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A Mixture Dose–Response Model for Identifying
High-Dimensional Drug Interaction Effects on Myopathy
Using Electronic Medical Record Databases

P Zhang1,2, L Du3, L Wang4,5, M Liu6, L Cheng1, C-W Chiang1, H-Y Wu1,
SK Quinney1,7, L Shen1,3 and L Li1,2,8*

Interactions between multiple drugs may yield excessive risk of adverse effects. This increased risk is not uniform for all
combinations, although some combinations may have constant adverse effect risks. We developed a statistical model using
medical record data to identify drug combinations that induce myopathy risk. Such combinations are revealed using a novel
mixture model, comprised of a constant risk model and a dose–response risk model. The dose represents the number of drug
combinations. Using an empirical Bayes estimation method, we successfully identified high-dimensional (two to six) drug
combinations that are associated with excessive myopathy risk at significantly low local false-discovery rates. From the curve
of a dose–response model and high-dimensional drug interaction data, we observed that myopathy risk increases as the drug
interaction dimension increases. This is the first time that such a dose–response relationship for high-dimensional drug
interactions was observed and extracted from the medical record database.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? � Drug–drug interactions (DDIs) are a major cause of
adverse drug reactions (ADEs) and represent a severe detriment to public health. In the United States alone, DDIs asso-
ciate with an estimated annual 195,000 hospitalizations and 74,000 emergency room visits. • WHAT QUESTION DID
THIS STUDY ADDRESS? � Current computational methods for high-dimensional drug interactions have their own intrin-
sic limitations, including the lack of a false-positive control, and lack of a functional relationship between high-dimensional
drug interactions and ADE frequency. To address these two concerns, in this study we proposed a novel approach, a
mixture dose–response model and an empirical Bayes method. • WHAT THIS STUDY ADDS TO OUR KNOWLEDGE �
A mixture dose–response model was developed to investigate high-dimensional drug interactions using health databases.
A mixture model framework provides local false discovery rate (LFDR) estimates for all high-dimensional drug interac-
tions. The application of this mixture model was exemplified by high-dimensional drug interaction analysis of myopathy
risk, using medical record data. Our model accurately identified 2-way to 6-way drug interactions that increased myopa-
thy risk, with their associated LFDR. • HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY AND THERAPEU-
TICS � Our current statistical model establishes the feasibility to investigate high-dimensional drug interactions with a
local false discovery rate estimation. These generated drug interaction signals shall be further validated in molecular
pharmacology experiments or clinical studies.

Postapproval adverse drug effects (ADEs) are a major global

health concern, costing $75 billion per year1 and causing

more than 2 million injuries, hospitalizations, and deaths.2

Drug–drug interactions (DDIs), a major cause of ADEs, thus

represent a severe detriment to public health. Based on statis-

tics released recently by the National Health Statistics

Report,3,4 and the results of pharmaco-epidemiology studies,5

DDIs in the United States alone are associated with an esti-

mated annual 195,000 hospitalizations and 74,000 emergency

room visits.6 With increasing use of polypharmacy,7 the inci-

dence of DDIs is very likely to increase in the coming years.

Traditional pharmacovigilance studies have focused on

associating single drugs with single ADEs.8 Pioneering

work by DuMouchel using an empirical Bayes (EB) method

was a groundbreaking contribution to pharmacovigilance

research.9 More recent successful studies have significantly

expanded the dimension of associations. For example,

Duke et al. investigated drug interactions, using a local

medical records database at Indiana University10 to suc-

cessfully identify multiple, novel drug interaction pairs that

significantly increased myopathy risk above a mere additive

risk from the two drugs taken alone. In another example of
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multiple drug-ADE discovery, Tatonetti et al. further
expanded association analysis between drugs or drug inter-
actions and adverse events to assess all drugs and ADEs.11

Using the US Food and Drug Administration (FDA)’s
Adverse Event Reporting System (FAERS) as a training set,
and Stanford’s electronic medical records as a validation set,
they identified 47 associations of drugs and drug interaction
effects. To detect associations between any combinations of
drugs and any combinations of adverse events, they imple-
mented an association rule mining approach based on the
FAERS database, claiming that 67% of associations were
clinically validated by domain experts.12 Moreover, the com-
putational efficiency of association rule mining was recently
further improved by Xiang et al.13

Despite the above-described successes, current computa-
tional methods for high-dimensional drug interactions have
their own intrinsic limitations, including the lack of a false-
positive control, and a lack of functional relationship between
high-dimensional drug interactions and ADE frequency. To
address these two concerns, in this study we employed a
novel approach, a mixture dose–response model combined
with an empirical Bayes method for ADE estimation and
inference. Please note that the dose here does not refer to
the traditional drug dose. Instead, the dose refers to the
number of different drugs coadministrated by the patients.

Myopathy, a muscle pathology that can progress to rhab-
domyolysis (i.e., a rapid destruction of skeleton muscle),14

is an appropriate example to demonstrate the application of
a high-dimensional drug interaction model. Among 7 million
FDA spontaneous ADE case reports from 2001–2010,
around 100,000 of these concerned myopathy.15 Among
1,634 FDA-approved drugs, 75 drug labels now list myopa-
thy as a potential side effect,16 including the important drug
class of statins (lipid-lowering medications), which have a
reported myopathy frequency of 5%.17 Considering that
more than 18% of Americans over the age of 45 (i.e., 127
million) took statins in 2012, the potential annual number of
US myopathy cases could reach 1.15 million. To further
investigate this statin–myopathy association, we recently
identified six novel drug interaction pairs that significantly
increased myopathy risk above a mere additive risk from
two single drugs taken separately, using a local medical
records database at Indiana University.10

METHODS
Indiana Network for Patient Care data (INPC)
The Indiana Network for Patient Care (INPC) is a health
information exchange data repository containing medical
records for over 15 million patients throughout the state of
Indiana. The Common Data Model (CDM) is a derivation of
the INPC containing coded prescription medications, diag-
noses, and observational data for 2.2 million patients
between 2004 and 2009. The CDM contains over 60 million
drug dispensing events, 140 million patient diagnoses, and
360 million clinical observations (e.g., laboratory results,
diagnose codes, medications). These data were anony-
mized and architected specifically for research on adverse
drug reactions through collaboration with the Observational
Medical Outcomes Partnership project.18

Myopathy definition
Myopathy has a number of potential clinical manifesta-

tions.14 This phenotype is mapped to the INPC CDM condi-

tion concept ids (Supplementary Table S3). The same

myopathy terms are also used in the FDA Adverse Event

Reporting System (FAERS) to define the cases.

Cohort study design and statistical data analysis of

drug interactions and myopathy in the INPC CDM
Myopathy events and drug exposure. Among patients

having a myopathy event, the drug–condition relationship is

anchored by its date in the database. For our analysis, any

drug exposure occurring within a 1-month window before

the diagnosis of myopathy was considered a positive expo-

sure. For a hypothesized drug pair (drug1, drug2), if only

one drug was administered in the drug exposure window, it

was defined as a single drug exposure; if both drugs were

administered within a specific window, it was defined as a

two-drug exposure; if neither drug was administered within

the 1-month window, it was defined as nonexposure.

New myopathy event definition. Two types of new events

were defined. The first type was the first event. However,

patients whose first myopathy event was within the first 6

months of the database were excluded; we could not rule

out additional myopathy events prior to the starting date of

the database (01/01/2004). The second event type included

any follow-up myopathy event whose corresponding drug

exposure was more than 6 months after the previous

myopathy event. In other words, the second type of new

myopathy event required a “washout” period (i.e., no drug

exposure) of more than 6 months.

Case and control selections. All patients who experienced

new myopathy events were selected as cases. Patients who

did not experience myopathy served as negative controls.

Drug exposure in the controls. For a control patient, an

index time was randomly selected from the new myopathy

event times from the cases. Anchored by this index time, a

1-month drug exposure window was defined. Then expo-

sure to a single test drug, two drugs, or neither drug was

defined in the same manner as for the cases.

Statistical model
Model specification. A finite mixture density of regression

models can be expressed as:

h
�

yx ;H

�
¼
XK

k¼1

pkfk y jx ; hk

� �
; (1)

where H denotes the vector of all parameters for the mix-

ture density h ðÞ: The response variable is y and x are the

covariates, where x represent the number of comedications.

The component-specific distribution fk is assumed to be

univariate and belong to the exponential family.19 The

component-specific parameters are given by hk ¼ bk ;/kð Þ;
where bk and /k are the regression coefficient and disper-

sion parameter, respectively. Furthermore, the weights pk

needed to satisfy

A High Dimensional Drug Interaction Myopathy Dose Response Model
Zhang et al.

475

www.wileyonlinelibrary/psp4



XK

k¼1
pk ¼ 1 and pk > 08k

To prevent overfitting and identification problems related

to finite mixture models, we further assumed that:

8k ; l 2 1; . . . ;Kf g : k 6¼ l ¼) hk 6¼ hl :

To simplify the mixture model, we assumed that the

component-specific densities were from the same paramet-

ric family for each component, i.e., fk � f 8k .

Mixture model of logistic regression. For each drug

combination, the number of times that particular combina-

tions appeared in case and control populations were con-

sidered outcomes for subsequent analysis. Let yij and

nij -yij be the outcomes, corresponding to the case and

control populations, for j th component in i-way drug com-

bination. Since the outcome clearly follows a binomial dis-

tribution, a generalized linear model approach was

needed. In fact, we used a two-component mixture of

logistic regression. Each outcome could be attributed to

either of two groups: fixed curve or dose–response curve.

Then the probability distribution function of yij can be

expressed in Eq. 2:

P yij
� �
¼ pBin nij ; yij ;pdose

� �
1 1-pð ÞBin nij ; yij ;pfixed

� �
; (2)

Let covariate x ¼ i be the number of comedications, the

probability under the fixed curve model is constant as the

number of comedications increased:

pfixed ¼
exp b0ð Þ

11exp b0ð Þ
; (3)

and the probability under the dose–response curve model

will be increased as the number of comedications

increased:

pdose ¼
exp b11b2xð Þ

11exp b11b2xð Þ : (4)

Thus, the probability distribution function of yij given

h ¼ p; b0; b1; b2ð Þ can be expressed as:

P yij jx ; h
� �

¼ pBin nij ; yij ;
exp b11b2xð Þ

11exp b11b2xð Þ

� �

1 1-pð ÞBin nij ; yij ;
exp b0ð Þ

11exp b0ð Þ

� �
; (5)

and the log-likelihood function is given by:

l hð Þ ¼
XN

i¼1

XMi

j¼1

log pBin nij ; yij ;
exp b11b2xð Þ

11exp b11b2xð Þ

� �

1 1-pð ÞBin nij ; yij ;
exp b0ð Þ

11exp b0ð Þ

� �
: (6)

To find the maximum-likelihood estimates, we used an

Expectation-Maximization (EM)20 algorithm by defining

uij ¼
1 if the combination follows a dose-response risk

0 if the combination follows a fixed risk

(

Since uij is unobservable, it is treated as a missing value,

and the complete data are defined as Dc ¼ y ; x ; uf g. Then

the complete data log-likelihood is:

lC hð Þ ¼
XN

i¼1

XMi

j¼1

uij log
exp b11b2 xð Þ

11exp b11b2xð Þ

� �yij

1
11exp b11b2xð Þ

� �nij -yij

p1 1-uið Þ

log
exp b0ð Þ

11exp b0ð Þ

� �yij 1
11exp b0ð Þ

nij -yij

1-pð Þ
� �

1Constant term: (7)

Eq. 6 is a mixture of binomial regression equations fitted

through the R package “mixtools.”21

Estimation. Much literature is available on estimating mix-

ture models using both frequentist and Bayesian para-

digms. An important characteristic of the estimation method

is that the number of components must be fixed a priori or

simultaneously estimated. The approach we considered in

this work was based on the most popular EM algorithm.20

E-Step:
At the t11ð Þth iteration, we need to calculate

w tð Þ
ij ¼ E uij jDc ; ĥ

tð Þh i

¼
p̂ tð Þf yij jxi ; b̂

tð Þ
1 ; b̂

tð Þ
2

� 	
p̂ tð Þf yij jx; b̂

tð Þ
1 ; b̂

tð Þ
2

� 	
1 1-p̂ tð Þ
� 	

f yij jxi ; b̂
tð Þ

0

� 	 ; (8)

where in Eq. 7, ĥ
tð Þ

is the maximum likelihood estimator

obtained in iteration t .
M-Step:
We replace the missing value uij by w

tð Þ
ij in the complete

log-likelihood function Eq. 7. Then we maximize the

function:

Q tð Þ ¼
XN

i¼1

XMi

j¼1



w tð Þ

ij log

exp b11b2 xð Þ
11exp b11b2xð Þ

� �yij exp ðb11b2 xÞ
11exp b11b2xð Þ

� �nij -yij

p

� �

1 1-w tð Þ
ij

� 	
log

exp b0ð Þ
11exp b0ð Þ

� �yij exp b0ð Þ
11exp b0ð Þ

� �nij -yij

1-pð Þ
� ��

: (9)

Regular approaches can be used to obtain the maximum

likelihood estimator of parameters in Eq. 9. Starting with

proper initial estimates of the parameters, we iterate

between E-step and M-step until convergence is achieved.

lFDR computation. The false-discovery rate (FDR) can be

considered a by-product of the proposed mixture model.

For the two-group model, we defined the “Bayesian FDR”

for Y � yð Þ as:
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FDR yð Þ � 1-pð ÞF0 yð Þ
F yð Þ

¼ Prob combination follows fixed curve relationshipjY � yf g:
(10)

However, these tail areas are not very natural for Bayes-
ian FDR estimation. Eq. 10 can be defined as a general
rejection region, consisting of infinitesimally “local” regions.
Efron et al.22,23 defined the local false discovery rate
(LFDR) as:

lFDR Yð Þ ¼ 1-pð Þf0 Yð Þ
f Yð Þ : (11)

And in our analysis, Eq. 11 can be written as:

lFDR yij
� �
¼

1-pð ÞBin nij ; yij ;
exp b0ð Þ

11exp b0ð Þ

� 	
pBin nij ; yij ;

exp b11b2xð Þ
11exp b11b2xð Þ

� 	
1 1-pð ÞBin nij ; yij ;

exp b0ð Þ
11exp b0ð Þ

� 	 :
(12)

RESULTS
Data prescreening analysis
It is computationally challenging to investigate the effect of
all possible combinations of drugs in the database. Conse-
quently, in this study we limited our focus to a finite number
of drugs and their high-dimensional drug interactions. In
particular, we emphasize the statistical aspects of high-
dimensional drug interaction evidence, not the computa-
tional challenge. The subsequent article in this journal24 will
address the computational challenges. To that end, the top
20 most frequently distributed drugs (Supplementary
Table S1) were selected and all possible two, three, four,

five, and six drug combinations were considered and their

frequencies determined in case–control populations. For

each drug combination, myopathy frequencies were com-

puted. Figure 1 illustrates the distribution of these propor-

tions, showing that some drug combinations elevated

myopathy risk upon increased coadministration of other

drugs, while myopathy risk stayed constant for many other

drug combinations, even with increased numbers of co-

committed drugs. This observation strongly motivated us to

model myopathy risk using a mixture of two dose–response

models. The dose means the number of co-committed

drugs. One model followed a classical dose–response

curve, while the other model was constant (see Methods

section for model specification).

Result from mixture logistic model
To estimate regression parameters (Supplementary

Table S2), we used the EM algorithm described in the

Methods section. Specifically, we found that the mixing pro-

portion p, the proportion of high-dimensional drug interac-

tions associated with a constant myopathy risk, was 0.093.

The mixture logistic model suggested that some drug inter-

actions follow a dose–response curve. The mixture model

is plotted in Figure 1.

Dose–response high-dimensional drug interaction

effects on myopathy and their local false discovery

rate estimates
Another important observation of the high-dimensional drug

interaction dose–response mixture logistic model was that

myopathy risk increases as the dimension of drug interac-

tion increases. The estimated maximum myopathy risk,

around 40% for high-dimensional drug interactions in our

dose range, is a novel observation.
The best feature of our proposed mixture model scheme

was its estimation of the LFDRs for all drug combinations,

regardless of their dimensionality. Tables 1–5 show the

minus log 10 transferred LFDRs for the top 10 drug combi-

nations. It is clear that our model can provide accurate

LFDR estimates across various dimensional DDIs. In fact,

all the reported top 10 drug interactions from two-way to

six-way drug interactions all had LFDRs of less than 5%.

We further evaluated the top-ranked drug interaction sig-

nals using the Side Effect Resource (SIDER) database

Figure 1 Distribution of the proportion of affected individuals
over different drug combinations. Fitted regressions for two
groups are fitted on these boxplots.

Table 1 Top 2 drug combinations showing increased risk, based on LFDR

values

Drug_1 Drug_2 Sample size 2log10 FDR Risk

Oxycodone Acetaminophen 9,384 260.824 0.186

Alprazolam Acetaminophen 6,092 207.978 0.200

Hydrocodone Duloxetine 2,582 203.956 0.298

Oxycodone Duloxetine 1,958 190.879 0.339

Tramadol Duloxetine 1,812 190.109 0.355

Hydrocodone Oxycodone 4,726 171.270 0.205

Hydrocodone Alprazolam 5,296 167.413 0.194

Oxycodone Alprazolam 2,949 166.647 0.249

Tramadol Acetaminophen 5,981 147.900 0.179

Zolpidem Acetaminophen 3,695 142.290 0.209

Bold represents drug combinations reported for myopathy in SIDER 2.
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Table 2 Top 3 drug combinations showing increased risk, based on LFDR values

Drug_1 Drug_2 Drug_3 Sample size -log10 FDR Risk

Acetaminophen Duloxetine Hydrocodone 2,439 231.392 0.309

Acetaminophen Oxycodone Hydrocodone 4,627 169.796 0.207

Acetaminophen Alprazolam Hydrocodone 4,983 162.596 0.199

Acetaminophen Duloxetine Oxycodone 1,169 140.429 0.352

Acetaminophen Hydrocodone Zolpidem 2,821 116.481 0.214

Acetaminophen Alprazolam Oxycodone 1,892 115.488 0.249

Acetaminophen Hydrocodone Tramadol 3,323 108.268 0.199

Acetaminophen Duloxetine Tramadol 768 95.622 0.359

Duloxetine Oxycodone Hydrocodone 692 84.164 0.354

Acetaminophen Alprazolam Duloxetine 785 81.757 0.324

Bold represents drug combinations reported for myopathy in SIDER 2.

Table 3 Top 4 drug combinations showing increased risk, based on LFDR values

Drug_1 Drug_2 Drug_3 Drug_4 Sample size 2log10 FDR Risk

Acetaminophen Duloxetine Oxycodone Hydrocodone 679 91.808 0.358

Acetaminophen Alprazolam Oxycodone Hydrocodone 1,179 79.761 0.260

Acetaminophen Alprazolam Duloxetine Hydrocodone 618 72.642 0.332

Acetaminophen Duloxetine Hydrocodone Tramadol 499 71.420 0.369

Acetaminophen Duloxetine Hydrocodone Zolpidem 533 63.601 0.334

Acetaminophen Oxycodone Hydrocodone Zolpidem 666 59.200 0.290

Acetaminophen Alprazolam Duloxetine Oxycodone 322 47.981 0.376

Acetaminophen Alprazolam Hydrocodone Zolpidem 757 47.840 0.252

Acetaminophen Oxycodone Hydrocodone Tramadol 800 47.201 0.246

Acetaminophen Duloxetine Oxycodone Tramadol 255 45.131 0.416

Bold represents drug combinations reported for myopathy in SIDER 2.

Table 4 Top 5 drug combinations showing increased risk, based on LFDR values

Drug_1 Drug_2 Drug_3 Drug_4 Drug_5 Sample size 2log10 FDR Risk

Acetaminophen Alprazolam Duloxetine Oxycodone Hydrocodone 209 36.591 0.397

Acetaminophen Duloxetine Oxycodone Hydrocodone Tramadol 174 32.136 0.408

Acetaminophen Duloxetine Oxycodone Hydrocodone Zolpidem 171 31.777 0.409

Acetaminophen Alprazolam Oxycodone Hydrocodone Zolpidem 221 30.884 0.353

Acetaminophen Alprazolam Duloxetine Hydrocodone Zolpidem 174 27.374 0.374

Acetaminophen Duloxetine Hydrocodone Zolpidem Tramadol 114 24.160 0.439

Acetaminophen Oxycodone Hydrocodone Zolpidem Tramadol 139 22.126 0.374

Acetaminophen Alprazolam Duloxetine Oxycodone Zolpidem 99 20.777 0.434

Simvastatin Acetaminophen Duloxetine Oxycodone Hydrocodone 112 18.894 0.384

Acetaminophen Alprazolam Oxycodone Hydrocodone Tramadol 235 17.745 0.272

Bold represents drug combinations reported for myopathy in SIDER 2.

Table 5 Top 6 drug combinations showing increased risk, based on LFDR values

Drug_1 Drug_2 Drug_3 Drug_4 Drug_5 Drug_6 Sample size 2log10 FDR Risk

Acetaminophen Alprazolam Duloxetine Oxycodone Hydrocodone Zolpidem 66 17.699 0.485

Acetaminophen Duloxetine Oxycodone Hydrocodone Zolpidem Tramadol 42 14.013 0.548

Acetaminophen Alprazolam Oxycodone Hydrocodone Zolpidem Tramadol 57 13.030 0.439

Acetaminophen Alprazolam Duloxetine Oxycodone Hydrocodone Tramadol 53 10.150 0.396

Acetaminophen Alprazolam Duloxetine Oxycodone Zolpidem Tramadol 24 10.115 0.625

Simvastatin Acetaminophen Alprazolam Duloxetine Oxycodone Hydrocodone 36 9.692 0.472

Acetaminophen Alprazolam Duloxetine Hydrocodone Zolpidem Tramadol 41 9.666 0.439

Alprazolam Duloxetine Oxycodone Hydrocodone Zolpidem Tramadol 18 7.607 0.611

Simvastatin Acetaminophen Duloxetine Oxycodone Hydrocodone Zolpidem 34 7.345 0.412

Acetaminophen Duloxetine Oxycodone Hydrocodone Zolpidem Fluoxetine 32 6.811 0.406

Bold drugs are reported for myopathy in SIDER 2.
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(sideeffects.embl.de), finding that all the top 10 drug inter-
actions, from two-way to six-way, contained drugs with
myopathy risks previously reported in the SIDER database.
These findings strongly confirmed that our high-dimensional
drug interactions present true myopathy risks previously
associated with single drugs.

Examples of high-dimensional drug interactions
Many instances were found that the increased number of
co-committed drugs led to increased myopathy risk. For
example, the myopathy risk is 0.20 for duloxetine, 0.12 for
hydrocodone, and 0.16 for oxycodone. Then the myopathy
risk for taking duloxetine and hydrocodone together is 0.30,
duloxetine and oxycodone together is 0.34, hydrocodone
and oxycodone together is 0.21. If all three drugs are taken
together, their myopathy risk becomes 0.35. Thus, their
myopathy risk increases as the number of drug combination
increases (Figure 2).

DISCUSSION

In this study, a mixture dose–response model was developed
to model high-dimensional drug interactions. We used myop-
athy as the ADE to exemplify a common pathology found in
electronic medical records databases. This mixture model
framework could accurately estimate the FDR of high-
dimensional drug interactions, significantly improving the util-
ity of our mixture model. The dose–response component of
our mixture model suggested that the maximum myopathy
risk was close to 40%. By using a complementary algorithm
for high-dimensional drug interactions, we determined the
effects of drug interactions on myopathy risk.

One limitation of our current statistical model is that it
can accommodate only a finite number of drugs and their
higher-order drug interactions. However, we were still able
to analyze the top 20 drugs with the highest frequencies. In
order to expand the analysis to all drugs, more sophisti-
cated computational algorithms are needed. A second limi-
tation is that the current model does not account for
confounding variables. Like many other pharmacovigilance

data analyses, our proposed associations between ADEs

and high-dimensional drug interactions need further molec-

ular experimental validation, and using a more stringent

pharmacoepidemiological study design and alternative

databases. Third, the common data model-derived data-

base from Indiana Patient Care Data contains only the

structured diagnosis and medications. We cannot go back

and verify the accuracy of the myopathy definition. Hence,

the potential misclassification of the ADE is another limita-

tion. Finally, our model cannot provide a directionality of dif-

ferent drugs in a drug combination. This problem will be

addressed in the subsequent article in this journal.24

Despite these limitations, we believe our approach has high

potential for determining adverse drug effects (not only

myopathy) associated with the combination of a large num-

ber of drugs that might be coprescribed for patients suffer-

ing from specific conditions (e.g., diabetes, hypertension,

etc.).
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