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Abstract

Although traditional models of epidemic spreading focus on the number of infected, suscep-

tible and recovered individuals, a lot of attention has been devoted to integrate epidemic

models with population genetics. Here we develop an individual-based model for epidemic

spreading on networks in which viruses are explicitly represented by finite chains of nucleo-

tides that can mutate inside the host. Under the hypothesis of neutral evolution we compute

analytically the average pairwise genetic distance between all infecting viruses over time.

We also derive a mean-field version of this equation that can be added directly to compart-

mental models such as SIR or SEIR to estimate the genetic evolution. We compare our

results with the inferred genetic evolution of SARS-CoV-2 at the beginning of the epidemic

in China and found good agreement with the analytical solution of our model. Finally, using

genetic distance as a proxy for different strains, we use numerical simulations to show that

the lower the connectivity between communities, e.g., cities, the higher the probability of

reinfection.

Introduction

In the late 2019, the world saw the emergence of a new disease, caused by a new type of corona-

virus [1] which can cause severe injures to human respiratory system [2]. Since then, we wit-

nessed an uninterrupted worldwide effort in the search for efficient treatments [2, 3], vaccines

[4–6] and better understanding of the epidemic parameters and its pathways of spread [7–10].

A great number of SARS-CoV-2 genomes has been sequenced in different countries and

regions, allowing scientists to study its genealogy and geographic origins [11]. Different strains

have been characterized [12, 13], revealing cases of reinfection [14, 15]. Understanding the

mechanisms of mutation and variability in viruses is of utmost importance to forecast forth-

coming challenges, e.g. the appearance of other infectious strains or loss of acquired immunity.

Mutation rates are usually high in RNA viruses [16] and are important mechanisms for spill-

over events [16–18]. Although mutations can have significant impact on the virus genetic

machinery, leading to more or less infectious strains [19, 20], neutral mutations also occur in

non-coding RNA regions or if they result in synonymous changes, that do not alter the corre-

sponding protein. Counting the number of mutations and tracking their spread in the
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population is important for tracing pandemic routes through communities (neighborhoods,

cities, or countries) and giving clues as to how the virus is moving [21].

Mathematical models of epidemic spreading are crucial to project how the disease will

progress and plan intervention strategies, especially in the case of COVID-19 [22–25]. The

great majority of epidemic models divide the population into categories, such as susceptible

and infected individuals [26, 27]. Details concerning population structure and how different

individuals respond to the infection are ignored, allowing the epidemic spreading to be

described by differential equations that can be readily interpreted and solved numerically [28].

The SIR model, susceptible-infectious-recovered, is a classic example of this type of simplifica-

tion and has set the foundations for the development of more detailed descriptions [26].

Important extensions include time dependent contact rates [29] and multiple infectious stages

occurring in parallel [30].

One important drawback of the SIR and other related compartmental models is their inabil-

ity to describe heterogeneity in individual behavior and response to the infection. Some of

these features can be introduced with the help of network theory, which provides a framework

for modeling explicit population structures [28]. A number of important results were demon-

strated in this context, particularly in connection with the distribution of number of contacts

among individuals [31]. The representation of individuals as nodes of a network can also be

combined with stochastic infection and recovering processes, which might have important

consequences for viral diversity [32].

More recently, efforts have been devoted to integrate models of epidemic spreading with

population genetics through coalescent theory [33]. This allowed the study of pairwise genetic

differences between viral haplotypes, estimation of the viral growth rate [33, 34] and times to

most recent common ancestor [35, 36]. Genetic diversity has also been estimated by replacing

birth-death models by deterministic epidemic equations [37] or introducing population struc-

ture [38]. Multi-strain models were also used to describe how epidemics shape pathogen diver-

sity [39], considering different sources of heterogeneity, such as genotype networks [40] or, as

we do here, the structure of the host’ contact network [32, 41].

Here we consider an individual-based model for epidemic spreading where the population

is represented by nodes of a network and viruses are modeled explicitly by a binary chain rep-

resenting their RNA. This allows us to combine population structure using network theory,

stochastic dynamics of epidemic spreading and population genetics into a single framework.

One of the advantages of this formulation is that important epidemic features, such as the

structure of social contacts through which contamination occurs, viral transmission rates,

individual incubation and recover periods, virus’s genome length and mutation rate can be

readily included and analysed.

Although many studies have considered imperfect cross-immunity [32, 39–41], in the pres-

ent model we consider only neutral mutations, which do not alter the immune escape or other

viral parameters. This implies that, once the host has developed an immune response against a

viral strain, it will have perfect cross immunity against all strains. We also assume that all

viruses replicating inside the same host are identical, thus they can be modeled by a single

RNA sequence. Viruses of two different hosts, however, can be different due to the mutations

that happen randomly and independently at each nucleotide. These assumptions are justified

if the periods of incubation and sickness are much shorter than the inverse of the mutation

rate and the duration of the epidemic.

We track the spreading of the virus through the population network and compute its diver-

sity by tracking the genetic distance between pairs of viruses along the epidemic propagation.

Within this framework, it is possible to study the viral dynamics along different population

structures, by changing only the contact network, which is suitable for computational
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experiments. In the last decade, interconnected networks have been widely studied in the con-

text of epidemiological models [42–44]. Here we show, as an application, that the connectivity

among different communities (represented by modules of a larger interconnected network)

changes significantly the viral pairwise distance distribution, suggesting how reinfections

could arise if cross-immunity is lost.

Importantly, we derive a recurrence equation for computing the average genetic distance

among viruses in the population in terms of the number of susceptible and infected individu-

als, length of the genome and mutation rate. We also derive a mean-field approximation for

this equation that can be added to the usual SIR or SEIR models [45] to estimate the viral

genetic evolution in homogeneous populations. Finally, we compare the genetic distance

among viruses obtained theoretically from the recurrence equation to the SARS-CoV-2 geno-

mic data, obtained from Chinese epidemic data during the period from 12/23/2019 to 03/24/

2020.

The present work is a follow-up of a recently proposed SEIR model designed to study the

effects of quarantine regimes [46], from which many parameters are obtained. The paper is

organized as follows: in section The Model, we describe the SEIR model on networks and how

the virus dynamics work. In Analytical Description we show how to analytically solve this

dynamics for the average genetic distance among viruses. Our solution leads to a discrete equa-

tion, which we apply to the SARS-CoV-2 Chinese epidemic data. Taking the continuous time

limit we argue that it can be included as a fourth equation to the classic SIR model, enabling

one to infer genetic neutral evolution along an epidemic. The mathematical technique we have

used can also be implemented in the case of more compartmentalized models. In Communities
and reinfection, we simulate epidemic spreading along a chain of linearly connected communi-

ties and discuss how the risk of reinfection can be increased when the connectivity among

them is decreased. This indicates that pandemics are more likely to yield early reinfections

than epidemics. We discuss our conclusions in the Section Conclusions.

The model

We consider a SEIR individual based model where individuals are divided into four different

compartments: Susceptible, individuals that can be infected; Exposed, individuals that are

infected but not infectious; Infected, which can spread the virus by infecting others; and Recov-
ered, who are recovered from the disease and can no longer be infected. We model the popula-

tion as a network where nodes represent individuals and links indicate connections between

them (linked nodes are also termed first neighbors). Time is discrete and at each step all

infected individuals may transmit the disease to their susceptible first neighbors with probabil-

ity pI. The infection probability can be calculated as pI = R0/(τ0 D), where τ0 is the average time

duration of symptoms, R0, is the basic reproduction number and D the average network

degree. Each exposed individual remains in this condition for a time τ distributed according to

PðtÞ (see S1 Appendix), after which it becomes infected. Every infected can recover with a

probability pR = 1/τ0 per time step [46].

Infected and exposed individuals carry a strain of the virus, represented by a binary chain

of size 2B, where B is the number of nucleotides. Each pair of bits, b2i−1 and b2i in the chain

(i = 1, . . ., B) represents a nucleotide, given, for instance, by 00 = A, 01 = U, 10 = C and 11 = G.

As long as the virus remains hosted in the individual, it can mutate with probability of substi-

tution μ per nucleotide at every iteration. When the virus is passed from one host to another, it

is entirely copied to the new host. When the individual recovers, its virus’ RNA stops mutating

and its final configuration is saved for further analysis. We call this “a final virus”. Fig 1 illus-

trates this dynamics.
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To compare the different viruses that appear during the simulation we use the Hamming

Distance dαβ, which counts the number of different nucleotides between two viruses α and β
[47, 48]. In our model the Hamming distance is given by

dab ¼ B �
XB

i¼1

ðjba
2i� 1
� bb

2i� 1
j � 1Þðjba

2i � bb
2ij � 1Þ ð1Þ

where bgj 2 f0; 1g is bit j of the virus γ.

We consider a neutral model for the virus evolution and do not include mechanisms of

selection. The mutation probability is the same for all nucleotides, independent of its location

in the genome or the nitrogenous base the nucleotide changes from or to. Additionally, once

an individual recovers from infection by a strain it acquires perfect cross immunity against all

strains.

We start the simulation with a single infected individual with genome bgj ¼ 1 for all j. All

simulation parameters, can be found in S1 Appendix, and are scaled so that the time unit is

one day.

Analytical description

The analysis presented here to calculate the average genetic distance between all viruses, living

and final, is suitable for compartmental models in general [45]. Although we develop it to the

Fig 1. Model dynamics. (a) infected individuals (red) can transmit the virus to their susceptible first neighbors (green). When transmission is

successful the virus is cloned to the new host, which is now an exposed individual (yellow) and will be able to mutate only in the next iteration. (b)
infected individuals can recover with probability pR. When an individual recovers (blue), its virus stops mutating and becomes a “final virus.” (c) viruses

on infected (red) or exposed (yellow) individuals can mutate.

https://doi.org/10.1371/journal.pone.0255438.g001
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SEIR model, it can be applied to other models of this type. From now on we shall abbreviate

average genetic distance by average distance for simplicity.

Single initial infection. Here we assume that the epidemic starts with a single infected

individual. Our goal is to compute the average distance dt+1 at time t + 1 given the average dis-

tance dt at time t. Notice that at the beginning of iteration t + 1, there are different kinds of

viruses: those that are already final and have ceased to evolve (whose number is Rt); viruses
hosted in exposed individuals (Et), thus still evolving; and also those hosted in infected individu-

als (It). During the iteration, new infections appear (xt) and some infected individuals recover
(rt), and thus do not evolve at this time step. Then, given dt, we calculate the new average dis-

tance between each kind of virus which exists at the end of iteration t + 1, as well as the new

average distance within each kind of virus.
Given that μ� 1, we consider that the probability that two mutations happen in the same

nucleotide in the course of the epidemic is negligible. This is a good approximation if the epi-

demic duration T remains sufficiently small, μT� 1. We also consider that each new infection

in the same iteration comes from different hosts, which is valid for R0/τ0 < 1, with τ0 the aver-

age duration of symptoms. This means that we do not expect more than one new infection per

infected individual in a single iteration. Highly connected nodes, however, can break this

assumption, giving rise to super-spreaders. Network heterogeneity, therefore, can show devia-

tions from our estimation. Under these assumptions, the new average distance (at the end of

iteration t + 1) among the Et is dt + 2Bμ, once they distanced dt at the begging of iteration t + 1

and evolved along the iteration, each virus getting Bμ mutations. The new average distance

between the Et and the Rt is dt + Bμ, since only the Et evolved. We emphasize that the approxi-

mations used in this section are only for simplification of the analytical equations; the simula-

tions in Section Results and discussion run as previously described.

Once all average pairwise distances have been calculated, dt+1 is given by a weighted aver-

age, where the weigths are the number of pairs sharing that distance. For instance, the number

of pairs between exposed and recovered individuals is Et Rt, while the number of pairs within

exposed individuals is Et(Et − 1)/2.

All distances are calculated in S1 Appendix, and we find the recurrence equation

dtþ1 ¼
1

Zt
ðdtðRt þ Et þ ItÞðRt þ Et þ It � 1Þ

þ xtdt 1þ 2Bm
Rt

It þ Et þ Rt

� �

ðxt � 3þ 2Rt þ 2It þ 2EtÞ

þ 2BmðEt þ It � rtÞðEt þ It þ Rt þ xt � 1ÞÞ

ð2Þ

where Zt = (Rt + Et + It + xt)(Rt + Et + It + xt − 1), rt = Rt+1 − Rt and xt = (Et+1 − Et) + (It+1 − It)
+ (Rt+1 − Rt).

Therefore, given the epidemic curves St, Et, It and Rt, respectively the Susceptible, Exposed,

Infected and Recovered at time t, we can infer the evolution of average genetic distances. Tak-

ing the limit of continuous time between events we find the approximation,

_d ¼
2 _Sd 1 � BmR 2 �

3

N � S

� �� �

ðN � SÞðN � 1 � SÞ
þ 2Bm 1 �

R
N � S

� �
ð3Þ

where N − S = I + R + E and _S ¼ � ð _E þ _I þ _RÞ. The derivation of this limit is described in S1

Appendix. Since this equation depends only on the continuous curves S(t) and R(t), the initial

and final compartment, it can be added to the classic SEIR model to infer the genetic evolution,

or to the SIR model, if the exposed compartment is kept empty, meaning that all hosts are
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infectious. This result holds if viral evolution occurs in the same way in every intermediate

compartment and if every virus passes through all compartments. Adding more compartments

with different dynamical behavior or changing the mutation mechanism through different

compartments would change the Eqs (2) and (3) but the procedure described in the begging of

this section to find dt+1 should remain the same.

Multiple initial infections. Eq (2) considers the epidemic starting with a single infected

individual. To consider m> 1 initial infections, we must include the distance among the m dif-

ferent lineages. LetDt be the average distance among all viruses at time t, dðiÞt the average dis-

tance among the viruses of lineage i at time t, dðijÞ0 the distance between the initial viruses i and

j, and dðiÞroot;t the average distance at time t of lineage i to the root of lineage i. Thus,

Dt ¼

�
Xm

i¼1

dðiÞt ðR
ðiÞ
t þ EðiÞt þ IðiÞt ÞðR

ðiÞ
t þ EðiÞt þ IðiÞt � 1Þ=2

þ
Xm� 1

i¼1

Xm

j¼iþ1

ðdðijÞ0 þ dðiÞroot;t þ dðjÞroot;tÞðR
ðiÞ
t þ EðiÞt þ IðiÞt ÞðR

ðjÞ
t þ EðjÞt þ IðjÞt Þ

�

�
Xm

i¼1

ðRðiÞt þ EðiÞt þ IðiÞt Þ

 !
Xm

i¼1

ðRðiÞt þ EðiÞt þ IðiÞt Þ � 1

 !

=2

" #

ð4Þ

where RðiÞt , EðiÞt and IðiÞt are, respectively, the number of recovered, exposed and infected individ-

uals of lineage i at time t. The first sum represents the distances within each lineage i, while the

double sum is due to the distance between each pair of lineages i and j. In this equation, we

assume the μ� 1 (for coronaviruses, μ lies in the range *[10−5, 10−2] per site per year [49])

so that mutations for each virus are unlikely to occur twice at the same nucleotide.

For each lineage i, dðiÞt can be calculated from Eqs (2) or (3) and dðijÞ0 must be a given matrix.

The distance dðiÞroot;t can be calculated similarly as Eq (2),

dðiÞroot;tþ1 ¼ dðiÞroot;t þ
Bm

EðiÞt þ IðiÞt þ RðiÞt þ xðiÞt
EðiÞt þ IðiÞt � rðiÞt þ

4xðiÞt R
ðiÞ
t d
ðiÞ
root;t

EðiÞt þ IðiÞt þ RðiÞt

 !

ð5Þ

with the continuum limit

_droot ¼ Bm 1 �
RðiÞ

RðiÞ þ IðiÞ þ EðiÞ
1 �

4drootð _EðiÞ þ _I ðiÞ þ _RðiÞÞ
RðiÞ þ IðiÞ þ EðiÞ

� �� �

ð6Þ

where R(i), I(i) and E(i) are SEIR variables for lineage (i). The details behind these results are

described in S1 Appendix.

Viral spread throughout communities

As an application of our model and computational framework, we studied the genetic evolu-

tion of a viral spread throughout four weakly and linearly connected communities, i.e., a net-

work with four modules, representing different cities. The goal is to understand how the

average genetic distance between viruses in distant communities change if the connectivity

between the intermediary communities changes.

We start by generating four independent Barabasi-Albert networks, named 1, 2, 3 and 4.

Then, we connect individuals from networks i and i + 1 with a connection probability p in a
way they form a line of communities. The Barabasi-Albert network is chosen in order to include
heterogeneity in the contact network [46]. Finally, we analyse the average genetic distance
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between viruses from cities 1 and 4 for different values of p. The epidemic starts with a single
infected individual in city 1 and spreads through the entire network.

Although in our model we always consider that individuals acquire perfect cross-immunity
against all strains after being infected the cross-immunity could in principle be lost if a new
infecting virus were too different from the original infection. Thus, if the distance between viruses
from cities 1 and 4 is large, an infected individual from city 4 that travels to city 1 might reinfect
an already recovered individual. Although our simulations do not include this possibility, this is
an interesting way to investigate how the risk of reinfection changes due to changes in the net-
work topology.

Results and discussion

Single initial infection

We ran our model for random (Erdos-Renyi) and scalefree (Barabasi-Albert) networks and

calculated the average genetic distance. We used networks of 200, 500, 1000 and 4000 nodes,

and average degree D of 100 nodes, which was the same for all simulations. In the range of

parameters we have used, changing the average degree has two main consequences. First, for

large values (D� R0), the deviations around the mean of many simulations decreases; and sec-

ondly, once the probability of infection is proportional to 1/D, increasing D delays the peak of

infection. We note that the greater the number of connections, the greater the number of

attempts to infect neighbors within a single iteration. Thus, we have chosen a value of D that

produces reasonably small deviations around the mean and, at the same time, enables fast

computation. Changing D in the interval 50 to 200 resulted in no qualitative changes. The

infection starts with a single infected individual chosen at random and evolves according to

the description in section 2. Fig 2 shows comparisons between the simulated distance and the

average distance calculated from Eqs (2) and (3). Each subfigure contains two different simula-

tions and the mean-field solution for that respective set of parameters. We see that Eq (3)

approaches Eq (2) only for Erdos-Renyi networks, since only this topology mimics the well-

mixed hypothesis considered in mean-field models. Because each genetic evolution curve is

calculated from the corresponding epidemic curves, we cannot average over many simulations,

thus the error bars are simply the standard deviation of the distribution of distances among all

viruses that appeared at that specific simulation time step. Another important feature of this

analytical formulation is that, once it is an average description, it does not capture the random

appearance or extinction of viral lineages, which can introduce important deviations from our

analytical description.

Multiple initial infections

Fig 3 shows the evolution of epidemic in two different cities (non-connected networks of ran-

dom and scalefree types), each one starting its infection with a single infected individual cho-

sen at random. The evolution in each city is calculated with Eq (2) (pink curves), while the

distance between cities 1 and 2 is dð1;2Þt ¼ dð1;2Þ0 þ dð1Þroot;t þ dð2Þroot;t, where dðiÞroot;t is calculated with

Eq (5) (red curve) and the total average distanceDt (green curve) is given by Eq (4). The initial

distance between the viruses that infected each city is dð1;2Þ0 ¼ 0 in panels (a) and (b), and

dð1;2Þ0 ¼ 5 in panels (c) and (d).

The COVID-19 epidemic in China

Eq (2) describes the evolution of average genetic distance between viruses in a single commu-

nity and depends only on the epidemic curves. It might, therefore, be used to estimate the
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Fig 2. Evolution of average genetic distance. Blue lines and dots are, respectively, analytical (Eq (2)) and simulation results for

different simulations. Different shades of blue correspond to different simulations for the same set of parameters. The red line

shows the result of mean-field Eq (3). Error bars are standard deviation of the distance distribution in each simulation at each time.

https://doi.org/10.1371/journal.pone.0255438.g002
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genetic evolution in real cases. The beginning of COVID-19 epidemic in China is a suitable

example, considering the existence of a single patient zero. In any other country, the epidemic

may have started with more than one individual, which would require the difficult task of

tracking the lineages. The same applies to secondary waves of infection in China.

We obtained Chinese data from the Wolfram Data Repository [50], and corrected it as in

reference [51]. Because of the existence of undetected cases, we estimated the real number of

cases considering references [51, 52]. Because the number of exposed individuals is not directly

available we choose to consider the simpler SIR model in this case. Notwithstanding, because

the cases notification started only in January while the epidemic started in December, we

extrapolated the data to previous dates, in order to calculate the genetic evolution since patient

zero, as we have made in Fig 2. All these data corrections and considerations are described in

the Supporting information.

Fig 3. Evolution of average genetic distance in two isolated cities (sizes indicated in the panels). In (a) and (b) the

initial viruses were identical and in (c) and (d) they differed by 5 nucleotides. Lines show the average distance within

each city (pink), between cities (red) and total average distance (green).

https://doi.org/10.1371/journal.pone.0255438.g003
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To compare the result of Eq (2) with the real genetic evolution, we used carefully selected

55 real genomes sequenced and collected in China, also available in the Wolfram Data Reposi-

tory [53]. The Hamming distance between each pair of genomes was obtained by first aligning

every two genomes with the Needleman-Wunsch algorithm with score matrix + 1 for match

and −1 for mismatch [48]. Then, we considered the Hamming distance between a given pair

of genomes as the number of mismatches that are not indels, i.e., we considered only nucleo-

tide substitutions. The algorithm to estimate the distance evolution is explained in S1 Appen-

dix, as we also detail the informations of the used genetic data.

Fig 4 shows the result obtained from Eq (2) (brown line) and the estimated genetic evolu-

tion (blue dots). The interval around the brown line is an error of ±10% on the product μB,

which is the only parameter in the Eq (2). Despite all corrections to the epidemic data and the

small number of real genomes we used to infer the real genetic evolution, except for a few

points, all the inferred average genetic distances between RNA sequences lie in the predicted

interval given by our theoretical model. Because the epidemic in China was readily contained,

the average distance dt saturated.

Fig 4. The genetic evolution of SARS-CoV-2 in China. Blue dots are the genetic distance among SARS-CoV-2 inferred from data collected in

China between 12/23/2019 and 03/24/2020. The error bars are standard deviation of pairwise distance propagated through the equations. The

brown line shows the genetic distance estimated with Eq (2) and the Chinese epidemic data. The interval around the brown curve is a ±10%

error interval on the value Bμ, which we considered to be Bμ = 29900 × 0.001/365.

https://doi.org/10.1371/journal.pone.0255438.g004
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Communities and reinfection

In this section, we consider the spread of the epidemic through four communities, represent-

ing cities, connected linearly as in Fig 5. The connections within each network are of Barabasi-

Albert type, with 1000 nodes and average degree 100 (following the same considerations on

average degree already mentioned). Every node from network i can be connected to a node in

network i + 1 with connection probability p. Once p is small (ranging from 0.0005 to 0.0035)

the degree distribution is not considerably distorted from a scale-free one. Fig 5 shows an

example of the contact network. From left to right, we number the communities, or cities,

from 1 to 4. The epidemic starts with a single infection in city 1 and spread through the entire

network. Fig 5 also shows the Infection curves obtained from a simulation. The infection peak

delay from one city to other is responsible for the plateau-type curve of total infections.

To analyse the genetic evolution in this system we simulated the dynamic until the epidemic

was over and calculated the Hamming distance between every pair of final genomes α and β,

constructing the distance matrix dαβ (Fig 6). Viruses are ordered according to their position in

the line, i.e., first the genomes from city 1, then those from the city 2, and so on. We calculated

the average distances Di−j between the final genomes from cities i and j and compared with

Di−i, the average distance within city i.

Fig 5. Contact network of four communities on a line and infection curves. Communities are Barabasi-Albert networks with 1000 nodes. We have

kept the average degree constant and equal to 100 in all simulations. The infection starts with a single infected individual in the first community (red

node indicated with the red arrow). The epidemic parameters are in S1 Appendix.

https://doi.org/10.1371/journal.pone.0255438.g005
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As a null model, we run the epidemic over a single Barabasi-Albert network wih the total

size of the 4 cities. City i, in this case, means the i-th quarter of the infected nodes. We plot the

results of the null model as p = 0 in Figs 7 and 8 for comparison. The single network behaves

very differently from the four module network, not showing the same interesting results we

find for the communities.

Fig 7 shows the ratio D4−4/D4−1 as a function of the connection probability p. The results

are averages over 20 different simulations for 7 different values of p. When p is small, D4−4/

D4−1 < 1, meaning that the viruses from city 4 are, in average, closer to each other than they

are to the viruses from city 1. When p increases, the ratio D4−4/D4−1 approaches 1, indicating

that the viruses from city 4 are so close to each other as they are to viruses from city 1.

In order to understand the origin of this effect we analyse the infection trees in each case

(Fig 7, left). Each node in the trees represents a recovered individual and is connected upwards

Fig 6. Hamming distance between pairs of viruses. The distance matrix is sorted by the city. Diagonal blocks show the distance between the viruses

from a single city, while the non-diagonal blocks are the distances between the viruses from different cities.

https://doi.org/10.1371/journal.pone.0255438.g006
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with whoever infected it. Colors represent cities and it is possible to count how many initial

infections each city had along the epidemic, i.e., how many lineages has infected each city.

When p is small, very few lineages were responsible for infecting city 4 but for higher values of

p, this number increases. This is expected, since more connected communities should have

more infection gates. This result is a consequence of the founder effect, i.e., only a few individ-

uals, “the founders”, give rise to a new population in the new location [12, 54]. However, the

system passes through a non-trivial bistable point. When p = 0.0015, the values of D4−4/D4−1

accumulate around two different values, one above 1 and another below 1. In this case the

average is not a good descriptor of the actual system behaviour and there is a competition

between different lineages infecting city 4. In simulations where D4−4/D4−1 > 1, many lineages

were successful in infecting the city 4, whereas when D4−4/D4−1 < 1, only a few did so

successfully.

Fig 8 shows the values D4−4 and D4−1 obtained in each simulation. The average over simula-

tions of the average distance within the forth city D4−4 (highlighted blue circles) does not

change considerably with p (around D� 21 nucleotides). Under a neutral evolutionary per-

spective, viruses will belong to different strains if they differ by more than G nucleotides,

where G is a parameter whose value depends on the virus [47, 55]. If D> G, viruses in city 4

would belong, on average, to different strains when compared to city 1. As an example, if

G = 26 new strains would arise, on average, in city 4 for 0< p� 0.0010, allowing a recovered

individual from city 1 to be reinfected by an infected individual from city 4 if they are put in

contact with each other (by travelling, for instance). Therefore, there is an increased risk of

reinfection due to low connectivity among communities. In this sense, pandemics are more

likely to originate new strains than epidemics, as they affect far more distant (therefore less

Fig 7. Ratio between the average distance in city 4 and the average distance between cities 1 and 4. Right panels show infection trees for the

simulations highlighted with red circles. Open circles show results for individual simulations, the star is the average over 20 simulations and error bars

are standard deviations. p = 0 represents a single Barabasi-Albert network with 4000 nodes (see text). Nodes in infection trees represent infected

individuals, colored according to its city. City 4 (cyan) in panel (a), where D4−4/D4−1 < 1, was almost entirely infected by a single viral lineage, while in

panel (b) where D4−4/D4−1 > 1, it was infected by many different viral lineages.

https://doi.org/10.1371/journal.pone.0255438.g007
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connected) communities. One confirmed case of reinfection by COVID-19 in Hong-Kong

had the virus differing by 24 nucleotides from the first infecting virus [14]. This distance

matches a value for G for which the network connectivity would strongly influence the rise of

reinfections.

Conclusions

We have introduced an individual based model to describe the genetic evolution of a RNA-

virus epidemic spreading. We used the SEIR model with four compartments on networks, but

the evolutionary dynamics can be implemented in more compartmentalized epidemic models.

We provided an analytical description that can be generalized for models with more compart-

ments. An important result of this study is the mean-field approximation, Eq (3), for the evolu-

tion of the average genetic distance, which can be added directly to the mean-field SIR or SEIR

models.

Our analytical description of the average genetic distance between viruses is neutral and

depends only on the epidemic curves. This allows us to project the evolutionary scenario with-

out using the actual genome sequences. Deviations from these predictions in genetic data

could reveal the strength of selection or network effects. We compared our prediction using

only fifty complete genomes sequenced and collected in China and found good agreement.

Fig 8. Average genetic distances within cities 1 and 4. Open blue circles are average distance between the viruses of city 4 from a single simulation,

and the filled blue circle is average of these values. Light red stars are average distances between viruses from cities 1 and 4 and the dark red star is the

average of these values. We ran 20 simulations for each value of connection probability.

https://doi.org/10.1371/journal.pone.0255438.g008
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We have also analysed the genetic evolution of the epidemic when it spreads over different

communities. By changing the connection probability p between 4 linearly arranged commu-

nities we investigated how different the viruses infecting city 4 would be from their ancestors

in city 1. Our simulations showed that when p is sufficiently small, the genetic difference

between these viruses can be quite large, spanning 30 loci. This could allow an infected indi-

vidual from city 4 to reinfect a recovered individual from city 1. This is a consequence of the

founder’s effect, which is stronger if p is small as it decreases the number of infection gates of a

community. Therefore, we expect increased risk of reinfection from contacts between travel-

ling individuals living in distant territories.

Although the computational framework we described for the viral evolution is neutral, it

can be adapted to including other evolutionary aspects, such as differential fitness for muta-

tions in certain genome regions or loss of cross-immunity. These and other features are impor-

tant topics to be added and studied in future works.
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44. Saumell-Mendiola A, Serrano MÁ, Boguná M. Epidemic spreading on interconnected networks. Physi-

cal Review E. 2012; 86(2):026106. https://doi.org/10.1103/PhysRevE.86.026106 PMID: 23005824

PLOS ONE Modeling neutral viral mutations in the spread of SARS-CoV-2 epidemics

PLOS ONE | https://doi.org/10.1371/journal.pone.0255438 July 29, 2021 17 / 18

https://doi.org/10.1126/science.abb5659
https://doi.org/10.1126/science.abb5659
http://www.ncbi.nlm.nih.gov/pubmed/32332062
https://doi.org/10.7717/peerj.9421
http://www.ncbi.nlm.nih.gov/pubmed/32612894
https://doi.org/10.2307/2982185
https://doi.org/10.1098/rsif.2005.0051
http://www.ncbi.nlm.nih.gov/pubmed/16849187
https://doi.org/10.1007/BF00163027
http://www.ncbi.nlm.nih.gov/pubmed/8145028
https://doi.org/10.1007/s11538-008-9352-z
https://doi.org/10.1007/s11538-008-9352-z
http://www.ncbi.nlm.nih.gov/pubmed/18769976
https://doi.org/10.1103/PhysRevLett.86.3200
http://www.ncbi.nlm.nih.gov/pubmed/11290142
https://doi.org/10.1073/pnas.0402000101
http://www.ncbi.nlm.nih.gov/pubmed/15247422
https://doi.org/10.1093/genetics/129.2.555
http://www.ncbi.nlm.nih.gov/pubmed/1743491
https://doi.org/10.1534/genetics.109.106021
http://www.ncbi.nlm.nih.gov/pubmed/19797047
https://doi.org/10.1371/journal.pcbi.1005130
https://doi.org/10.1371/journal.pcbi.1005130
http://www.ncbi.nlm.nih.gov/pubmed/27681228
https://doi.org/10.1534/genetics.111.134627
http://www.ncbi.nlm.nih.gov/pubmed/22042576
https://doi.org/10.1371/journal.pone.0004876
http://www.ncbi.nlm.nih.gov/pubmed/19287490
https://doi.org/10.1007/s00285-015-0873-4
http://www.ncbi.nlm.nih.gov/pubmed/25800537
https://doi.org/10.1371/journal.pcbi.1008606
http://www.ncbi.nlm.nih.gov/pubmed/33566810
https://doi.org/10.1098/rspb.2007.0415
https://doi.org/10.1098/rspb.2007.0415
http://www.ncbi.nlm.nih.gov/pubmed/17504739
https://doi.org/10.1038/nature08932
http://www.ncbi.nlm.nih.gov/pubmed/20393559
https://doi.org/10.1103/PhysRevE.85.066109
http://www.ncbi.nlm.nih.gov/pubmed/23005164
https://doi.org/10.1103/PhysRevE.86.026106
http://www.ncbi.nlm.nih.gov/pubmed/23005824
https://doi.org/10.1371/journal.pone.0255438


45. Murray JD. Mathematical biology: I. An introduction. vol. 17. Springer Science & Business Media;

2007.

46. Marquioni VM, de Aguiar MAM. Quantifying the effects of quarantine using an IBM SEIR model on sca-

lefree networks. Chaos, Solitons & Fractals. 2020; 138:109999. https://doi.org/10.1016/j.chaos.2020.

109999 PMID: 32834581

47. De Aguiar MA. Speciation in the Derrida–Higgs model with finite genomes and spatial populations. Jour-

nal of Physics A: Mathematical and Theoretical. 2017; 50(8):085602. https://doi.org/10.1088/1751-

8121/aa5701

48. Sung WK. Algorithms in bioinformatics: A practical introduction. CRC Press; 2009.

49. Zhao Z, Li H, Wu X, Zhong Y, Zhang K, Zhang YP, et al. Moderate mutation rate in the SARS coronavi-

rus genome and its implications. BMC evolutionary biology. 2004; 4(1):21. https://doi.org/10.1186/

1471-2148-4-21 PMID: 15222897

50. Wolfram Research. Epidemic Data for Novel Coronavirus COVID-19; 2020. Wolfram Data Repository

https://doi.org/10.24097/wolfram.04123.data.
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