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Abstract: The emergence of bacterial resistance to available antimicrobials has prompted the search
for novel antibacterial compounds to overcome this public health problem. Metal-based complexes
have been much less explored than organic compounds as antimicrobials, leading to investigations of
the antimicrobial properties of selected complexes in which silver may occupy the frontline due to
its use as medicine since ancient times. Like silver, camphor has also long been used for medicinal
purposes. However, in both cases, limited information exists concerning the mechanisms of their
antimicrobial action. This work reviews the present knowledge of the antimicrobial properties of
camphor-derived silver complexes, focusing on recent research on the synthesis and antimicrobial
properties of complexes based on silver and camphor imines. Selected examples of the structure and
antimicrobial activity relationships of ligands studied so far are presented, showing the potential of
silver camphorimine complexes as novel antimicrobials.
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1. Introduction

The discovery and use of antimicrobials is a landmark of modern medicine. Most of the
antimicrobials currently in use were developed last century, between the 1940s and 1960s [1,2].
These “magic bullets” have since then saved millions of human lives. However, bacterial resistance to
multiple antimicrobials has increased worldwide over the last decades, mainly due to their misuse
and abuse. Antibiotic resistance poses a serious threat to infection treatment, and thus a significant
pressure on health systems, and is considered a major menace to human health [3,4]. A particular
group of bacteria, referred to as the ESKAPE group (comprising Enterococcus faecium, Staphyloccus
aureus, Klebsiella pneumoniae, Acinetobacter baumanni, Pseudomonas aeruginosa, and Enterobacter species)
has emerged worldwide, with an increasing prevalence in hospitals and resistance to antibiotics [5,6].

Despite this emergence of resistance, the number of new antimicrobials reaching the market has
been declining since the 1990s [7]. Multiple factors, including low investment return and regulatory
requirements, are the major reasons [8] for the exodus of pharmaceutical and biotechnological
companies from antimicrobial research and development.

Due to the new and emergent risks posed by bacterial resistance, the World Health Organization
(WHO, February 2017) [9] has appealed for the investment of publicly funded agencies and the private
sector in the research and development of new antibiotics. Motivated by the urgent need for new and
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effectively active antimicrobials, we have initiated the investigation of the antimicrobial activity of
silver camphorimine complexes. Silver and camphor are medicines empirically used since ancient
times, although the mechanisms underlying their antimicrobial activities remain to be fully understood.

2. The Antimicrobial Properties of Silver

Silver (Ag0) vessels were used in ancient times not only for aesthetic reasons but because they
preserved the quality of water. Although microbes were unknown, the consequences of microbial
contaminations were well known, and silver was a great help to control them. Aware of that,
Hippocrates (the father of medicine, 5th to 4th centuries BC) prescribed silver preparations against
infections. Later, the Romans extended the medicinal use to silver nitrate (AgNO3, Figure 1), and during
the Medieval Period, it continued to be used for the treatment of skin wounds and ulcers [10,11]. Silver
sulfadiazine (Figure 1) came later and is still in use to treat infections associated with burns [12,13].
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Escherichia coli has been shown to lead to proton motive force collapse and subsequent cell death [22].  

Using reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ansari et al. [23] 
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Nowadays, silver metal and silver nanoparticles are used for medical device coatings and the
reduction of bacterial adhesion to the surfaces of implants as gels or films [14,15]. Silver composites
are used as antimicrobials against Gram-positive and/or Gram-negative bacteria [16–18]. Therapeutic
and antiseptic applications of silver and silver derivatives actually extend to the control of surgical
infections [19], a domain of increasing concern.

Despite the recognized antimicrobial activity of silver salts (e.g., silver nitrate, silver sulfadiazine)
and silver particles, the pharmacological uses of silver derivatives have been restricted mostly to
external uses in creams and dressings due to toxicity concerns. Recent studies showed that silver
nitrate and silver nanoparticles have no significant toxicity, although AgNO3 accumulates more than
silver nanoparticles in the organs of rats [20].

Notwithstanding years of use, only recently has some information been gathered on the molecular
mechanisms underlying the antimicrobial properties of silver. Proteins have been pointed out as the
major targets of silver ions, which can react with thiol groups, inactivating membrane-associated
enzymes (e.g., those involved in electron transfer and energy generation) as the Na+-translocating
NADH:ubiquinone oxidoreductase [21]. For instance, the addition of AgNO3 to Escherichia coli has
been shown to lead to proton motive force collapse and subsequent cell death [22].

Using reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ansari et al. [23]
investigated changes in E. coli lipopolysaccharide (LPS) and L-α-phosphatidyl-ethanolamine (PE) upon
exposure to silver nanoparticles. These authors showed that the LPS O-antigen was involved in the
interaction with silver nanoparticles through hydrogen bonding. In addition, the silver nanoparticles
induced the break of the phosphodiester bond of PE, forming phosphate monoesters and resulting in a
highly disordered alkyl chain, most probably causing the destruction of the membrane and cell leaking.

Dibrov et al. [24] reported that low concentrations of silver ions induce massive proton leakage
and loss of cell viability in Vibrio cholerae, suggesting that the antimicrobial activity of Ag+ results
from its unspecific action on membrane proteins and/or the Ag+-modified phospholipid bilayer.
Consistently, the increase in d/cis ratios of unsaturated membrane fatty acids were reported upon
exposure to silver species [25], most probably affecting membrane fluidity and culminating with
membrane integrity loss [23,26]. A proteomics study carried out with Pseudomonas aeruginosa revealed
that treatment with silver nanoparticles led to the identification of 59 proteins related to membrane
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functions and intracellular oxygen reactive species generation, and 5 silver-binding proteins were
found by proteomics [27]. Feng and colleagues [28] showed that, upon exposure to silver ions, E.
coli and S. aureus lost the ability to replicate DNA, suggesting that the nucleoid is another bacterial
structure targeted by silver ions.

A few studies have also used electron microscopy techniques to inspect the effects of silver
nanoparticles on bacterial cell morphology. An example is the work by Huang et al. [29], who
used transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to study the
antimicrobial mechanisms of catechol-functional chitosan silver nanoparticles on the Gram-positive
S. aureus and the Gram-negative E. coli. These authors suggest that the silver nanoparticles killed S.
aureus through disruption of the cell wall and the consequent membrane damage and cytoplasmic
content leak out. In the case of the Gram-negative E. coli, the antimicrobial mechanisms involved the
adsorption of the silver nanoparticles to the surface of surface bacterial cells, interaction with the outer
membrane, and damage of its permeability. This change in permeability was suggested to allow the
silver ions to enter into the cytoplasm, interfering with cellular functioning.

Silver nanoparticles have also been reported as active against a wide range of multidrug-resistant
(MDR) bacteria, including the Gram-positive S. aureus, S. epidermidis, Streptococcus mutans, Enterococcus
faecalis, and Bacillus subtilis, and the Gram-negative E. coli, V. cholerae, P. aeruginosa, Klebsiella pneumoniae,
and Salmonella typhi [30].

3. The Biological Properties of Camphor

(1R)-(+)-camphor (Figure 2) is a natural product (also produced by synthetic means) with
very ancient applications as an insect repellent, muscular relaxant, and anesthetic [31,32] and is
currently used as a cough suppressant and decongestant according to conditions established by
the Food and Drug Administration. Recent studies show that camphor derivatives may also have
relevant antimicrobial [33], antiviral [34,35], and/or cytotoxic properties [36], being also used as
photoinitiators [37] or neuro-blocking agents [38]. However, in contrast with some knowledge of silver
antibacterial mechanisms, such knowledge is inexistent in the case of camphor or camphor derivatives.
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The wide range of pharmacological applications of camphor has fostered studies on the properties
of camphor derivatives and camphor complexes. Camphor derivatives can be obtained by the
introduction of suitable substituents on the camphor molecule (e.g., imine or carboxylic groups),
keeping the camphor skeleton intact. Camphor imines, camphor carboxylates, camphor sulfonimines,
and camphor sulfonamides (derived from camphorsulfonic acid, Figure 2) are among the camphor
derivatives with suitable coordinating properties, some of which (e.g., camphor sulfonamides) display
therapeutic properties [39].

Such as for silver and silver derivatives, not much information is available on the molecular
mechanisms underlying the antimicrobial activity of camphor derivatives. Recent computer
simulations of interactions with the viral surface hemagglutinin (HA) glycoprotein suggest that
camphor derivatives inhibit HA activity by binding to hydrophobic sites of the protein [40]. Apparently,
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camphor imines are able to effectively block conformational rearrangements of HA, required for
membrane fusion during virus entry in host cells.

4. Silver Camphorimine Complexes

In complexes, the characteristics of the metal and the ligands combine in a cooperative way
to generate compounds with distinct and frequently improved properties relative to the precursor
species. Complexes have a wide variety of applications in catalysis, medicine, and the materials
industry. Furthermore, properties of complexes can be tuned towards specific applications by varying
the metal and ligands. The catalytic properties of silver complexes have been explored to promote
organic transformations and bio-conjugation [41]. In the last decade, the evaluation of the biological
properties of silver complexes has garnered considerable attention, in particular, fostering their use as
antimicrobials or anticancer agents [1,4,42–47]. The therapeutic uses of silver complexes include silver
sulfadiazine for treatment of infections associated with burns.

The core of the silver camphor imine complexes, the biological properties of which we have been
studying, is formed by silver nitrate (AgNO3) that binds one or two camphor ligands per metal atom.
Data obtained by X-rays show that nitrate acts as a bidentate ligand and that the camphor ligand binds
the silver atom through the imine nitrogen atom. The complexes arrange according to monomeric (type
1, Figure 3) or polymeric (type 2, Figure 3) structures. The polymeric arrangement was typically found
in imine and bicamphor imine complexes of general formula [Ag(NO3)L]n [33], while the monomeric
arrangement was found in camphor sulphonylimine ([Ag(NO3)L2]) [43] complexes (Figure 3).
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Figure 3. Structural arrangements corroborated by X-ray analysis in Ag(I)-camphor-derived complexes.
The synthesis of the Ag(I) camphor complexes includes the preparation of suitable camphor compounds
to be used as ligands, since just a few imine functionalized camphor derivatives are commercially
available (e.g., camphor oxime and camphor sulphonylimine). (1R)-(+)-camphor is the starting material
for the camphor compounds of type A1–A5 (Figure 4).

(1S)-(+)-10-camphorsulfonic acid is the precursor for the tricyclic camphor sulfonylimine
derivatives of types B1 and B2 (Figure 5) within a process that involves the sequential
formation of chloride and amine derivatives prior to ring closure and oxidation to obtain
3-oxo-camphorsulfonylimine, which is then condensed with amines or hydrazines to afford camphor
sulfonylimines of types B1 and B2 (Figure 5).
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A wide variety of amines (YNH2) and hydrazines (NR1R2NNH2) can be used to tune the electronic
and steric characteristics of the imine group at position 3 (see Figure 5 for labelling) of the camphor
skeleton. Thus, the design and synthesis of camphor Ag(I) complexes can be driven to control electronic
and steric parameters towards the aimed objectives.

The camphor imine complexes, the antimicrobial properties of which were studied by us [42],
were obtained in acetonitrile by the reaction of silver nitrate with the suitable camphor ligand
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(L) under metal-to-ligand ratios directed to mononuclear (Equation (1)) or polymeric complexes
(Equation (2)). Strict control of the experimental conditions (exposure to light and reaction time) is
necessary depending on the electronic characteristics of the camphor ligands to inhibit Ag(I) reduction,
the formation of silver nanoparticles (AgNPs) (Equation (3)), and products of oxidation of the camphor
derivatives (e.g., camphorquinone).

AgNO3 + 2 L → [Ag(N O3)(L)2 ] (1)

AgNO3 + L → [Ag(N O3)(L) ] (2)

AgNO3 + 2 L → AgNPs + camphorquinone + other products (3)

Studies carried out so far evidence that all silver camphor imine complexes display biological
activity that, according to the structural and electronic characteristics of the ligands, favors antibacterial,
antifungal, and/or anticancer activity [33–35]. In some cases, antibacterial, antifungal, and cytotoxic
activity combine in the same complex [42,44]. Such performance is highly relevant to cancer treatments
because opportunistic fungi and bacteria might develop when body defenses diminish due to the use
of anticancer drugs.

5. Antibacterial Activity

To date, several silver camphor complexes have been synthesized and characterized, and their
antibacterial activity towards Gram-positive (S. aureus) and Gram-negative bacteria (E. coli, P. aeruginosa,
Burkholderia contaminans) has been screened using the Kirby–Bauer disk diffusion method and
quantified based on the determination of minimal inhibitory concentrations (MIC) by microdilution
assay standard methods [45]. E. coli, S. aureus, and P. aeruginosa strains were chosen because these
species belong to the ESKAPE group. B. contaminans is a member of the Burkholderia cepacia complex
(Bcc), a group of Gram-negative bacteria capable of causing life-threatening respiratory infections,
of particular severity among cystic fibrosis patients [46,47,53,54]. Bcc bacteria are intrinsically resistant
to multiple antimicrobials, rendering their eradication difficult to achieve [55]. Photographs in Figure 6
illustrate results from disk diffusion and MIC assays, obtained with complex 1 (see Table 1) for E. coli
ATCC25922 and S. aureus Newman.
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Figure 6. Photographs illustrating results from the assessment of complex 1 antibacterial activity
towards E. coli ATCC25922 or S. aureus Newman by the disk diffusion method and MIC determination
by broth microdilution assays. Circular growth inhibition zones are visible in plates spotted with
50 or 30 µg of the complex. The numbers below the wells indicate the respective complex 1 final
concentration, in µg/mL. Photographs (not at the same scale) taken after 24 h of incubation at 37 ◦C.
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Table 1. Minimal inhibitory concentration (MIC) values calculated for complexes [Ag(NO3)L],
in µg/mL, towards the bacterial strains Staphylococcus aureus Newman, E scherichia coli ATCC25922,
Pseudomonas aeruginosa 477, and Burkholderia contaminans IST408. Data taken from previous publications
[42–44].

Ligand (L) Complex S. aureus E. coli P. aeruginosa B. contaminans

Antibiotics 2018, 7, x 7 of 11 

Table 1. Minimal inhibitory concentration (MIC) values calculated for complexes [Ag(NO3)L], in 
μg/mL, towards the bacterial strains Staphylococcus aureus Newman, E scherichia coli ATCC25922, 
Pseudomonas aeruginosa 477, and Burkholderia contaminans IST408. Data taken from previous 
publications [42–44].  

Ligand (L) Complex S. aureus E. coli P. aeruginosa B. contaminans

1 66 ± 5 50 ± 1 56 ± 4 79 ± 4 

2 183 ± 3 65 ± 2 121 ± 2 144 ± 1 

3 73 ± 2 20 ± 1 19 ± 4 36 ± 3 

4 1˃00 1˃00 86 ± 7 1˃00 

AgNO3 (Control) - 73 47 39 74 

MIC values of a selection of silver camphor imine complexes towards E. coli, S. aureus, P. 
aeruginosa, and B. contaminans are shown in Table 1. The examples aim to highlight the profound 
effects of the presence, position, and number of aryl groups in the antibacterial activity of the silver 
camphor imine complexes. These selected examples also evidence that structural differences in the 
complexes due to para (complex 3) or meta (complex 2) substituents in the aromatic ring drive 
significant variations in the MIC values for the strains tested, not only between Gram-positive and 
Gram-negative strains but also within the Gram-negative strains. From the set of bicamphor 
complexes in Table 1, [Ag(NO3)(OC10H14N)2(p-C6H4)] (3, ligand of type A3, Figure 4) displays the 
highest antibacterial activity against Gram-negative strains, followed by complex 1 with a type A5 
ligand (Figure 4). In both cases, electron delocalization throughout the camphor ligand may not be 
innocent since it affects the electron density at the silver center and consequently the electron transfer 
processes in which the silver ion may be involved. The MIC values for complexes 1, 3, and 4 show 
that one aromatic group between the two camphor moieties (3) increased the antimicrobial activity 
towards the Gram-negative strains, while two sequential aromatic groups in between the camphor 
moieties (4) resulted in a general loss of antibacterial activity (Table 1). Comparing the biological 
activity of complexes 2 and 3 (selected to illustrate the effects of the geometry of the ligand in the MIC 
values according to a relevant effect of geometry and/or electron delocalization on activity), a marked 
decrease in activity is observed upon replacement of a para (3) by a meta (2)-substituted aromatic 
spacer (Table 1). 

A step forward in this work considers the design of new camphor ligands and the synthesis of 
silver and eventually other metal complexes to investigate the effects of electron density, electron 
delocalization, distinct geometries, and substituents at the camphor skeleton on the antibacterial 
activity. The identification of the complexes’ bacterial targets is expected to enable the design of 
suitable ligands to tailor complexes with enhanced antimicrobial activity and allow rationalization of 
the mechanisms. 

A major concern when developing novel antimicrobials is the emergence of resistant strains. 
Preliminary unpublished work from our team indicates that the frequency of spontaneous emergence 
of resistance for E. coli ATCC25922, P. aeruginosa 477, B. contaminans IST408, and S. aureus Newman 
is lower than 4 × 10−10. These data were obtained after spreading approximately 109 CFUs of each 
strain onto the surface of Mueller-Hinton solid medium containing twice the estimated MIC 
concentration of complex 3 and enumerating the CFUs after five days of incubation at 37 °C. Another 

1 66 ± 5 50 ± 1 56 ± 4 79 ± 4

Antibiotics 2018, 7, x 7 of 11 

Table 1. Minimal inhibitory concentration (MIC) values calculated for complexes [Ag(NO3)L], in 
μg/mL, towards the bacterial strains Staphylococcus aureus Newman, E scherichia coli ATCC25922, 
Pseudomonas aeruginosa 477, and Burkholderia contaminans IST408. Data taken from previous 
publications [42–44].  

Ligand (L) Complex S. aureus E. coli P. aeruginosa B. contaminans

1 66 ± 5 50 ± 1 56 ± 4 79 ± 4 

2 183 ± 3 65 ± 2 121 ± 2 144 ± 1 

3 73 ± 2 20 ± 1 19 ± 4 36 ± 3 

4 1˃00 1˃00 86 ± 7 1˃00 

AgNO3 (Control) - 73 47 39 74 

MIC values of a selection of silver camphor imine complexes towards E. coli, S. aureus, P. 
aeruginosa, and B. contaminans are shown in Table 1. The examples aim to highlight the profound 
effects of the presence, position, and number of aryl groups in the antibacterial activity of the silver 
camphor imine complexes. These selected examples also evidence that structural differences in the 
complexes due to para (complex 3) or meta (complex 2) substituents in the aromatic ring drive 
significant variations in the MIC values for the strains tested, not only between Gram-positive and 
Gram-negative strains but also within the Gram-negative strains. From the set of bicamphor 
complexes in Table 1, [Ag(NO3)(OC10H14N)2(p-C6H4)] (3, ligand of type A3, Figure 4) displays the 
highest antibacterial activity against Gram-negative strains, followed by complex 1 with a type A5 
ligand (Figure 4). In both cases, electron delocalization throughout the camphor ligand may not be 
innocent since it affects the electron density at the silver center and consequently the electron transfer 
processes in which the silver ion may be involved. The MIC values for complexes 1, 3, and 4 show 
that one aromatic group between the two camphor moieties (3) increased the antimicrobial activity 
towards the Gram-negative strains, while two sequential aromatic groups in between the camphor 
moieties (4) resulted in a general loss of antibacterial activity (Table 1). Comparing the biological 
activity of complexes 2 and 3 (selected to illustrate the effects of the geometry of the ligand in the MIC 
values according to a relevant effect of geometry and/or electron delocalization on activity), a marked 
decrease in activity is observed upon replacement of a para (3) by a meta (2)-substituted aromatic 
spacer (Table 1). 

A step forward in this work considers the design of new camphor ligands and the synthesis of 
silver and eventually other metal complexes to investigate the effects of electron density, electron 
delocalization, distinct geometries, and substituents at the camphor skeleton on the antibacterial 
activity. The identification of the complexes’ bacterial targets is expected to enable the design of 
suitable ligands to tailor complexes with enhanced antimicrobial activity and allow rationalization of 
the mechanisms. 

A major concern when developing novel antimicrobials is the emergence of resistant strains. 
Preliminary unpublished work from our team indicates that the frequency of spontaneous emergence 
of resistance for E. coli ATCC25922, P. aeruginosa 477, B. contaminans IST408, and S. aureus Newman 
is lower than 4 × 10−10. These data were obtained after spreading approximately 109 CFUs of each 
strain onto the surface of Mueller-Hinton solid medium containing twice the estimated MIC 
concentration of complex 3 and enumerating the CFUs after five days of incubation at 37 °C. Another 

2 183 ± 3 65 ± 2 121 ± 2 144 ± 1

Antibiotics 2018, 7, x 7 of 11 

Table 1. Minimal inhibitory concentration (MIC) values calculated for complexes [Ag(NO3)L], in 
μg/mL, towards the bacterial strains Staphylococcus aureus Newman, E scherichia coli ATCC25922, 
Pseudomonas aeruginosa 477, and Burkholderia contaminans IST408. Data taken from previous 
publications [42–44].  

Ligand (L) Complex S. aureus E. coli P. aeruginosa B. contaminans

1 66 ± 5 50 ± 1 56 ± 4 79 ± 4 

2 183 ± 3 65 ± 2 121 ± 2 144 ± 1 

3 73 ± 2 20 ± 1 19 ± 4 36 ± 3 

4 1˃00 1˃00 86 ± 7 1˃00 

AgNO3 (Control) - 73 47 39 74 

MIC values of a selection of silver camphor imine complexes towards E. coli, S. aureus, P. 
aeruginosa, and B. contaminans are shown in Table 1. The examples aim to highlight the profound 
effects of the presence, position, and number of aryl groups in the antibacterial activity of the silver 
camphor imine complexes. These selected examples also evidence that structural differences in the 
complexes due to para (complex 3) or meta (complex 2) substituents in the aromatic ring drive 
significant variations in the MIC values for the strains tested, not only between Gram-positive and 
Gram-negative strains but also within the Gram-negative strains. From the set of bicamphor 
complexes in Table 1, [Ag(NO3)(OC10H14N)2(p-C6H4)] (3, ligand of type A3, Figure 4) displays the 
highest antibacterial activity against Gram-negative strains, followed by complex 1 with a type A5 
ligand (Figure 4). In both cases, electron delocalization throughout the camphor ligand may not be 
innocent since it affects the electron density at the silver center and consequently the electron transfer 
processes in which the silver ion may be involved. The MIC values for complexes 1, 3, and 4 show 
that one aromatic group between the two camphor moieties (3) increased the antimicrobial activity 
towards the Gram-negative strains, while two sequential aromatic groups in between the camphor 
moieties (4) resulted in a general loss of antibacterial activity (Table 1). Comparing the biological 
activity of complexes 2 and 3 (selected to illustrate the effects of the geometry of the ligand in the MIC 
values according to a relevant effect of geometry and/or electron delocalization on activity), a marked 
decrease in activity is observed upon replacement of a para (3) by a meta (2)-substituted aromatic 
spacer (Table 1). 

A step forward in this work considers the design of new camphor ligands and the synthesis of 
silver and eventually other metal complexes to investigate the effects of electron density, electron 
delocalization, distinct geometries, and substituents at the camphor skeleton on the antibacterial 
activity. The identification of the complexes’ bacterial targets is expected to enable the design of 
suitable ligands to tailor complexes with enhanced antimicrobial activity and allow rationalization of 
the mechanisms. 

A major concern when developing novel antimicrobials is the emergence of resistant strains. 
Preliminary unpublished work from our team indicates that the frequency of spontaneous emergence 
of resistance for E. coli ATCC25922, P. aeruginosa 477, B. contaminans IST408, and S. aureus Newman 
is lower than 4 × 10−10. These data were obtained after spreading approximately 109 CFUs of each 
strain onto the surface of Mueller-Hinton solid medium containing twice the estimated MIC 
concentration of complex 3 and enumerating the CFUs after five days of incubation at 37 °C. Another 

3 73 ± 2 20 ± 1 19 ± 4 36 ± 3

Antibiotics 2018, 7, x 7 of 11 

Table 1. Minimal inhibitory concentration (MIC) values calculated for complexes [Ag(NO3)L], in 
μg/mL, towards the bacterial strains Staphylococcus aureus Newman, E scherichia coli ATCC25922, 
Pseudomonas aeruginosa 477, and Burkholderia contaminans IST408. Data taken from previous 
publications [42–44].  

Ligand (L) Complex S. aureus E. coli P. aeruginosa B. contaminans

1 66 ± 5 50 ± 1 56 ± 4 79 ± 4 

2 183 ± 3 65 ± 2 121 ± 2 144 ± 1 

3 73 ± 2 20 ± 1 19 ± 4 36 ± 3 

4 1˃00 1˃00 86 ± 7 1˃00 

AgNO3 (Control) - 73 47 39 74 

MIC values of a selection of silver camphor imine complexes towards E. coli, S. aureus, P. 
aeruginosa, and B. contaminans are shown in Table 1. The examples aim to highlight the profound 
effects of the presence, position, and number of aryl groups in the antibacterial activity of the silver 
camphor imine complexes. These selected examples also evidence that structural differences in the 
complexes due to para (complex 3) or meta (complex 2) substituents in the aromatic ring drive 
significant variations in the MIC values for the strains tested, not only between Gram-positive and 
Gram-negative strains but also within the Gram-negative strains. From the set of bicamphor 
complexes in Table 1, [Ag(NO3)(OC10H14N)2(p-C6H4)] (3, ligand of type A3, Figure 4) displays the 
highest antibacterial activity against Gram-negative strains, followed by complex 1 with a type A5 
ligand (Figure 4). In both cases, electron delocalization throughout the camphor ligand may not be 
innocent since it affects the electron density at the silver center and consequently the electron transfer 
processes in which the silver ion may be involved. The MIC values for complexes 1, 3, and 4 show 
that one aromatic group between the two camphor moieties (3) increased the antimicrobial activity 
towards the Gram-negative strains, while two sequential aromatic groups in between the camphor 
moieties (4) resulted in a general loss of antibacterial activity (Table 1). Comparing the biological 
activity of complexes 2 and 3 (selected to illustrate the effects of the geometry of the ligand in the MIC 
values according to a relevant effect of geometry and/or electron delocalization on activity), a marked 
decrease in activity is observed upon replacement of a para (3) by a meta (2)-substituted aromatic 
spacer (Table 1). 

A step forward in this work considers the design of new camphor ligands and the synthesis of 
silver and eventually other metal complexes to investigate the effects of electron density, electron 
delocalization, distinct geometries, and substituents at the camphor skeleton on the antibacterial 
activity. The identification of the complexes’ bacterial targets is expected to enable the design of 
suitable ligands to tailor complexes with enhanced antimicrobial activity and allow rationalization of 
the mechanisms. 

A major concern when developing novel antimicrobials is the emergence of resistant strains. 
Preliminary unpublished work from our team indicates that the frequency of spontaneous emergence 
of resistance for E. coli ATCC25922, P. aeruginosa 477, B. contaminans IST408, and S. aureus Newman 
is lower than 4 × 10−10. These data were obtained after spreading approximately 109 CFUs of each 
strain onto the surface of Mueller-Hinton solid medium containing twice the estimated MIC 
concentration of complex 3 and enumerating the CFUs after five days of incubation at 37 °C. Another 

4 <100 <100 86 ± 7 <100

AgNO3 (Control) - 73 47 39 74

MIC values of a selection of silver camphor imine complexes towards E. coli, S. aureus, P. aeruginosa,
and B. contaminans are shown in Table 1. The examples aim to highlight the profound effects of the
presence, position, and number of aryl groups in the antibacterial activity of the silver camphor
imine complexes. These selected examples also evidence that structural differences in the complexes
due to para (complex 3) or meta (complex 2) substituents in the aromatic ring drive significant
variations in the MIC values for the strains tested, not only between Gram-positive and Gram-negative
strains but also within the Gram-negative strains. From the set of bicamphor complexes in Table 1,
[Ag(NO3)(OC10H14N)2(p-C6H4)] (3, ligand of type A3, Figure 4) displays the highest antibacterial
activity against Gram-negative strains, followed by complex 1 with a type A5 ligand (Figure 4). In both
cases, electron delocalization throughout the camphor ligand may not be innocent since it affects the
electron density at the silver center and consequently the electron transfer processes in which the silver
ion may be involved. The MIC values for complexes 1, 3, and 4 show that one aromatic group between
the two camphor moieties (3) increased the antimicrobial activity towards the Gram-negative strains,
while two sequential aromatic groups in between the camphor moieties (4) resulted in a general loss
of antibacterial activity (Table 1). Comparing the biological activity of complexes 2 and 3 (selected to
illustrate the effects of the geometry of the ligand in the MIC values according to a relevant effect of
geometry and/or electron delocalization on activity), a marked decrease in activity is observed upon
replacement of a para (3) by a meta (2)-substituted aromatic spacer (Table 1).

A step forward in this work considers the design of new camphor ligands and the synthesis of
silver and eventually other metal complexes to investigate the effects of electron density, electron
delocalization, distinct geometries, and substituents at the camphor skeleton on the antibacterial
activity. The identification of the complexes’ bacterial targets is expected to enable the design of
suitable ligands to tailor complexes with enhanced antimicrobial activity and allow rationalization of
the mechanisms.

A major concern when developing novel antimicrobials is the emergence of resistant strains.
Preliminary unpublished work from our team indicates that the frequency of spontaneous emergence
of resistance for E. coli ATCC25922, P. aeruginosa 477, B. contaminans IST408, and S. aureus Newman is
lower than 4 × 10−10. These data were obtained after spreading approximately 109 CFUs of each strain
onto the surface of Mueller-Hinton solid medium containing twice the estimated MIC concentration of
complex 3 and enumerating the CFUs after five days of incubation at 37 ◦C. Another issue that still
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needs to be addressed is the toxicity of the silver camphorimine complexes to humans and animals
when envisaging their use in human and veterinary medicine.

6. Conclusions

Camphor and silver derivatives have been used since ancient times as medicines. Although
their combination in complexes and the search for their antimicrobial activities only started
recently, there is no application of silver camphor imine complexes in medicine, pharmacy, or
industry. The results obtained until now show that some silver camphor imine complexes combine
antimicrobial activity against bacteria and fungi with cytotoxic activity [42–44]. This feature is highly
relevant since opportunistic bacteria and fungi usually develop during cancer treatments due to the
immunosuppressive effects of anticancer drugs.

The insights already made into the antimicrobial properties of some silver camphor imine
complexes show they have moderate to high antibacterial activity, depending on the characteristics of
the ligands. Such information fosters further enhancement of the ligands to optimize the antibacterial
properties of the camphor imine complexes. Meanwhile, synthetic strategies to synthesize, characterize,
and evaluate the antimicrobial properties of silver camphor imine complexes were developed and
described in the present minireview. Detailed knowledge of the bacterial targets of these compounds
is still missing, and therefore, future work will focus on the unveiling of the molecular targets and
mechanisms underlying their antimicrobial activity. To address these issues, studies will focus on the
use of transcriptomic approaches to gain clues regarding the bacterial gene expression responses to
exposure to inhibitory concentrations of silver camphor imine complexes. It will be also necessary
to use more classical biochemical approaches to identify the bacterial targets of these complexes.
The comprehensive knowledge of the molecular details of the antimicrobial activity of silver camphor
imine complexes is expected to enable the exploitation of structure and activity relationships to tailor
complexes with enhanced antimicrobial activity.
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