

Open access

www.bioinformation.net

Volume 14(5)

Hypothesis

Insights from the sequence similarity of Zika virus proteins with the Human nerve proteins

Prasanna Marsakatla¹, Sujai Suneetha¹, Joshua Lee², Paari Dominic Swaminathan³, Logeshwaran Vasudevan⁴, Rachael Supriya¹, Lavanya Moses Suneetha^{1*}

Received April 10, 2018; Revised April 23, 2018; Accepted April 30, 2018; Published May 31, 2018

¹CODEWEL Nireekshana ACET, Narayanaguda, Hyderabad -500029, Telangana, India; ²York University, Department of Science, 4700 Keele St, Toronto, ON M3J 1P3, Canada; ³LSU Health Sciences Center, Center for Cardiovascular Diseases and Sciences Shreveport, LA, USA; ⁴Presidency College, Department of Zoology, Chennai-05, India; Lavanya Moses Suneetha – E:mail drlavanyasuneetha@gmail.com; Phone: +91-40-23221033; +91-9885150381; *Corresponding Author

doi:10.6026/97320630014194

Abstract:

Massive peptide sharing between the Zika virus polyprotein and host tissue proteins could elicit significant host-pathogen interactions and cross-reactions leading to autoimmune diseases. This study found similarities in the Zika V proteins and human nerve tissue proteins. 63 human nerve proteins were screened for similarities with the Zika V of which Neuromodulin, Nestin, Galanin, Bombesin, Calcium-binding protein were found to have similarities to the Zika V poly protein C at different sequence regions. These sequence similarities could be significant in regulating pathogenic interactions/autoimmunity, as Polyprotein C is known to be a virulent factor.

Keywords: Zika V, Nerve tissue proteins, Neuropathogenesis, Bioinformatics, BLAST, Neuromodulin, Nestin, Bombesin, Galanin, Calcium-binding protein.

Background:

The Zika Virus (Zika V), is an emerging infectious disease agent causing human birth defects. It has created a global alarm and was declared a public health emergency of international concern by the World Health Organization (WHO) [1]. The Zika V proteome has been sequenced. Its role in infection, inflammation and pathogenesis of the human nerve are being extensively investigated. Recent studies have revealed that the Zika V shows preferential infection to neural progenitor cells of a mouse brain and when it infects the neural stem cells and immature neurons, results in alterations in the gene expression of cell cycle related proteins inducing neural-cell death and reduced production of new neurons. The decreased proliferation of the neural cells could cause fetal microcephaly in infected pregnant women [2, 3]. Selective permeability permitting the Zika V to cross the foetal blood-brain barrier has also been indicated [4, 5]. Acute infection in these patients leads to a polyfunctional T-cell activation along with increased response of its respective cytokines (IL-1β, IL-2, IL-4, IL-6, IL-9, IL-13, IL-17, IFN-¥) and growth factor responses [RANTES, macrophage inflammatory protein 1α (MIP1 α) and vascular endothelial growth factor response (VEGF)] [6]. Research on the various cells targeted by the Zika V revealed the engagement of several host adhesion factors (DC-SIGN, AXL, ISSN 0973-2063 (online) 0973-8894 (print)

Tyro3, and TIM-1) facilitating the entry of the Zika V into different tissue cells **[7]**. Cell culture experiments of the Zika V infection expressed transcription of Toll-like receptor 3 (TLR3), retinoic acid-inducible gene 1 (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) **[7]**.

The molecular mechanism of the pathogen's interaction with the host and its use in drug discovery is at an experimental stage [8, 9]. Though the pathogenic pathway of infectious agents across various host tissues is distinctive and often undefined, many of these processes can be attributed to a role of molecular mimicry between pathogen and its corresponding host tissue proteins [10, 11]. A study identified the sequence and structural similarities between Mycobacterium leprae and the immunoglobulin regions of Myelin P0, which could be the contributing factor to autoimmunity to myelin P0 amongst Leprosy patients with peripheral nerve damage [12-15]. The sequence and structural similarities between the Zika V Virulant Factor and host nerve peptides could directly or indirectly impact the pathogenesis of the disease [16]. There is insilco evidence revealing massive peptide sharing between the Zika V protein and host tissue proteins causing cross-reactions inducing autoimmunity. Recent research demonstrated reveals the expression of unique

Open access

transcriptomic signatures in Zika V infected human neural stem cells **[17, 18]**.

However, to the best of our knowledge there is no report on major human nerve tissue protein similarities to the Zika V proteins. The hypothesis is that sequence and structural similarities (mimics) that exist in the host nerve and pathogen proteins include significant host-pathogen cross reactions – i.e. in receptor binding, steric hindrance, signalling/transmission, metabolic alteration, inflammation and auto-antibody production, which could ultimately lead to aberrant development of neurons and neuropathy **[19, 20]**. To assess whether such sequence similarities /molecular mimics occurred between the Zika V and the human host, we compared the peptide sequence of 63 proteins expressed in the human nerve tissue with that of the peptide sequence of the Zika V polyprotein with the use of bioinformatic tools.

Methodology:

64 human nerve proteins were selected to be BLAST (Basic Local Alignment Search Tool; Version 2.2.28; e-value ≤ 0.01) against the Zika V proteome (Tax ID 64320). The peptide sequence similarities between the host and counterpart proteins were

Table 1: List of nerve proteins used in the analysis

identified in the PSI-Blast (BLASTP 2.6.0+) by their aa/nucleotide positions **[21]**.

Selection of nerve proteins:

64 proteins (**Table 1**) that were enriched and enhanced in the nervous tissue demonstrated by immunohisochemistry were extracted from the Human Protein Atlas Database (www.proteinatlas.org). FASTA formats for each of the above proteins were retrieved from NCBI PubMed and were saved in a Microsoft notepad to be BLAST against the Zika V proteome (Tax ID 64320). The output of the BLAST identified significant peptide sequence similarities between the human protein and its pathogen counterpart. Similarities identified in the peptide sequence region of Neuromodulin was superimposed on the of the viral protein Cryo-em structure of the immature Zika V structure (PDB ID: 5U4W_A) using the Visual Molecular Dynamics 1.9.1 (VMD) modelling software.

Results:

Nestin, Bombesin, Galanin, Calcium Binding Protein and Neuromodulin were found to mimic the Cryoem- protein and various other peptide regions of the polyprotein C in the Zika V proteome.

S. No	Proteins	Protein Code	S. No	Proteins	Protein Code
1	Agrin	AGRN, 000468	33	Probable tubulin polyglutamylase	TTLL1,095922
2	Calbindin N shimaarin	CALB1,P05937	34	Myelin basic protein Protein phoenhatasa 1 ragulatary subunit 1B	MBP,P02686
4		CC 2 D15992	26	Art CAD with CTDaga ANK repeat and DH domain	AC A P2 000400
4	Secretogramin-2	5CG2,F15002	30	containing protein 2	AGAF2,Q99490
5	Neuromodulin	NEUM,P13521	37	Cathepsin L2	CATL2,060911
6	Kinesin	KIFC1,P17677	38	D(1A) dopamine receptor	DRD1,P21728
7	Tau protein	TAU,P10636	39	BDNF/NT-3 growth factors receptor	NTRK2,Q16620
8	2',3'-cyclic-nucleotide 3'-phosphodiesterase	CN37,P09543	40	Melanoma-associated antigen E1	MAGE1,Q9HCI5
9	Myelin-associated glycoprotein	MAG,P20916	41	Microtubule-associated protein 6	MAP6,Q96JE9
10	Myelin protein P0	MYP0,P25189	42	Protocadherin alpha-12	PCDAC,Q9UN75
11	Myelin P2 protein	MYP2,P02689	43	Carboxypeptidase E	CBPE,P16870
12	Oligodendrocyte-myelin glycoprotein	OMGP,P23515	44	Down syndrome cell adhesion molecule	DSCAM,060469
13	Brain-derived neurotrophic factor	BDNF,P23560	45	Dyslexia-associated protein KIAA0319	K0319,Q5VV43
14	Ciliary neurotrophic factor	CNTF,P26441	46	Uncharacterized protein KIAA1211-like	K121L,Q6NV74
15	Neurotrophin-3	NTF3,P20783	47	Microtubule-associated protein 1B	MAP1B,P46821
10	Deta-nerve growth factor	NGF,P01138	48	Neuronal calcium sensor 1	NC51,P62166
17	Neurofilament heavy polypentide	NE51,P48081 NFH P12036	49 50	Receptor expression-enhancing protein 2	RFFP2 O9BRK0
10	Neuromanie	NELIC 002686	50 E1	Econologyanin 2	
20	Voltage-dependent T-type calcium channel	CAC1G 043497	52	Secretogrami-5 Libiquitin carboxyl-terminal hydrolase isozyme I 1	UCHL P09936
20	subunit alpha-1G	chere, 6101)/	02	obiquitin curboxyr terminar ny crotase isozynie Br	00112,100000
21	Hippocalcin	HPCL1,P37235	53	Galactosylgalactosylxylosylprotein 3-beta-	B3GA1,Q9P2W7
				glucuronosyltransferase 1	
22	Neurocalcin-delta	NCALD,P61601	54	Beta-1,4 N-acetylgalactosaminyltransferase 1	B4GN1,Q00973
23	Recoverin	RECO,P35243	55	Caprin-2	CAPR2,Q6IMN6
24	Bombesin receptor subtype-3	BRS3,P32247	56	Dopamine beta-hydroxylase	DOPO,P09172
25	Kininogen-1/Bradykinin	KNG1,P01042	57	Protein FAM81A	FA81A,Q81BF8
26	Calcitonin	CALC,P01258	58	Mitogen-activated protein kinase 10	MK10,P53779
27	Cholecystokinin	CCKN,P06307	59	N-terminal EF-hand calcium-binding protein 1	NECAL,Q8N987
28	Galanin peptides	GALA,P22466	60	Neuroligin-3 Protein himory Cound access himory substants in a surger	NLGN3,Q9NZ94
29	гю-пеигорерпае т	INF 1, FU1303	01	protein 1	FACINI,Q9D111
30	Neurotensin/neuromedin N	NEUT,P30990	62	Sodium channel protein type 7 subunit alpha	SCN7A,Q01118
31	Protein S100-B	S100B,P04271	63	Clathrin coat assembly protein AP180	AP180,O60641
32	Synapsin-1	SYN1,P17600			

Open access

Sequence similarity of Neuromodulin peptide on ZIKV polyprotein C:

Neuromodulin had a peptide sequence similarity to that of the present in the Cryo-em immature Zika V Protein Data Bank PDB. ID: 5U4W_A peptide sequence, which forms a part of polyprotein (**Figure 1**). The similarity of peptide region from 182 to 203 positions 'ELTGYGTVTMECSPRT' of Neuromodulin with Zika V protein has been superimposed and structurally modelled (**Figure 2**).

Sequence similarity of Nestin to Zika V polyprotein: Nestin was identified to have sequence similarities to the Zika V polyprotein (Sequence ID: AMM43326.1) Amino acid range: 3097 to 3215 position by BLAST results (**Figure 3**).

Sequence similarity of Bombesin to Zika V polyprotein: Bombesin was identified to have sequence similarities with polyprotein Zika V (Sequence ID: ANK57896.1) Amino acid range: 62 - 147 position (Figure 4).

Chain A, Cryo	om Structure Of Immeture 7ike Virus	Alignments									
Chain A, Cryo-em Structure Of Immature Zika Virus											
Sequence ID:	Sequence ID: 5U4W_A Length: 402 Number of Matches: 1										
See 2 more title(s) Kange 1: 182 to 203											
Score	Expect Method	Identities	Positives	Gaps	Frame						
Score 23.5 bits(49)	Expect Method 7.1() Compositional matrix adjust.	Identities 10/22(45%)	Positives 12/22(54%)	Gaps 0/22(0%)	Frame						
Score 23.5 bits(49) Features:	Expect Method 7.1() Compositional matrix adjust.	Identities 10/22(45%)	Positives 12/22(54%)	Gaps 0/22(0%)	Frame						
Score 23.5 bits(49) Features: Query 79	Expect Method 7.1() Compositional matrix adjust. EKKGEGTTTAEAAPATGSKPDE 100	Identities 10/22(45%)	Positives 12/22(54%)	Gaps 0/22(0%)	Frame						

Figure 1: Neuromodulin similarity region in Chain A, Cryo-em Structure of Immature Zika V, Sequence ID: 5U4W_A Length: 402 Number of Matches: 1,Range 1: 182 to 203, Score: 23.5 bits (49), Expect: 7.1, Method: Compositional matrix adjust, Identities: 10/22(45%), Positives: 12/22(54%), Gaps: 0/22(0%).

Sequence similarity of Galanin to Zika V polyprotein: Galanin was identified to have similarities with the polyprotein partial Zika V (Sequence ID: ANF29038.1) Amino acid range: 440 - 476 position (**Figure 5**).

Sequence similarity of Calcium-binding protein to Zika V: polyprotein: Calcium Binding Proteins (CaBPs) were identified to have similarity with polyprotein Zika V (Sequence ID: AHF49785.1). Amino acid range: 2872 to 2967 position (Figure 6). Multiple sequence alignments were carried out for polyprotein C with Neuromodulin, Nestin, Bombesin, Galanin and Calcium-binding protein. Multiple sequence similarities were found in a broad region of amino acids 900 -3320 [23] (Figure 7). Comparative similarity percentages of Zika V polyprotein C with human proteins are shown in Table 2.

Figure 2: Neuromodulin similarity region in Chain A, Cryo-em Structure of Immature Zika V. The yellow chain of amino acids (ELTGYGTVTMECSPRT) is located on the ribbon model of 5U4W_A an output of VMD (Visual Molecular Dynamics) on the N-terminal side of the molecule.

Sequer Range	ce ID: A	ANA A2						
Range	CEID: A		200 4 1 4	ath: 2402 Number	of Matabass 4			
	1.3097.0	0.321	5 5	ngth: 3423 Number	or matches: 1			
Ŭ		0211	-					
Score	E	pect	Method		Identities	Positives	Gaps	Frame
27.3 bit	s(59) 5.6	5()	Composit	ional matrix adjust.	35/131(27%)	59/131(45%)	20/131(15%)	
Feature	s:							
Query	598	KDVE	/VRPLEK-I	EAVGQL KPT	KEDTOTLQSLQK	ENQELMKSLEG	NLETFLFPG	650
Sbjct	3097	K V+V	LRPAEKG	TVMDIISRQDQRGS	QVVTYALNTETN	ILVVQLIRSMEA	EEVL	3151
Query	651	TENQE	ELVSSLQE	NLESLTALEKENQEP	RSPEV-GDEEAL	RPLTKENQEPL	RSLEDENKE	709
Sbjct	3152	- EMQ	DL-WLLRR	SEKVTNWLQSNGWDRI	KRMAVSGDDCVV	RPIDDRFAHAL	RFLNDMGK-	3208
	710	AFRSI	EKENQE	720				
Query			F K+ QE					

Figure 3: Nestin similarity region in polyprotein [Zika V], Sequence ID: AMM43326.1, Length: 3423, Number of Matches: 1, Range 1: 3097 to 3215, Score: 27.3 bits (59), Expect: 5.7, Method: Compositional matrix adjust, Identities: 35/131(27%), Positives: 59/131(45%), Gaps: 20/131(15%).

Discussion:

Bioinformatics is an exciting; exploratory method for peptide discovery towards the development of antimicrobial therapies and vaccination strategies [24]. The approach to identifying the similarities between host cell-viral proteins has now become facile with the extensive genomic and protein databases that exist [25]. The present study selected 63 human nerve proteins of which peptides of the Neuromodulin, Nestin, Bombesin, Galanin and Calcium-binding protein were found to have mimics with the Zika V proteins. The study discovered multiple similarity regions in polyprotein C of Zika V. This approach was different from the earlier published method, which selected pentapeptide epitopes in the human proteome database and BLAST against the Zika V proteome sequence. A vast number of pentapeptide matching/mimics was observed which were putative epitopes

ISSN 0973-2063 (online) 0973-8894 (print)

Open access

for autoimmunity. Our data strengthened the hypothesis of host autoimmunity due to the sequence and structural mimics of the Zika V with host peptides larger than pentapeptide [19]. In addition to causing autoimmunity in the host, the similarities could also have an influence on other metabolic pathways of the host cell. Human nerve protein Neuromodulin is a component of the motile growth cones. It is a membrane protein whose expression is widely correlated with nerve growth (axon elongation and effective regeneration response) [26]. Although the biological role of Neuromodulin is undetermined, the Nterminal region contains a calmodulin binding domain, sites for fatty acylation, membrane attachment and a protein kinase C phosphorylation site (Uniprot Data). A structural prediction of the C-terminal region suggests similarities to the side arms of neurofilaments, which could ultimately have a role in the formation of a dynamic membrane-cytoskeleton-calmodulin complex [27]. The sequence similarities identified in Zika V and Neuromodulin could alter membrane signal transduction and function of neurofilaments in the neuron, influence viral replication and further impair the immune surveillance system.

Alignments								
polyprotein [Zika virus] Sequence ID: ANK57896.1 Length: 3423 Number of Matches: 1 Range 1: 756 to 827								
Score		Expect	Method		Identities	Positives	Gaps	Frame
25.8 bit	s(55)	3.0()	Compositional matrix	adjust.	27/89(30%)	38/89(42%)	20/89(22%)	
Features	S:							
Query	62	ILGNAI	LIKVFFK <u>T</u> KSMQTVPN <u>I</u> FI	TSLAFGDL	LLLL- <u>T</u> CVPV	ATHYLAEGWL	FGRIGC 120	
Sbjct	756	IL + ILIGTL	L+ + IK+ +I + LVWLGLNTKNGSISL	TCLALGGY	L+ L I V L LIFLSTAVSAD))	+GC VGC 798	
Query	121	KVLSFI	RL <u>T</u> SVGVSV <u>F</u> TLTILSA	DRYK 14	17			
Sbjct	799	SVDFSKI	+ I G VF + A KETRCGTGVFVYNDVEAWF	DRYK DRYK 82	.7			

Figure 4: Bombesin similarity region in polyprotein [Zika V], Sequence ID: ANK57896.1, Length: 3423, Number of Matches: 1, Range 1: 756 to 827. Score: 25.8 bits (55), Expect: 3.0, Method: Compositional matrix adjust, Identities: 27/89(30%), Positives: 38/89(42%), Gaps: 20/89(22%).

Nestin an intermediate filament protein is a stem cell marker expressed in the development of the central nervous system [28]. Nestin's similarity with polyprotein C of the Zika V could play a role in the pathogenesis of Zika V in the fetal brain. The similarity of Nestin with RNA-directed RNA polymerase (NS5) protein of the Zika V could influence host-pathogen interactions specifically encouraging viral proteome replication. It could also prevent the establishment of the cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signalling pathway, inhibiting host TYK2 and STAT2 phosphorylation; thereby preventing activation of the JAK-STAT signalling pathway and to immune evasion [28].

Galanin is a peptide, which functions as a hormone that regulates the neuromodulation in the central and peripheral nervous systems. It is localised in neurosecretory granules and it could also function as a neurotransmitter. It has been shown to coexist with other peptide and amine neurotransmitters within individual neurons [30, 31]. The Galanin that shows similarity with the Zika V proteome is Envelope protein E. This protein is responsible for binding to host cell surface receptors and mediates fusion between viral and cellular membranes. Galanin peptides are associated with depression in Alzheimer's and the similarities of Galanin to Zika V polyprotein could be Zika V associated depression [32, 33].

Alignments

polyprotein, partial [Zika virus] Sequence ID: ANF29038.1 Length: 936 Number of Matches: 1 Range 1: 440 to 476

Score		Expect	Method	Identities	Positives	Gaps	Frame
23.9 bit	s(50)	2.3()	Compositional matrix adjust.	14/47(30%)	23/47(48%)	10/47(21%)	
Feature	S:						
Query	53	SFSDKN	IGLTSKRELRPEDDMKPGSFDRSIPE	NNIMRTIIEFL	SFLHL 99		
Sbjct	440	SFRAKE	GCWYGMEIRPRKEPE	SNLVRSMVTAG	S H+ STDHM 476		

Figure 5: Galanin similarity region in polyprotein, partial [Zika V], Sequence ID: ANF29038.1, Length: 936, Number of Matches: 1, Range 1: 440 to 476. Score 23.9 bits (50), Expect 2.3, Method: Compositional matrix adjust, Identities: 14/47(30%), Positives: 23/47(48%), Gaps: 10/47(21%).

Alignments

polyprotein [Zika virus] Sequence ID: AHF49785.1 Length: 3422 Number of Matches: 1 Range 1: 2872 to 2967 Score Expect Method Identities Positives Gaps 26.2 bits(56) 2.0() Composition-based stats. 26/102(25%) 42/102(41%) 13/102(12%) Features:
 Query
 142
 QLQSLQNSLECAMETTEEQTRQERQGPAKPEVLSIQMP--GKRSSRRVQRHNSFSPNSPQ
 199

 Q + + ++
 + E TRQ
 A
 V
 S
 W
 GKR
 RV
 F
 N
 +

 Sbjct
 2872
 QQRVFKEKVDTRVPDPQEGTRQ-----AMNMVSSWLWKELGKKRPRVCTKEEFI-NKVR
 2925
 FNVSGPGLLEEDNQWMTQIN-----RLQKLIDRLEKKDLKLE 236 N + + EE+ +W T + R L+D+ + L+ E Query 200 N + + EE+ +W T + R L+D+ + L+ E Sbjct 2926 SNAALGAIFEEEKEWKTAVEAVNDPRFWALVDKEREHHLRGE 2967

Figure 6: Calcium binding protein similarity region in polyprotein [Zika V], Sequence ID: AHF49785.1, Length: 3422, Number of Matches: 1, Range 1: 2872 to 2967Score: 26.2 bits (56), Expect: 2.0, Method: Composition-based stats, Identities: 26/102(25%), Positives: 42/102(41%), Gaps: 13/102(12%).

197

Frame

©2018

Open access

gi|74760025|NECA1_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|74760025|NECA1_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|7476025|NECA1_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|74760025|NECA1_HUMAN gi|1001910897|polyprotein sp|P22466|GALA_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|74760025|NECA1_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|7476025|NECA1_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NBUM_HUMAN gi|74760025|NECA1_HUMAN gi|1001910897|polyprotein sp|P24868|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|74760025|NECA_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|7476025|NECA1_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|74760025|NECAI_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NBUM_HUMAN gi|7476025|NECA1_HUMAN gi|1001910897|po1yprotein sp|P22466|GALA_HUMAN sp|P22466|GALA_HUMAN

sp|P32247|BRS3_HUMAN sp|P17677|NEUM_HUMAN gi|74760025|NECA1_HUMAN gi|1001910897|polyprotein sp|P48681|NEST_HUMAN sp|P22466|GALA_HUMAN

sp | P22466| GALA_HUMAN sp | P32247| BRS3_HUMAN sp | P17677| NBUM_HUMAN gi | 74760025| NBCA1_HUMAN gi | 1001910897 | po1/pprotein sp | P48681| NEST_HUMAN

-----DTEVEVPERAW----SGGFDWVTDH-----SGKTVWFVPSVRNGNEIAAC-----L-MNPLEKEIGEPLESVEVNQETFRLLEEENQESLRSLGAMNLENLRSP-EEVDKESGRNLE TLNSAGYLLGP-----HAVGNHRSFSDKNGLTSKRELR - TKAGKRVIQLSRKTFETE ---- FQKTKHQEWDFVVTTDISEM-------GANFKADR EEENILGKEFYQSILSILEEEQQLPQSADVQRWEDTVEKDQELAQESPPGMAGVENEDEA PEDDMFPGSFDRSIFEN DHAHWLEARMLLDNIYLQDGLIASLYRPEADKVAAIEGEFKLRTEQRKTFVELMKRGDLP PK----EQRGLVEGASVKGG-AEGLQDPEGQSQQV--GAPG------LQAPQGLP -----GDN VWL---AYQVASAGITYTDRRWCFDGTTNNTIMEDSVPAEVW----TRHG----EAIEPLVEDDVAFGGDQ-----ASPEVMLGSEPAMGESAAGAEPGPCQGGGGG -----EALCAIYITYAVIISVGILGNAILIKVFFKTKSMQTVP FQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLG-IFFVLMRNKG--WEPPREGR------E--ESEAEAPRGAEEAFPA------ET---ET--NIFITSLAFGDLLLLLTCVPVDATHYLAEGWLFGRIGCKVLSFIRLTSVGVSVFTLTILS --IGKMGFGMV----VFLLIVVI --LGHTGS----DAPSPWPLGSEEAEED-VPPVLVSPSPTYTPILED ADRYKAVVKPLEROP---SNA-LKTCVKAGCVWIVSMIFALPEAIFSNVYTFRDPNKNMTFE-SCTSYPVSK----MDIDLRPASAWA-----IYAALTTFITPAVQHAVTTSYNNYSLMAMATQAGVLFG I-HSLLCFLVFYIIPLSIISVYYSL-----IARTLYKSTLNIPTEEQSHARKQ MGKGMPFYAWDFGVPLLMIGCYSQLTPLTLIVAIILLVAHYMYL----IPGLQAAAARAA -----FALCWLPN QKRTAAGIMKNPVVDGIVVTDIDTMTIDPQVEKKMGQVLLIAVAVSSAILSRTAWGWGEA

Figure 7: The segment of Zika virus polyprotein C (1659-2464 aa) that shows sequence similarities in multiple sequence alignment of human proteins. The sequences of polyprotein C were aligned with bombesin, neuromodulin, calcium binding protein, nestin and galanin using CLUSTAL O (1.2.4) for multiple sequence alignment.

ISSN 0973-2063 (online) 0973-8894 (print)

Open access

Bombesin-like peptides are a large family, which are localised in CNS. In Xenopus laevis, the highest number of Bombesin binding sites was present in the brain and has a regulatory role in energy metabolism **[29]**. The similarity of the Zika V polyprotein with Bombesin could influence the energy metabolism of the fetal brain.

Calcium Binding Proteins (CaBPs are related to Calmodulins) are localised in the brain and sensory organs. They are an important components of Ca (2+) mediated cellular signal transduction, excitation-contraction coupling in muscle, neurotransmitter and hormone release and Ca2+-dependent gene transcription Calcium is the key element of adequate neuronal function in the body. The CaBP family regulates effectors such as voltage-gated Ca2+ channels in a Ca2+-dependent manner [34-36]. The similarity of the Zika V polyprotein with CaBP could have an interaction affecting the neuronal cell function.

All of the five nerve proteins Neuromodulin, Nestin, Galanin, Bombesin, Calcium binding protein had similarities to the Polyprotein C (3423 aa length) of the Zika V. Polyproteins [http://www.uniprot.org/ uniprot/Q32ZE] are a subgroup of non-structural major viral proteins (NSP) which are highly significant (prM, RNA-directed RNA polymerase NS5, NSP, 2A, 2B, 4A, 4B, Serine protease NS3, Peptide 2kPCBPs) in virus budding by attachment to the host cell membrane, gathering viral RNA into a nucleo-capsid to form the core of a mature virus particle within the host. During viral entry into the cell, the polyprotein induces genome penetration in host cytoplasm and migration into host cell nucleus where it modulates host functions [37]. The similarities identified in Nestin, Bombesin, Galanin, Calcium Binding Protein and Neuromodulin to their counterpart polyprotein C in ZIKV could help us identify peptide sequences which can regulate host cell [38].

Та	ble 2: Comparative similarity percentages of Zika	V poly-
pre	otein C with human proteins.	

S. No	Human Protein	Viral Protein	Sequence ID Zika V Polyprotein	Similarity Region Zika V Polyprotein	% Similarity
1	Neuro- modulin	Chain A, Cryoem Structure Of Immature Zika Virus	5U4W_A	182 to 203	54
2	Nestin	polyprotein	AMM43326.1	3097 to 3215	45
3	Bombesin	polyprotein	ANK57896.1	756 to 827	42
4	Galanin	Polyprotein, partial	ANF29038.1	440 to 476	48
5	Calcium binding protein	polyprotein	AHF49785.1	2872 to 2967	41

Alternation from the normal cell state could cause biochemical and physiological changes in host signalling, transmission, metabolic alteration, inflammation, autoantibody (autoimmunity) and neuropathy. Increased rates of Guillain-Barré **[39, 40]** an aberrant physiological function affecting cardiac rhythm **[41]** have been associated with Zika V infection. The *in silico* search is the beginning of identifying host-pathogenic mimics. The functionally relevant step after this is to publish the wet experimental data of confirmed mimics. These similarityoverlapping regions will be interesting to analyse by wet experimentation in cell culture and animal experimental models to better understand the mechanism of host-pathogen interaction and to identify potential targets for drug and vaccine discovery.

Conclusion:

This paper identified Zika viral Polyprotein C (virulent factor) sequence similarities to Human proteins Neuromodulin, Nestin, Bombesin, Galanin, Calcium-binding proteins all of which are significant in host functions in the nervous tissue. Multiple sequence alignment identified a distinct region of the polyprotein C (959-1659 aa which encompasses Non-structural protein 1, 2A, 2B and Serine protease NS3) having identities to all the five human proteins of this study. This region has critical functions involved in immune evasion, pathogenesis and viral replication. In summary, the identified regions of human nerve proteins and the Zika Viral polyprotein C warrants further experimentation on their role in the pathogenesis.

Competing interests:

The authors declare that they have no competing interests.

Authors' contributions:

PM and LS conceived the present study, design, interpretation of data and preparation of the manuscript. JL, LV, PDS, SS and RS were involved in interpretation and preparation of the manuscript.

Acknowledgements:

We acknowledge the support of Nireekshana ACET and CODEWEL for this project.

References:

- [1] http://www.who.int/csr/disease/zika/en/
- [2] Merfeld E *et al.* Wiley Interdiscip. Rev. Dev. Biol. 2017, 6. [PMID: 2838380]
- [3] Beckham JD *et al.* JAMA Neurol. 2016, **73:**875. [PMID: 27183312]
- [4] Mladinich MC et al. Mbio. 2017, 8:e00952. [PMID: 28698279]
- [5] Broutet N *et al.* N. Engl. J. Med. 2016, **374**:1506. [PMID: 26959308]
- [6] Tappe D *et al.* Med. Microbiol. Immunol. 2016, **205:**269. [PMID: 26702627]
- [7] Hamel R et al. J. Virol. 2015, 89:8880. [PMID: 26085147]
- [8] Stanfield BA & Luftig MA. F1000 Research. 2017, 6:386.
- [9] Briken V. Curr. Drug Targets. 2008, 9:150. [PMID: 18288966]
- [10] Lucchese G & Kanduc D. Autoimmun Rev. 2016, 15:801. [PMID: 27019049]
- [11] Yu X *et al.* J. Proteome Res. 2015, 14:1920. [PMID: 25739981]
- [12] Suneetha LM *et al.* Neurochem. Res. 2003, **28:**1393. [PMID: 12945534]
- [13] Su MA et al. J. Immunol. 2012, 188:4906. [PMID: 22490868]
- [14] Raju R *et al.* Neurochem. Res. 2011, 36:766. [PMID: 21234675]
- [15] Vardhini D *et al.* Infect. Genet. Evol. 2004, **4**:21. [PMID: 15019586]
- [16] Gutlapalli VR *et al.* Bioinformation. 2015, 11:517. [PMID: 26770024]

Open access

- [17] Rolfe AJ *et al.* Cell Biosci. 2016, 6:42. [PMID: 27293547]
- [18] Lucchese G & Kanduc D. Autoimmun. Rev. 2016, 15:801. [PMID: 27019049]
- [19] Lucchese G & Kanduc D. Virus Adapt. Treat. 2017, 9:1.
- [20] Suneetha L et al. 2018.
- [21] Altschul SF et al. Nucleic Acids Res. 1997, 25:3389. [PMID: 9254694]
- [22] Uhlen M et al. Science. 2015, 347:1260419. [PMID: 25613900]
- [23] Sievers F et al. Mol. Syst. Biol. 2011, 7:539. [PMID: 21988835]
- [24] Wilson MR et al. J. Biol. Chem. 2017.
- [25] Rigden DJ et al. Nucleic Acids Res. 2016, 44:D1 [PMID: 26740669]
- [26] Kosik KS et al. Neuron. 1988, 1:127. [PMID: 3272162]
- [27] LaBate ME & Skene JH. Neuron. 1989, 3:299. [PMID: 2641999]
- [28] Gilyarov AV. Neurosci. Behav. Physiol. 2008, 38:165. [PMID: 18197384]
- [29] Noronha L et al. Mem. Inst. Oswaldo Cruz. 2016, 111:287. [PMID: 27143490]
- [30] Bersani M *et al.* FEBS Lett. 1991, 283:189. [PMID: 1710578]
- [31] Kaplan LM et al. Proc. Natl. Acad. Sci. 1988, 85:1065. [PMID:

2448788]

- [32] Counts SE *et al.* Cell. Mol. Life Sci. 2008, 65:1842. [PMID: 18500641]
- [33] Tucci V et al. J. Glob. Infect. Dis. 2017, 9:151. [PMID: 29302150]
- [34] Haeseleer F *et al.* J. Biol. Chem. 2000, 275:1247. [PMID: 10625670]
- [35] Haeseleer F *et al.* Biochem. Biophys. Res. Commun. 2002, 290:615. [PMID: 11785943]
- [36] Christel C & Lee A. Biochim. Biophys. Acta. 2012, 1820:1243. [PMID: 22223119]
- [37] https://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsr v.cgi?uid=5u4w.
- [38] Asif A et al. Zika Viral Immunol. 2017, 30:682 [PMID: 29028178]
- [**39**] Styczynski AR *et al.* PLoS Negl. Trop. Dis. 2017, **11**:e0005869. [PMID: 28854206]
- [40] https://www.cdc.gov/mmwr/volumes/65/wr/mm6534e1 .htm [PMID: 27711040]
- [41] Gold CA et al. JAMA Neurol. 2016, 73:905. [PMID: 27272118]

Edited by P Kangueane

Citation: Marsakatla et al. Bioinformation 14(5): 194-200 (2018)

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License