia), 3mM dNTPs (Fermentas), 3mM MgCl2, 15U
HOT FIREPol� Taq DNA polymerase (Solis Biodyne),
40 mM universal primer (50-GATCAGGCGTCTGTCGT
GCTC-30) (Metabion Int. AG). PCR amplification was
conducted in a TProfessional Basic thermocycler under
the following conditions: 958C/15min (enzyme activation
and initial denaturation); 35 cycles of 958C/30 s (denatura-
tion), 548C/30 s (annealing) and 728C/5 s (extension). To
confirm amplicon size, 1 ml of the PCR product was visua-
lized on a 2% TBE agarose gel. PCR products from uni-
versal primer-based amplification were purified using
NucleoSpin� Extract II (Macherey-Nagel, Düren,
Germany) single columns [eluted in 28 ml buffer (5mM
Tris, pH 8.5)], extract binding plates or the MinElute
PCR Purification kit (Qiagen, Hilden, Germany) using
modified protocols. Briefly, 150 ml phase 2 PCR product
and 300 ml NT buffer, mixed in a Round-well Block

(Macherey-Nagel), were transferred to an extract binding
plate, centrifuged for 2min at 4600g, washed twice with
300 ml NT3 and centrifuged for 3min at 4600g. The dried
extract binding plate was then placed on a Round-well
Block, eluted with 37 ml NE and centrifuged 2min at
4600g. Modifications to the MinElute PCR Purification
kit protocol include: addition of 2 ml of 5.4M sodium
acetate (pH 5.0), to guarantee an optimum pH, to the
column containing 600 ml binding buffer and 150 ml of
PCR product. Products were eluted with 28 ml EB buffer
(Qiagen).

Oligonucleotide microarray

Sense and antisense APEX-2 primers were designed and
constructed with a 50-C6-amino linker, as described ear-
lier. Primer sequences were derived from the reported
human genome (NCBI 36, Oct 2005). Oligonucleotides
were immobilized on SAL (aminosilane with linker)
microarray slides (24� 60mm2) in predetermined posi-
tions (Asper Biotech, Ltd., Tartu, Estonia, www.
asperbio.com). Prior to spotting, primers (50mM in
100mM carbonate buffer, pH 9.0) were immobilized
onto the activated array surface using the ChipWriterTM

Pro System (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). Postspotting, slides were blocked with a 1%
NH4OH solution and stored at 48C.

Single-base extension and signal detection

Prior to primer extension with dideoxynucleotides, puri-
fied PCR products were treated with shrimp alkaline
phosphatase (SAP) in order to eliminate residual active
deoxynucleotides. Briefly, 3 ml of concentrated APEX
reaction buffer (500mM Tris–HCl pH 9.5, 85mM
MgCl2, 100mM KCl), 0.25U SAP (Fermentas) and
26 ml of purified PCR product were incubated at 378C
for 10min, followed by SAP inactivation at 958C
for 5min. Prior to SBE, templates were denatured on
the array at 958C for 5min. SBE components were
then added to the denatured PCR product, for a final
reaction volume of 30 ml, which included: 1.5mM of each
dideoxynucleotide mixture, Cy3-ddATP, Cy5-ddGTP,
Texas Red-ddCTP (Perkin Elmer Life Science, Waltham,
Massachusetts, USA), Fluoresceine-12-ddUTP (ENZO
Life Science, Farmingdale, NY, USA); 4.8U of
ThermoSequenaseTM (GE Healthcare, Waukesha, WI,
USA); and 1 ml enzyme dilution buffer (GE Healthcare).
The SBE reaction mixture was applied to arrays pre-
warmed on a heated plate, then covered with
LifterSlipTM (22� 25mm2, Erie Scientific Company,
Portsmouth, NH, USA). Hybridization and APEX-2 reac-
tions were performed at 588C for 20min and terminated
by washing at 958C for 1min with distilled water, 3min in
0.3% Alconox� solution (Alconox, White Plains, NY,
USA), and twice at 958C for 1min with distilled water
to remove the Alconox. To prevent photobleaching, a
drop of Atlas Antifade (BioAtlas, Tartu, Estonia) was
applied to the microarray, which was then coverslipped.
Slide hybridization was detected by the GenoramaTM

Imaging System (Asper Biotech Ltd); and loci of interest
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were identified by GenoramaTM Genotyping Software 4.2
Package (Asper Biotech Ltd) using clustered signal pat-
terns from the dbSNP database (release 125) as a statisti-
cal reference.

RESULTS

APEX-2 reaction principle

Figure 1 is a schematic diagram illustrating the principles
of multiplex PCR and SBE on oligoarrays (Patent appli-
cation PCT/EE2007/000003). Oligonucleotides are
immobilized to the microarray via primer 50 amino mod-
ification, a convenient procedure facilitating a stable cova-
lent bond to the array surface with no observed negative
effects in subsequent PCR reactions. The amino-modified
APEX-2 oligonucleotides immobilized on the microarray
then site-specifically anneal to the denatured genomic
DNA, binding just upstream of the position of interest
(SNP or mutation), followed by primer elongation
(Phase 1). Phase 1 generates a synthesized sequence that
contains a nucleotide complementary to the position of
interest. During phase 2, the SBE template is produced
with multiplex PCR using universal primers. While the
final reaction volume of phase 1 PCR is 15 ml, phase 2
PCR requires a final volume of 150ml to insure sufficient
amplicon quantity (total yield of 15 mg, data not shown)
for microarray visualization. Detection on the microarray
requires both the immobilized amino-modified APEX-2
oligonucleotide probes (positions on array are fixed
during spotting), and the SBE template. Therefore, the
APEX-2 method uses two site-specific oligonucleotides
per position of interest, used both in amplification and
detection on the microarray.

APEX-2 primer construction

The APEX-2 primer is composed of three regions: (i) a
region complementary to the genomic DNA sequence
downstream of the point of interest; (ii) a universal
sequence, enabling equal amplification of all phase 1
amplicons and (iii) a chemical modification, a 50 amino-
modified primer with a C6 linker, immobilizing the primer

on the microarray (Table 1, modification and sequence
columns). The length of the universal tail, common to
all APEX-2 primers, is 21 bp and contains no binding
sites complementary to the human genome. The length
of the complementary region ranges from 18 to 50 bp,
which is dependent on melting temperature (57–628C).
According to reaction principles, phase 1 multiplex poly-
merization (minimum two cycles) generates amplicons
containing complementary sequence to the universal tail;
using primers designed to this sequence, all phase 1 elon-
gated products can be amplified and the position of inter-
est studied. Final phase 2 double-stranded PCR products
contain the position(s) of interest located between sense
and antisense APEX-2 primer sequences. Due to the small
size of phase 2 PCR products (79–130 bp, Figure 2A) pro-
duct fragmentation prior to microarray hybridization is
unnecessary.

Assay validation

To assess the performance of the APEX-2 assay, APEX-2
primer pairs were designed against 821 polymorphic loci
from 40 different genes spanning the entire human
genome. SNPs were selected according to linkage disequi-
librium patterns of the HapMap CEU reference popula-
tion. Individual tagSNPs were identified by applying
Carlson’s algorithm [r2 threshold=0.8, minor allele fre-
quency (MAF) � 5%] (16); and, genotyping accuracy was
assessed using 17 family trios. After quality control, 22%
of SNPs (181 of 821) were discarded due to insufficient
quality parameters: 94 SNPs had low call rates (< 95%),
50 SNPs failed genotype calling (false signal in an unex-
pected position), 31 SNPs were not in Hardy–Weinberg
equilibrium and six SNPs displayed Mendelian inheritance
errors.

The validity of the APEX-2 method using screened
SNPs (640 of 821) was tested with 205 individual DNAs
(as population control samples) derived from the Estonian
Genome Project, University of Tartu, by measuring call
rate (99.86%) and reproducibility (Table 2).
Reproducibility was determined by independently geno-
typing randomly chosen individuals (n=9) five times.

Figure 2. Generation of specific products using multiplex PCR. (A) Product quantity is visible as duplicates after phase 1 PCR, sampled in two cycle
increments (cycles 16–24). Representative images include marker (M) and gel band intensities corresponding to multiplex PCR products. DNA was
visualized using the Agilent DNA 1000 LabChip after Exonuclease I treatment to remove primers. (B) The product band after universal primer
amplification and column purification.
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Missing calls occurred in 24 positions (99.91%) distribu-
ted equally over the examined DNAs.

Concordance between Illumina (HumanHapCNV370-
Duo v1.0 BeadChips) and APEX-2 genotype methods
was determined using 173 SNPs in 19 individuals (3287
genotypes in total). The call rates of both methods,
the Illumina and APEX-2, in those positions were 99.33
and 99.24%, respectively. Therefore, 22 positions geno-
typed with Illumina and 25 positions genotyped with
APEX-2 were incomparable due to missing calls. Two
positions failed with both platforms. Consequently, for
the concordance evaluations stage the input number of
genotypes remained at 3242 of which 3195 genotypes
matched (47 genotyping errors). Hence, we detected
98.55% concordance rate between two platforms
(Table 2). We detected five SNPs, in case of which the
genotyping results did not match with three to four
DNA samples between the used platforms. Thirty-four
percent (16 of 47) of errors occurred in two DNAs. To
analyze discordant genotype calls with a third method,
we chose four (out of 29) SNPs in case of which the poly-
morphic position located at the restriction cleavage
site (rs615098 TaiI, rs4940086 BseGI, rs1064875 SsiI,
rs11119344 TaqI). By taking into account the number of
DNAs having unmatched genotypes between the com-
pared methods, altogether we analyzed 10 out of 47 dis-
cordant calls ascertained. The restriction results showed
that APEX-2 had generated six errors, Illumina platform
two mistakes and in case of two cases the calls of both
methods differed from the results gained from the restric-
tion analysis. We also scrutinized all 47 discordant posi-
tions manually and detected 20 APEX-2 calls in case of
which, although a matching genotype with Illumina was
visible, it remained automatically undetectable (due to the
low signal-to-noise ratio).

DISCUSSION

We have developed a multiplex genotype and mutation
detection platform based upon simultaneous amplification
of multiple loci in a single tube reaction, and successive
use of reaction products in microarray SBE detection,
eliminating the need for additional primers. The APEX-
2 approach is an immense improvement to current
PCR-based approaches, increasing multiplexing capacity
by 10- to 100-fold (8,17) reliability, as well as time and cost
effectiveness. The foundation of these advancements
include: (i) generation of short products (�100 bp) due
to the close proximity of hybridizing APEX-2 primers
(primers are only separated by the position of interest)
and (ii) incorporation of the universal primer in the
APEX-2 oligonucleotide sequence, allowing phase 2

PCR amplification under optimal conditions, which is
not feasible with PCR primers containing unique
sequences.
A comparison of APEX-2 with its predecessor,

APEX (11), illustrates the technical benefits associated
with multiplex PCR, which includes faster analysis and
cost effectiveness due to a reduction in labor-intensive
steps. The first step of APEX is amplification of genomic
regions adjacent to the SNP to produce sufficient template
for detection. Comparatively, after phase 1 of APEX-2,
the SNP has already been incorporated into the template
DNA; and phase 2 amplification produces sufficient DNA
for microarray SBE detection. While other low to medium
throughput APEX, similar techniques are currently being
employed, they require additional steps circumvented by
the APEX-2 method, including enzymatic treatment of
PCR generated probes to remove unincorporated deoxy-
nucleotides and primers, and subsequent SBE analysis
via microarray (18), electrophoresis (SNaPshot from
Applied Biosystems�) or mass differences (iPLEX from
Sequenom�). Further, APEX-2 differs from well-known
molecular inversion probe (MIP) (19) and Illumina
Golden Gate reaction principles in some essential aspects:
APEX-2 primers are linear oligonucleotides that neither
contains cleavage sites nor tag-ctag system sequences; and
during APEX-2 detection, fluorescently labeled dideoxy-
nucleotides are enzymatically incorporated into the immo-
bilized primer sequence through a primer extension
reaction.
Four core factors to the APEX-2 design increase signal

specificity and strength compared with alternative techni-
ques: (i) APEX-2 primers anneal to both strands of geno-
mic DNA within 26 bp up- and down-stream of the
position of interest; (ii) universal primer PCR amplifica-
tion favors a high yield of short products (�100 bp);
(iii) the universal primer has no homologous binding
sites to published human genome sequences (prior to
December 2007). Therefore, templates lacking the univer-
sal primer sequence will not be amplified and (iv) prior to
SBE, the probe-target hybridization control step on a
solid surface ensures a high signal-to-noise ratio. While
primer specificity is assured by a short region of interac-
tion with genomic DNA (median of 26 bp, Figure 1),
microarray hybridization involves a longer region of inter-
action (median 48 bp); therefore, microarray specificity is
influenced by probe length and distance from the 30end
of the primer (20), as well as distance between the com-
plementary region and the solid surface of the array.
Optimization of these parameters may improve reaction
kinetics and thereby favor higher signal intensities (21).
In addition to detection of single nucleotide variations,

APEX-2 applications also include detection of short
(up to 25 bp) deletion or insertion regions (Figure 3A).
For example, we have successfully analyzed a marker
(rs3908) on Y-chromosome (Figure 3B, deletion).
Further, if positions of interest are in close proximity to
one another and a polymorphic nucleotide is included in
the primer sequence, then distinct APEX-2 oligonucleo-
tides can be designed. The exact design of primers can
differ from the principle outlined in Figure 3C depending
on sequence context. Analyzing mitochondrial positions,

Table 2. Quality parameters for APEX-2 assay

Parameter Value (%) Counts

Assay success rate 78 640 of 821
Call rate 99.86 131.019 of 131.200
Reproducibility 99.91 28.776 of 28.800
Concordance rate with other method 98.55 3195 of 3242
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which frequently situate close together, one polymorphic
site may locate under primer-binding region of the other
sequence variation and cause failure during hybridization.
As a solution, APEX-2 offers the opportunity to design
primers so that system amplifies and detects both genetic
markers in one reaction using one pair of oligonucleotides
(Figure 3D).
Despite the significant advantages of APEX-2, obstacles

remain minimal. The required quantity of genomic DNA
per position of interest for APEX-2 (0.3 ng) is less than
other multiplex PCR-based genotyping methods (17) and
comparable to the iPLEX assay (0.2–0.3 ng) (6), MIP
probe (0.17 ng) (22) and Illumina Golden Gate assay
(0.3–1.4 ng). Although, the experimental design reported
here was limited to 640-plex, we do not foresee any con-
founding obstacles in increasing the multiplex PCR level
as large as 1500-plex. Conversely, smaller marker selec-
tions (10, 50, 100 and 300-plex assays) have also been
successful (data not shown).
While the potential to genotype more than 600 SNPs/

mutations simultaneously on custom-made microarrays
may generate new opportunities in the fields of replication
and whole-genome screening using commercial plat-
forms, the flexible and medium-scale APEX-2 method
may provide a vehicle for clinical disease identification
as well as facilitate the involvement of thousands of indi-
viduals in research, molecular diagnostics and forensic
analysis.
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