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Introduction

Elucidated by Fire et al. in 19981 and hailed as the 
‘Breakthrough of the year’ in 2002,2 RNA interference 
(RNAi) can be employed as a potent mechanism for over-
writing DNA-based regulation in cells, thereby enabling 
manipulation of cellular functions and behaviour. This was 
a huge revelation at that time because RNAs have always 
been thought to be inferior to DNAs and only function to 
convert genetic information into proteins.2 It turns out that 
RNAs are more than that and are capable of executing 
RNAi, which is a natural phenomenon that exists even 
across various kingdoms (in plants, fungi and animals)3 for 
regulating gene transcription and protein translation. In 
addition, the mechanism of RNAi is well-established and 
more information regarding this process can be found in 
these excellent reviews.3–6

Although its role has not been fully explored to date, it 
is clear that RNAi is rightfully an evolutionarily conserved 
defence mechanism against molecular invaders, such as 
viruses and transposable elements (TEs), where foreign 
double stranded RNA (dsRNA) were often introduced.3,7 
More recently, it has also been recognized that RNAi plays 
an important role in development,8 such as neurogenesis,9,10 
axonal outgrowth11–13 and myelination14 in the CNS. Given 
these huge responsibilities in ensuring the smooth progress 
of such crucial cellular processes, it is almost certain that 
RNAi is involved in maintaining cell/tissue homeostasis as 

well. Indeed, using RNAi microarray analysis, studies are 
revealing that microRNAs (miRNAs), naturally occurring 
components for regulating RNAi, are commonly dysregu-
lated following nerve injuries6,15,16 and during disease pro-
gression.14 Therefore, with the goal of either enhancing 
tissue regeneration or reverting the dysregulated nucleic 
acid levels to normalcy, effectors of RNAi such as small 
interfering RNAs (siRNAs), miRNAs, short hairpin RNAs 
(shRNAs) and antisense oligonucleotides (ASOs) are use-
ful as therapeutics for treating deficiencies in the CNS.
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Traumatic nerve injuries often lead to prolonged dis-
ruption of the functional coherence of the tissue. This phe-
nomenon, besides partly attributed to the lack of 
regeneration in neurons, also stems from the inhibitive sta-
tus of the seemingly inconspicuous glial cells.17 Being the 
most abundant but underappreciated cell type in the CNS, 
these supportive cells are starting to rack up interests from 
researchers in recent years given their crucial roles in 
maintaining an optimal environment for neurons to func-
tion. Correspondingly, there are also increasing evidences 
that prudent regulation of their gene and protein expres-
sions following traumatic injuries can promote functional 
recovery. This suggests that glial cells should also be con-
sidered as potential treatment candidates.

Here, we review currently known nucleic acid materials 
that are capable of eliciting RNAi, as well as methods for 
efficient therapeutic delivery. In addition, the possibility of 
targeting glial cells for treating CNS nerve injuries will 
also be discussed.

Drivers of RNAi

RNAi is fundamentally triggered by the presence of short 
sequences of RNA strands, which may be single or double 
stranded and contains around 19 to 29 nucleotides, within 
the cell. Currently, the predominantly known drivers of 
RNAi are siRNAs, miRNAs, shRNAs and ASOs. These 
nucleic acid sequences in their mature form can be easily 
obtained through commercial means and despite being so 
similar in their size, each of them have their own unique-
ness and efficiency in achieving the intended outcome.

SiRNA

SiRNAs form the main arm of RNAi and are, in design, 
the most potent molecules to elicit a transient single 
gene target knockdown once it interacts with the cell’s 
machinery that is responsible for eliciting RNAi.3–6 
Functional siRNAs were observed to be within 21 to 23 
base pairs in length and can easily be synthesized in 
vitro by cleaving long dsRNAs into a pool of siRNAs 
using Dicer.3 The main mechanism of siRNA in leading 
to RNAi is gene regulation, where siRNA binds to per-
fectly complementary segments of messenger RNA 
(mRNA) to initiate degradation and prevent transcrip-
tion from occurring.18

MiRNA

MiRNAs, unlike siRNAs, exist endogenously. They are 
transcribed by RNA polymerase II and usually consist of 
19 to 25 nucleotides. Contrary to siRNAs, miRNAs induce 
RNAi by mainly repressing translation,4 although occa-
sional degradation of mRNA to prevent transcription can 

occur as well.19 The modulation of protein at the transla-
tional level in animals usually stems from their imperfect 
base-pairing with target mRNAs.20,21 However in plants, 
their miRNAs generally bind to mRNAs with near-perfect 
complementarity, which leads to target mRNA degradation 
instead,22,23 a mechanism that is similar to that displayed 
by siRNAs. In a sense, the difference in RNAi regulatory 
mechanisms between siRNAs and miRNAs is determined 
by the degree of complementarity during the binding to 
mRNAs. Yet, due to the slight mismatch of miRNAs 
towards mRNAs, miRNAs have no true target mRNAs 
and can, therefore, bind to hundreds or even thousands of 
them,24 resulting in massive amounts of translational regu-
lation. Since their discovery,25 we now know that miRNAs 
govern physiology at an organism level, especially since 
they are involved in the entire range of cellular processes 
such as cell proliferation,26,27 differentiation,10,26,28,29 
senescence30–32 and even apoptosis.33,34

Plasmids encoding shRNA

The shRNAs are 19–22 base pairs in length, linked by a 
short loop of 4–11 nucleotides and drive RNAi similarly as 
siRNAs.35 A major difference between shRNAs and siR-
NAs is that shRNAs are encoded by plasmids, and long-
term expression can be achieved if the plasmids are 
introduced into the nucleus through viral means. By incor-
porating inducible promotors in the transcription vector, 
the expression of shRNAs can also be turned on and off, 
allowing RNAi to be regulated as desired.36,37

ASOs

ASOs are synthetic, single-stranded DNAs that are 8–50 
nucleotides in length. They can bind to target mRNAs 
through complementary base-pairing to induce endonucle-
ase-mediated transcript knockdown and subsequently, pro-
tein downregulation.38,39 The concept of ASOs was first 
described in 1978 by Stephenson and Zamecnik,40 and 
ASOs were the first generation of biomolecules that were 
used for disrupting protein expression, albeit in viruses. 
Further refinement of the synthesis procedures have since 
allowed potent modifications to be made on the nucleo-
tides, conferring ASOs enhanced pharmacological proper-
ties, such as altering pre-mRNA splicing (gene regulation) 
and blocking mRNA translation (protein regulation).38,41 
Certain modifications, such as the use of a phosphorothio-
ate backbone as well as 2′-O-methyl (2′-OMe) and 
2′-O-methoxy-ethyl (2′-MOE) oligonucleotides, can also 
extend their potency beyond functional effects to increase 
their circulation duration in serum,42,43 increase their resist-
ance to nuclease degradation,44 increase their hybridiza-
tion affinity to their target RNA44–46 and even reduce 
immunostimulatory activities.47
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RNAi mechanism

The mechanism for eliciting RNAi is generally similar for 
these four classes of small nucleic acids. One notable dif-
ference between them, however, is the degree of modifica-
tion required to be functional.5,48 In their mature form, 
these nucleic acids will associate with the RNA-induced 
silencing complex (RISC), which comprises of 
Argonaute-2 (Ago-2) and Dicer, before binding to their 
complementary sequences present in the target mRNAs 
(Figure 1).5 Through this binding, the mRNAs will not be 
able to undergo RNA translation as it will thereafter be 
either degraded or physically hindered from associating 
with ribosomes.

Delivery methods

While these nucleic acids are known to induce therapeutic 
effects, the benefits in using these molecules for treating 
pathologies in the CNS would not be attainable if these 
biomolecules are unable to reach their intended target 
environment, that is, the CNS and cytoplasm of cells. 
Fundamentally, as these nucleic acids possess numerous 
phosphodiester linkages between each nucleotides, the 
entire structure tends to be anionic.49 This indicates that 
electrostatic attraction is their main form of interaction 
with other biological materials. In addition, they are also 
hydrophilic and unable to penetrate effectively into tissue 
structures within the body. Delivery approaches can, there-
fore, be designed to either cater to or capitalize on their 
inherent properties for achieving a therapeutic outcome.

Systemic delivery

There are many strategies for delivering nucleic acids 
into the body. However, if the delivery region of interest 
is the CNS and the therapeutics are nucleic acids, then 
options are limited since the presence of the blood–brain 
barrier (BBB) and the blood–spinal cord barrier (BSCB) 
would reduce the efficacy of many conventional (intrave-
nous, intramuscular, oral, transdermal) delivery methods 
substantially.

Surprisingly, gene/RNAi therapy is currently still in its 
infant stage of application in the clinics. After conducting 
a comprehensive search on the list of approved clinical 
trials related to RNAi within the CNS, it was found that 
there is currently no approved RNAi therapy for treating 
CNS-related injuries or diseases. Plasmid deliveries are 
mostly enabled through viral vectors and are only applica-
ble for neurodegenerative diseases or tumours in the CNS. 
However, none of them have, to date, reached Phase 3 
clinical trial (clinicaltrials.gov, identifier: NCT00876863, 
NCT00985517, NCT00004080, NCT00004041). To clar-
ify, the physical limitations posed by the BBB and BSCB 
remain true only under physiologically healthy condi-
tions. In the event of an injury in the CNS, depending on 
the injury intensity and site, their functional integrity may 
be compromised. Under these circumstances, there may 
exist a window for therapeutic interventions and the 
widely used intravenous delivery route may be the pre-
ferred method for delivering nucleic acids before the bar-
riers regenerate. Alternatively, if surgery is unavoidable, 
then the nucleic acids can also be loaded into a biomate-
rial, most commonly hydrogels,50–54 and implanted into or 
placed near the injury site for localized and sustained 
delivery.

In the event when bypassing the BBB or BSCB is unfa-
vourable, then nucleic acids can also be delivered directly 
into the CNS through intrathecal infusion. Although not 
for nerve injuries, this was the strategy employed to deliver 

Figure 1. Mechanism of RNAi. RNAi is a general mechanism 
that siRNAs, miRNAs, shRNAs and ASOs can adopt. The main 
difference between them lies in the extent of modifications 
before being functional. Figure depicts a well-established RNAi 
pathway by siRNAs and miRNAs. Adapted with permission 
from RC Wilson and Doudna in Annu Rev Biophys, 2013.5
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ASOs in the first-ever approved treatment of spinal mus-
cular atrophy (SMA).55 This method of delivery was also 
used previously in another completed Phase 1 trial for 
amyotrophic lateral sclerosis (ALS).56

Besides intrathecal injection, another notable method 
for the delivery of therapeutics into the CNS is microbub-
ble-assisted focused-ultrasound blood–brain barrier dis-
ruption (MB + FUS BBBD).57 By focusing ultrasonic 
waves onto acoustically responsive microbubbles injected 
into the blood vessels, acoustic cavitations are induced. 
This in turn leads to the transient disruption of the BBB, 
thereby, allowing intravenously administered drugs to 
enter the brain parenchyma efficiently.57 However, it 
should be noted that optimization of the parameters 
(microbubble composition, size distribution and concen-
tration as well as ultrasound settings) is required to pre-
vent thermomechanical-induced haemorrhaging58 and 
immunoactivation.59

Tissue-localized delivery

Technically, nucleic acids are usually delivered non-virally 
in either an encapsulated, complexed or naked form. 
Encapsulation of these labile nucleic acids protects them 
from free nucleases and ensures that these drugs are not 
degraded before they can even be taken up by cells. On the 
contrary, complexed and naked delivery of nucleic acids44 
will require chemical modifications in order to enhance 
their resistance to biodegradation. This is highlighted by a 
previous study which demonstrated that direct administra-
tion of both naked siRNAs and ASOs into the brain through 
intracerebroventricular application led only to the detec-
tion of ASOs but not siRNAs.60

As nucleic acids complexed with a delivery vector are 
not spared from the harshness of the in vivo milieu, chemi-
cal modifications of the former are recommended as well 
to prevent its degradation. Based on current knowledge, 
the single most important consideration for the most basic 
cellular delivery is electrostatic interactions. As both 
nucleic acids and cellular membrane are similarly charged 
(anionic), it is not efficient for naked, unmodified nucleic 
acids to be taken up by cells naturally.61 Therefore, vectors 
that are suitable for non-viral delivery are usually cationic 
(Lipofectamine 2000 reagent,61,62 TransIT-TKO,63,64 poly-
ethylenimine (PEI),65 etc.). Due to their high net positive 
charge, these delivery vectors can form complexes with 
nucleic acids through electrostatic attraction and still 
remain cationic, which facilitates cellular uptake by ena-
bling the nucleic acid-vehicle complex to attach to the sur-
face of cells for various vesicular transports (endocytosis 
and/or macropinocytosis) to occur.66

In addition, the delivery of such complexes can be fur-
ther augmented through scaffold-mediated approaches. 
In essence, a scaffolding system can be designed to func-
tion as a depot to house the nucleic acids, either naked or 

complexed with a cationic carrier, thereby ensuring their 
localization. By concentrating the nucleic acids in a con-
fined region, cells that are present will have an increased 
chance of encountering them, which promotes their 
uptake and silencing efficiency. Accordingly, common 
strategies for retaining the naked and complexed nucleic 
acids within current conceivable scaffolds include elec-
trostatic interaction,67,68 surface adsorption69–71 and also 
encapsulation.51,72,73

Besides providing localized delivery, scaffolds can also 
be tuned to manipulate the extent and even the location of 
uptake within cells.74 This can be achieved by altering the 
physico-chemical properties (elasticity, topology, compo-
sition, etc.) of the substrate, which the cells are attached to, 
thereby regulating cytoskeletal remodelling75 and subse-
quently internalization pathways74 (Figure 2 and Table 1).

CNS and neuroglial cells

The CNS is the part of the nervous system that consists 
of the brain and spinal cord. The CNS tissue is com-
prised of two main cell types, namely, the neurons and 
the neuroglia cells and is enclosed by connective tissue 
membranes of meninges.79 The neuroglial cells further 
consist of astrocytes, microglial and oligodendrocytes 
(OL). Neurons are the most studied cell type in the nerv-
ous system since they have been discovered, in part due 
to the importance of their role and also probably due to 
the lack of appreciation of the other neuroglia cells. This 
notion is rapidly changing recently as more studies are 
revealing that the neuroglial cells are, in fact, equally as 
crucial as neurons in maintaining the functionality of the 
CNS.80 The highly branched neuroglial cells that are 
located between neurons have intimate functional rela-
tionships with the neurons, providing both mechanical 
and physiological support.81,82

CNS diseases are a type of neurological disorders 
caused by various factors including trauma, infections, 
degeneration, autoimmune diseases and stroke, and can 
alter and degrade the function or structure of cells and tis-
sues in the CNS.83,84 In particular, the age-dependent neu-
rodegenerative diseases represent a major disease in 
human because the elderly population has increased in 
recent years.85 The major types of neurodegenerative dis-
eases include Alzheimer’s (AD), Parkinson’s (PD), 
Huntington’s (HD), ALS, multiple sclerosis (MS), 
Creutzfeldt–Jakob disease (CJD) and others.86 The patho-
logical characteristics of these neurodegenerative diseases 
include aggregation and accumulation of specific proteins 
in the CNS that are associated with neuronal defect in the 
CNS. In addition, the gliosis that proliferates and activates 
neuroglial cells is a major hallmark of neurodegenerative 
diseases.87,88

Among the neuroglial cells, astrocytes are morphologi-
cally heterogeneous cells that provide physical support for 
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Figure 2. Tissue-localized delivery of RNAi. (A) The area around the lateral ventricle of the rat brain 3 h after intracerebroventricular 
(i.c.v.) injection of fluorescence-labelled siRNA. The i.c.v. injection of 2 μg siRNA and cell detergent i-Fect with 1:4 w/v ratio (d) was 
only detected but others not (a: 50 μg siRNA dissolved in siRNA suspension buffer without detergent, b: 2 μg siRNA and the other cell 
detergent DOTAP (1:4 w/v), c: i-Fect only). Adapted with permission from C Senn et al.60 (B) MiRNAs stimulated extensive neurite 
ingrowth into fibre-hydrogel scaffolds 2 weeks after spinal cord injury. Neurotrophin-3 (NT-3) and/or miRNAs were treated with PCL 
fibre-collagen scaffold (a). Neurofilament protein-200 (NF-200) was significantly higher in miRNA-treated groups compared to control 
group (NT only) (b). Adapted with permission from N Zhang et al.54

Table 1. Table comparing the advantages and disadvantages of various nucleic acid delivery strategies. These comparisons provide 
different perspectives to the choice of delivery method.

Format of nucleic 
acid delivery

Advantages Disadvantages

Encapsulated 1.  Nucleic acids are protected from degradation by 
nucleases.76

2.  Delivery can be relatively localized if nucleic 
acids are confined within a scaffold prior to their 
release.77

3.  Delivery through nanoparticles can potentially 
allow nucleic acids to reach specific cell/tissue 
targets.

1.  May not be uptaken into cells efficiently without 
a cationic delivery vehicle.

2.  Require proper context for implementation, e.g. 
not ideal to inject scaffold encapsulating nucleic 
acids for intravenous delivery.

3.  Nanoparticles encapsulating nucleic acids are not 
able to penetrate deep into tissue structures as 
compared to complexed/naked nucleic acids.

Complexed 1.  Can be taken up into cells much more efficiently 
due to the cationic vehicle.54

1.  May get degraded easily without modifications 
to its nucleic acid strands.

2.  Due to the electrostatic interactions between 
the anionic nucleic acids and the cationic vehicle, 
aggregation may occur, which impedes delivery 
and uptake.

3.  Delivery unlikely to be localized.
Naked 1.  Due to its extremely small size, nucleic acids can 

potentially penetrate deep into tissues.78

2.  Nucleic acid strands can be modified such that 
administration of large doses will not elicit an 
immune response.47

1.  Requires modification to the nucleic acid strands 
to enhance its resistance towards nucleases and 
uptake by cells.44

2.  Delivery unlikely to be localized.
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neurons and mediate the metabolite exchange between the 
neurons and the blood vessels, including glutamate re-
uptake, ionic buffering and water balance.89,90 In addition, 
astrocytes play an important role in BBB maintenance, 
neuroinflammatory regulation and the repair of the 
CNS.91,92 In the case of AD, astrocytes become reactive as 
a result of generation and deposition of beta-amyloid (Aβ), 
which in turn leads to decreased glutamate uptake due to 
reduced expression of uptake transporters, altered energy 
metabolism and ion homeostasis, increased release of 
cytokines and inflammatory mediators and disruption of 
astrocytic networks.91,93 Recently, it was reported that neu-
roinflammation and ischaemia induced two different types 
of reactive astrocytes, A1 and A2. A1 astrocytes highly 
upregulate many classical inflammatory cascade genes to 
be destructive to synapses, whereas A2 astrocytes upregu-
late many neurotrophic factors. The A1 astrocyte that is 
induced by activated inflammatory microglia via the secre-
tory cytokines, including IL-1a, TNF (tumour necrosis 
factor) and C1q, induces the death of neurons and OLs.94

Microglia, the resident immune cells of the CNS, have 
immunological surveillance95 and defence functions 
against invading micro-organisms, damaged cells and the 
debris of apoptotic cells.96–98 Microglia are derived from 
monocyte progenitor cells and their function is tightly reg-
ulated by the CNS microenvironment.99 Microglia express 
many pattern-recognition receptors (PRRs) and detect 
pathogen-associated molecular patterns (PAMPs) or dam-
age–associated molecular patterns (DAMPs), including 
Toll-like receptors (TLRs) 4 and TLR1/2; their corecep-
tors; CD14; NOD-like receptors (NLRs); receptors for 
nucleic acids; C-type lectin receptors (CLRs), such as 
CLEC7A; and chemokine receptors, such as CX3CR1 and 
CXCR4. In addition, microglia express immune receptors 
such as TREM2 (triggering receptor expressed on myeloid 
cells 2) and multiple receptors for neurotransmitters and 
neuropeptides released by neurons.97 Therefore, the micro-
glia are highly responsive to injury or neuroinflammatory 
disease and are activated under the chronic neurodegener-
ative diseases of the CNS such as AD, PD, MS and 
ALS.100,101 For example, proliferation and activation of 
microglia is a hallmark of AD and the impaired activities 
and altered microglial responses to Aβ increase the AD 
pathogenesis and can be harmful to neurons.102 The over-
activated microglia can release cytotoxic factor and 
inflammatory cytokines. For this reason, inhibiting the 
activity of microglia appropriately may be an effective 
way for the treatment of neurodegenerative diseases.103

OLs are responsible for the formation and mainte-
nance of myelin sheath by neurotrophic support in the 
CNS.104–106 In order to myelinate properly, OLs have high 
metabolic activities with oxygen and adenosine triphos-
phate (ATP) consumption and Reactive oxygen species 
(ROS) or hydrogen peroxide formation as toxic by-prod-
ucts. Hence, oxidative damage is a common cause to OL 
disorder or loss under many neuropathological diseases 

like MS and ischaemia.107 The damage of OL is observed 
in neurodegenerative disorders of the CNS, especially 
chronic demyelinating diseases such as MS, spinal cord 
injury, AD, PD and ALS.108 For example, the toxic effects 
of Aβ accumulation, a major pathological process in AD, 
induced OL dysfunction and demyelination.109 In the 
case of MS, autoimmune system attacks mainly the mye-
lin and OLs. The consequence of such an autoimmune 
attack is a local demyelination and subsequent axonal 
loss that is one of the pathological hallmarks of MS.110

Consequently, the deprivation or dysfunction of these 
various neuroglial cell populations following traumatic 
nerve injuries and neurodegenerative diseases hinders 
recovery given the lack of support, as well as inhibitory 
effects posed by necrotic cellular debris.111 As such, the 
maintenance of spared glial cells followed by their quanti-
tative and steady-state functional restoration is a potential 
area of focus for facilitating treatment.

Neuroglial cells as potential targets of 
RNAi for nerve injury treatment

RNAi in astrocytes

Astrocytes constitute the largest proportion of all cells in 
the mammalian CNS (around 20%–40%).112 They control 
neuronal activity and well-being through neurometabolic 
coupling113 and help to remove excess neurotransmitters, 
potassium114 and glutamate115 from the extracellular space. 
Following a traumatic nerve insult, astrocytes become 
activated or reactive, displaying functional and morpho-
logical changes that constitute astrogliosis.116 Over time, 
they may also migrate and align to form a glial scar that 
surrounds the injury site,117 physically and chemically 
inhibiting local axonal growth.118

Studies involving RNAi, conducted in both in vitro 
and in vivo settings, are thus commonly aimed at circum-
venting the repercussions caused by this barrier of astro-
cytes. However, in order to achieve effective gene 
silencing, it is first imperative to establish a suitable 
working concentration of RNAi effectors; excessive 
amounts may be cytotoxic while the opposite may lack 
potency for an outcome.

Ki et al. conducted a comprehensive testing of the opti-
mal concentration of siRNA for gene silencing in primary 
cultured rat astrocytes in vitro. Using Lipofectamine 2000 
as a transfection reagent, they showed that a siRNA con-
centration of 20 nM is sufficient to induce efficient uptake 
(~80%) and RNAi (silencing efficiency ~95%), while pre-
serving the cells’ viability.119

A similar concentration range was also used in another 
in vitro study by Li et al., where they investigated the rela-
tionship between ephrin-B2 and glial scar formation. 
Using a custom-made microfluidic platform containing 
chimeric ventral spinal cord 4.1 (VSC4.1) motoneurons, 
primary rat astrocytes and rat meningeal fibroblasts (MFb), 
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they demonstrated that the administration of 30 nM of 
siRNA against ephrin-B2 complexed with SuperFectinTMII 
reagent (silencing efficiency ~84%) was able to ameliorate 
the effects of transforming growth factor-β1 (TGF-β1)-
induced astroglial-fibrotic scar formation and enhance 
axonal growth of VSC4.1 motoneurons (Figure 3).120

Laabs et al. targeted chondroitin polymerizing factor 
(ChPF), a key enzyme in the chondroitin sulphate proteogly-
can (CSPG) biosynthetic pathway, in Neu7 cells (astrocytic 
cell line) using plasmids encoding shRNA through nucleo-
fection (a method of transfecting nucleic acids into the cel-
lular nucleus). Although the concentration of plasmids used 
was not stated, they were able to achieve up to 75% uptake 
efficiency and ~50% silencing efficiency, resulting in 
reduced CSPG glycosaminoglycans (GAGs) expression by 

Neu7 cells. The depletion of these inhibitive polysaccharides 
subsequently promoted axonal growth (Figure 3).121

In another recent work, Smith et al. delivered a modified 
form of siRNA, siRNA three-way junction (siRNA-3WJ), 
against astrocyte reactivity effectors, namely lipocalin 2 
(Lcn2), glial fibrillary acidic protein (GFAP) and vimentin 
(Vim) into mice astrocytes using Lipofectamine 
RNAiMAX. Due to the enhanced potency of siRNA-3WJ, 
they reported ~87%, ~60% and ~65% gene knockdown of 
Lcn2, GFAP and Vim, respectively, in activated astrocytes 
using a dosage of only 5 nM. In addition, the uptake effi-
ciency of the astrocytes, both quiescent and activated, was 
consistently more than 70%.122 Following this, they pro-
ceeded to administer 10 µg of siRNA-3WJ against Lcn2 in 
mice with a contused spinal cord intralesionally and were 

Figure 3. RNAi targeting in astrocyte. Silencing of inhibiting factors in astrocytes enhanced axonal growth. (A) Ephrin B2-targeting siRNA 
restored the motor axon outgrown from VSC4.1 culture towards the axon/scar chamber on the microfluidic platform. (Aa) Diagram 
depicting the design of the microfluidic platform. (Ab) Photograph of the actual device. (Ac) Schemes depicting motor axon growth towards 
the axon/scar chamber. In the absence of TGF-β1, astrocytes/MFb coculture allows ingrowth of motor axons into the axon/scar chamber; in 
the presence of TGF-β1, the coculture forms cell clusters, which resemble astrocyte/fibrotic scar, and inhibits the ingrowth of motor axons. 
(d, d′) The growth of motoneuron axons slowed down as they approached the axon/scar chamber when CSPGs was present in the axon/
scar chamber (e, e′), or when the astrocytes/MFb coculture in the axon/scar chamber was treated with TGF-β1 (h, h′). When the axon/scar 
chamber was added with astrocytes/MFb coculture (f), or astrocytes/MFb coculture with siRNA (g), VSC4.1 motoneurons extended fine 
and long axons from the soma chamber and entered the microchannels. (i, i′) Addition of TGF-β1 and ephrin B2-targeting siRNA enhanced 
length of VSC4.1 axons as compared to TGF-β1 alone. Adapted with permission from Y Li et al.120(B) Increased neurite outgrowth on/
in conditioned media (CM) from chondroitin polymerizing factor (ChPF)-targeting siRNA-treated Neu7 astrocyte cell line. Cerebellar 
granule neurons were either grown on a combination of poly-L-lysine (PLL), laminin (LAM) and immobilized CM (a, c) in half DMEM and 
half neurobasal (NB) + B27 or on a combination of PLL and LAM in half NB + B27 and half CM from the Neu7 cells (b, d). ChPF siRNA 
attenuated the detrimental effect of CM to neurite outgrowth (e). Adapted with permission from TL Laabs et al.121
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able to obtain ~55% reduction in Lcn2 gene expression. 
Consequently, the contused region showed mitigated levels 
of Lcn2 protein and was relatively void of cyst formation as 
compared to the sham control.122 More examples that are 
relevant to this review have been compiled in Table 2 and 
readers are advised to refer to it for completeness. 
Collectively, all these studies suggest that the modulation 
of astrogliosis is indeed a potential strategy for enhancing 
nerve and functional recovery.

RNAi in microglia

Microglia are the resident innate immune cells within the 
CNS.123 Following a traumatic injury, microglia become 
activated and along with monocyte-derived macrophages 
found in blood, begin releasing ROS and pro-inflammatory 
cytokines to attract more immune cells to the injured 
region.124 Once there, these immune sentinels will mediate 
the confinement of the lesion,125 as well as facilitate debris 
clearance.126 Studies have also demonstrated that these 
activities are actually neuroprotective.124,127 While these 
events appeared to depict rosiness, it is, in reality, very vol-
atile. Specifically, neuroprotective outcomes can easily be 
replaced with neurotoxic endings if chronic inflammation 
persists since microglial cells are phenotypically plastic128 
and may react negatively when they are continually exposed 
to inflammatory signals. Yet, precisely because they are 
extremely plastic, efforts to encourage nerve repair are pos-
sible and usually consist of factors that are capable of skew-
ing them towards a restorative phenotype.

For instance, Li et al. utilized siRNAs to target a tran-
scription factor, interferon regulatory factor 5 (IRF5), 
known to upregulate genes produced by classically acti-
vated macrophages. Using 400 nM of siRNAs against IRF5, 
they demonstrated that transfected microglial and mac-
rophages isolated from the injured spinal cord had signifi-
cantly decreased expression of IRF5 (silencing efficiency 
~50%) and corresponding amounts of pro-inflammatory 
cytokines, such as TNF-α, IL-6 and IL-12. Conversely, the 
anti-inflammatory cytokine IL-10 was enhanced.129 When 
these siRNAs against IRF5 were intravenously adminis-
tered into mice with contusion injuries, similar trends with 
reduction and enhancement of pro-inflammatory (CD86) 
and anti-inflammatory (Arg1) microglial, respectively, were 
observed. Importantly, these observations were associative 
with limited spinal cord tissue damage and improved loco-
motor functional recovery (Figure 4).129

In another study, Zhou et al. utilized miR-199b, which 
they established as a negative regulator of IKKβ, to mod-
ulate production of inflammatory cytokines. They dem-
onstrated in vitro in primary rat microglial that 
overexpression of miR-199b through transfection of 
miR-199b mimic led to a corresponding suppression of 
IKKβ gene expression (silencing efficiency ~60%). As 
IKKβ positively regulates inflammatory cytokines such 
as TNF-α and IL-1β, the downregulation of IKKβ also 

resulted in the downregulation of these cytokines.130 
Further administration of 100 nM of miR-199b through 
intrathecal injection in rats with a compression-induced 
spinal cord injury similarly attenuated the levels of IKKβ 
(silencing efficiency > 50%) as well as TNF-α and IL-1β. 
Subsequent behaviour tests were also performed better 
by miR-199b-treated rats.130

While it appears that, in these examples mentioned, 
along with many more in Table 2, the reduction of pro-
inflammatory signals is correlated with enhanced func-
tional outcomes, it is advisable to be most prudent when 
attempting to manipulate the immune cells’ secretome as 
a treatment option. Besides the contrasting observations 
in a very recent work suggesting that prescribed inflam-
mation could promote recovery,131 it should be recognized 
that the response of the immune system is far more com-
plex to influence than it seems given its spatiotemporal 
sensitivity.

RNAi in OLs

OLs are responsible for forming myelin sheath around the 
axons in the CNS,132 consequently enabling essential salta-
tory signal conduction.133 Following a traumatic nerve 
injury, OLs become necrotic and disintegrate, leaving 
behind highly inhibiting myelin components that hinder 
new myelin formation. Without these sheaths, energy-effi-
cient conduction in axons are impeded, resulting in their 
eventual degeneration and functional impairment.134 By 
targeting OLs and their immature progenitor cells, oligo-
dendrocyte progenitor cells (OPCs), the intended outcome 
is straightforward: restore the formation of myelin sheaths 
in the region. Interestingly, while searching the literature, 
it was observed that viral-based approaches appeared to be 
the preferred choice135–138 for enacting RNAi in OLs to 
enhance their myelinating capacity and subsequent extent 
of recovery from nerve injuries. Despite this trend, it does 
not imply that non-viral delivery methods are ineffective 
for transfecting OLs.

Zhao et al. demonstrated that Lipofectamine 2000 could 
be used to transfect primary OL culture with siRNAs 
against Nogo-A (50 nM) and achieve a ~60% gene knock-
down efficiency. Besides that, they showed that the sup-
pression of Nogo-A in OLs enhanced its process branching, 
which is a crucial event for initiating myelination.139

In our lab, we employed a non-viral, scaffold-mediated 
strategy to transfect OLs. Specifically, we complexed a 
cocktail of miR-219 and miR-338 (2–4 µg or ~200–
400 nM of miRs in total) with a commercial transfection 
vehicle, TransIT-TKO, and adsorbed these complexes 
onto polydopamine-coated electrospun fibrous scaffolds 
before allowing primary rat OPCs to be reverse trans-
fected after they were seeded onto these scaffolds. 
Through this method of delivery, we were able to obtain 
~40% to ~70% of gene silencing efficiency71,140 as well as 
observe the biological effects of miR-219/miR-338 in 
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enhancing OPC differentiation64,140 and OL myelination.50,64 
Furthermore, when we loaded the miR-TKO complex into a 
three-dimensional (3D) hybrid scaffold containing electro-
spun fibres and collagen and implanted it into a spinally 
injured rat, we found that despite the inhibitive microenvi-
ronment, miR-219/miR-338 was able to preserve the viabil-
ity of oligodendroglial lineage cells, promote the extent and 
rate of their differentiation, and also most importantly, aug-
ment their myelinating capacity (Figure 5 and Table 2).50

Authors’ perspectives and conclusion

In our opinion, the discovery of RNAi and the effectors 
driving this process is both ground-breaking and exciting. 
Specifically, the effector nucleic acids are able to provide 
more utility as compared to normal conventional drugs. 
For instance, siRNAs can be used to target a single specific 

gene while miRNAs are often used for targeting multiple 
genes. On the contrary, shRNAs can be employed to pro-
long gene regulation with the added benefit of being 
switchable (on or off). Finally, ASOs can be modified to be 
used for naked and efficient delivery. However, there are 
also some downsides pertaining to the use of these nucleic 
acids for RNAi such as competition with endogenous 
RNAs,155 possible activation of innate immune responses156 
and also accidental suppression of off-target genes.157 In 
addition, there is always a need to consider the method of 
intracellular delivery, which usually involves their compl-
exation with a cationic delivery vehicle or encapsulation 
into nanoparticles.

In the context of spinal cord injury, we feel that miR-
NAs have the greatest potential for treatment purposes. 
Recent RNA sequencing of the rodent spinal cord158,159 
revealed thousands of dysregulated genes post traumatic 

Figure 4. RNAi targeting in microglial. Modulation of macrophage phenotype provided a more conducive environment for tissue 
regeneration. IRF5 siRNA treatment reduced IRF+ cells (a, b) and CD86 presenting M1 macrophage (a, d). On the other hand, it 
increased Arginase 1 (Arg1) presenting M2 macrophages (a, c) in the wound of SCI animals. Adapted with permission from J Li et al.129
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injury. Given the ability of miRNAs to regulate numerous 
genes concurrently,24 future studies can be conducted to 
identify the miRNAs required to re-regulate these dysreg-
ulated genes back to normalcy and perhaps to map the 
regulated pathways to the respective cell type.

RNAi holds great potential for treating injuries and dis-
eases, which are frequently associated with dysregulated 
cellular gene and protein expressions. A major concern, as 
discussed in this review, is the method to efficiently deliver 
RNAi drivers into the traumatically injured CNS in order 
to regulate cellular gene and protein expressions towards 

an advantageous state, where functional recovery may be 
attained. Glial cells, being more abundant than neurons, 
are ideal targets for RNAi therapy. Besides being more 
amenable than neurons in accepting cationic carrier-com-
plexed small nucleic acids, glial cells are also more profi-
cient in shaping the injured/diseased milieu, through 
signalling molecules to enhance tissue regrowth. More 
importantly, besides the previously approved ASO-based 
therapeutics, with the recent (2018) FDA approval of 
Onpattro (patisiran), a siRNA-based therapeutic for the 
treatment of peripheral nerve disease (polyneuropathy) in 

Figure 5. RNAi targeting in oligodendrocytes. Promoting oligodendrocyte remyelination will facilitate the functionalization of 
regenerated axons. (a) Representative images obtained at Week 4 depicting MBP+ tubular structures surrounding NF+ axons. 
Scale bar represents 5 µm in the normal images and 2 µm in the magnified images. (b) Myelination index obtained at host-implant 
interface. (c, d) Representative transmission electron microscopy images showing the (c) presence and (d) lack of myelinated axon 
formation in (c) miR-219/miR-338 and (d) Neg miR groups, respectively. N.S.: not significant (Student’s T-test). Scale bars for the 
TEM images are labelled with their respective scale bar size. Adapted with permission from U Milbreta et al.50
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adult patients, RNAi has become a clinically viable treat-
ment option. Following this landmark acceptance, we can 
now anticipate that other potent and safe RNAi therapeu-
tics will soon be approved as well. A greater implication of 
this approval, however, is the motivation for researchers to 
look towards RNAi as a preferred treatment choice. 
Specifically, as described, using RNAi to elicit changes in 
glial cells may provide an avenue to attain a more permis-
sive environment for neuronal regeneration and/or loco-
motor recovery.
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