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Seismic reflections from a lithospheric suture zone
below the Archaean Yilgarn Craton
Andrew J. Calvert 1✉, Michael P. Doublier 2,3 & Samantha E. Sellars 1

Seismic reflectors in the uppermost mantle, which can indicate past plate tectonic subduc-

tion, are exceedingly rare below Archaean cratons, and restricted to the Neoarchaean. Here

we present reprocessed seismic reflection profiles from the northwest Archaean Yilgarn

Craton and the Palaeoproterozoic Capricorn Orogen of western Australia that reveal the

existence of a ~4 km thick south-dipping band of seismic reflectors that extends from

the base of the Archaean crust to at least 60 km depth. We interpret these reflectors, which

lie south of a ~50 km deep crustal root, as a relict suture zone within the lithosphere. We

suggest that the mantle reflectors were created either by subduction of an oceanic plate

along the northern edge of the Yilgarn Craton, which started in the Mesoarchaean and

produced the rocks in northern Yilgarn greenstone belts that formed in a supra-subduction

zone setting, or, alternatively, by underthrusting of continental crust deep into the lithosphere

during the Palaeoproterozoic.
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Earth’s tectonic regime has evolved as the planet cooled with
the Archaean eon likely marking the change from a hot
stagnant lid1–3 or plutonic squishy lid4 tectonic regime with

intense plume-related magmatism and possible mantle overturn5

to an early form of plate tectonics with subduction that may
initially have been episodic. Numerical thermomechanical mod-
elling has explored the effects of different thermal regimes on
plate rheology and buoyancy when a mafic oceanic plate con-
verges with continental crust, and identified three classes of
response to the horizontal displacement as mantle temperatures
decrease: (1) nonsubduction where weak plates accommodate
horizontal movement by internal strain, (2) presubduction where
convergence causes shallow underthrusting of the oceanic plate,
and (3) one-sided subduction where the oceanic plate descends
into the mantle6. On Earth, the transition to an early form of
plate subduction likely occurred during the Meso-to Neoarchaean
when mantle temperatures were 150–250 °C hotter than present-
day values, though slab-break off could have been more common
causing subduction to be shorter-lived and more intermittent
than today7.

Observations of dipping seismic reflections in the uppermost
mantle below Archaean cratons can provide important con-
straints on the timing of the initiation of plate subduction on
Earth, and potentially discriminate between the plate subduction
and presubduction tectonic regimes in which higher mantle
temperatures may result in low-angle underthrusting, buckling
and imbrication of an oceanic plate. During present-day sub-
duction, the boundary between the descending oceanic plate and
the overriding plate can commonly be imaged as a zone of seismic
reflectors up to 6 km thick that dips towards the volcanic arc and
extends to depths of 60 km or more. Similar zones of dipping
reflections have been observed in the uppermost mantle below
Phanerozoic, Proterozoic and Archaean collision zones, where
these reflectors are interpreted to be relict scars created by plate
subduction8–11. The clearest example of such mantle reflections
below an Archaean craton is located beneath the Opatica plutonic
belt of the eastern Superior Craton, and formed during the rapid
southward growth of the craton in the Neoarchaean at approxi-
mately 2.69 Ga12; however, shorter sets of reflectors that extend
up to 10 km into the uppermost mantle near offsets in the Moho
have been interpreted as due to subduction at 2.69–2.68 Ga and
2.71–2.70 Ga in the western Superior Craton13 and at
2.65–2.58 Ga in the Slave Craton14,15. To date, similar mantle
reflections linked to deformation in the overlying crust have not
been observed below other Archaean cratons, including the Yil-
garn Craton of western Australia.

The core of the Yilgarn Craton16–18 is the ~3.05–2.60 Ga
Youanmi Terrane, which is separated by the Ida Fault from a
series of >2.95–2.65 Ga terranes to the east that were either
accreted and reworked during the Neoarchaean19 or developed
through interaction with a mantle plume20, and now form the
Eastern Goldfields Superterrane. The Youanmi Terrane contains
NW to NE striking greenstone belts surrounded by granite and
granitic gneiss. The final phase of crustal assembly occurred
during a prolonged period of intermittent E-W shortening from
>2.73–2.65 Ga21. This shortening, which probably involved
orogen-parallel escape, may be related to accretion of the
3.7–3.0 Ga Narryer Terrane over the northwestern margin of the
Youanmi Terrane and amalgamation with the Eastern Goldfields
Superterrane18,22–24. The identification of boninites near the
bases of both the 2.82–2.80 Ga Norie and 2.80–2.74 Ga Polelle
groups of the Meekatharra-Cue greenstone belt in the northwest
Yilgarn Craton (Fig. 1), led to the proposal that a subduction zone
was active from 2.82–2.74 Ga along the northwest margin of the
Yilgarn Craton25,26, and drove accretion of the Narryer
Terrane22,27, which was followed by intrusion of granites into

both terranes at 2.66 Ga28. Cratonization concluded with a late
granite bloom consisting of high-temperature crustal melts from
2.66–2.61 Ga, which coincided with most of the gold
mineralisation19,29,30.

The <2.555 Ga Glenburgh Terrane, which contains inherited
zircons as old as 3.447 Ga, formed separately from the Pilbara and
Yilgarn cratons31. The terrane was accreted to the southern edge
of the Pilbara Craton during the Opthalmian Orogeny from
2.215–2.145 Ga32–34, and a continental arc subsequently devel-
oped along the southern margin of this composite terrane, as
evidenced by granitic gneisses of the Dalgaringa Supersuite,
which are consistent with formation in a supra-subduction zone
setting35–37. North-dipping subduction was partly simultaneous
with the first stage of the Glenburgh Orogeny (2.005–1.985 Ga),
and ended with the closure of an ocean basin and collision with
the Yilgarn Craton to the south during the second stage of the
Glenburgh Orogeny at 1.965–1.950 Ga, forming the West Aus-
tralian Craton33,38. The northern margin of the Narryer Terrane
was deformed during this collision, reworked in the subsequent
1.82–1.77 Ga intracratonic Capricorn Orogeny, and is now
represented by the Yarlarweelor Gneiss Complex. The Errabiddy
Shear Zone, which marks the present-day boundary between the
Glenburgh Terrane and the Yilgarn Craton, formed during the
Glenburgh Orogeny and was affected by dextral transpression
during the Capricorn Orogeny, which also resulted in the intru-
sion of large plutons into, and north of, the Glenburgh Terrane39.

Here we present results from a seismic survey across the
Archaean Yilgarn Craton and the adjacent Palaeoproterozoic
Capricorn Orogen to the north that reveal the presence of south-
dipping reflections that extend to at least 20 s, i.e. to depths of at
least 60 km. We suggest that the most likely interpretation is that
these reflections were created by subduction of an oceanic plate as
early as 2.82 Ga in the late Mesoarchaean, up to 130Ma earlier
than implied by previous seismic reflection surveys, but we can-
not exclude the possibility that the reflections may have arisen
through deep underthrusting, i.e. limited subduction40, of con-
tinental crust during assembly of the West Australian Craton at
1.965–1.950 Ga and/or the subsequent intracratonic Capricorn
Orogen at 1.82–1.77 Ga.

Results
West Australian seismic reflection survey. In 2010, Geoscience
Australia and the Geological Survey of Western Australia
acquired deep seismic reflection profiles (Fig. 1) across the
northern Youanmi Terrane, the Capricorn Orogen to the north,
and the Southern Carnarvon Basin to the west41,42. For our study,
line 10GA-YU1 was reprocessed to enhance lower amplitude
reflections from the uppermost mantle; in this processing (see
Methods section), the 3D orientation of reflectors was estimated,
with the dip and strike parameters used to compute an improved
stack section43. This reprocessed stack was appended to the ori-
ginal stack of line 10GA-CP3, and migrated (Fig. 2a). (We sub-
sequently abbreviate the names of the seismic lines to their last
three characters). The migrated composite seismic section reveals
the subsurface geometry of a major suture zone with south-
dipping reflections extending to depths of at least 60 km where
there is a dramatic northward increase from 35 km to ~50 km in
the depth of the Moho, which is mostly well defined and inferred
from the downward termination of seismic reflections.

In the Youanmi Terrane, the upper crust is relatively
transparent where large granites are mapped at the surface, and
the middle and lower crust are characterized by shallowly dipping
and sub-horizontal reflections. A small number of isolated
reflections appear to correlate with outcropping Proterozoic sills,
and cut across the pervasive mid-crustal reflectivity, which is
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inferred to be Archaean in age44,45. The lower crustal unit
immediately above the Moho, which has been previously referred
to as the Yarraquin Seismic Province46, can be readily followed
from line YU1 to line CP3, where it is deflected downward and
appears to intersect the higher amplitude package of south-
dipping mantle reflections at Common Depth Point (CDP) 9300.
North-dipping reflections project to the surface near CDP 800 on
line YU1, which is the location of the Jack Hills greenstone belt.
These reflections cannot be clearly traced from line YU1 to line
CP3, but they do project downward to a zone of disrupted
reflectivity that we interpret to be the base of the Narryer Terrane,
which is internally characterized by a complex pattern of seismic
reflectivity (Fig. 2b). The north end of line CP3 reveals a
strikingly different structural style with two 2 s thick packages of
south-dipping reflections that extend from the upper and middle
crust to near the base of the crust47, which is less well defined
than the Moho below the Youanmi Terrane.

On the unmigrated stack of line YU1, a 1 s thick zone of
reflections can be followed from 14.5 s at the north end of line
YU1 to the maximum recording time of 20 s (Fig. 3a and Figs. S1
and S2), giving rise to the dipping mantle reflections that appear
to intersect the Moho on line CP3 after migration. Local prestack
estimates of reflector orientations, which are computed for each
CDP from 64 adjacent common depth point gathers, indicate a
range of strike azimuths for the mantle reflector of 090° to 120°
(Fig. 3c); however, these estimates are only reliable in a few
locations due to the low range of source-receiver azimuths in the
straight sections of the seismic profile. Complementary zero-
offset forward modelling of the reflections under the assumption
that they originate from a planar dipping interface for the
crooked geometry of line YU1 indicates that the mantle reflector

has a fairly limited range of possible orientations: dip of 29 ± 2° at
a strike of 090° to 42 ± 2° at a strike of 105° (Fig. 3a); a strike
azimuth of 095° is most consistent with the limited mantle
reflectivity observed on east-striking line SC1 (Fig. S3). Another
band of dipping reflections (Figs. S1 and S2), which after
migration corresponds to M2 in Fig. 2a, originates in the mantle
beneath the Youanmi Terrane, and has a dip of 18–21° at a strike
of 75–105°, though this orientation is less well determined due to
its shorter lateral extent. In summary, we identify two bands of
approximately south-dipping reflectors below the northwest
Yilgarn Craton (Fig. 1), which likely extend to greater depths,
because the reflections are observed to the maximum recording
time of 20 s.

Interpretation. The major terrane boundaries crossed by the
seismic profile have experienced a prolonged deformational his-
tory, and were strongly affected by dextral transpression during
the Capricorn orogeny47,48. We interpret the Narryer-Youanmi
terrane boundary at depth to correspond to S1 (Fig. 2b), a ~5 km
wide zone across which the dip of mid-crustal reflections reverses.
Curved reflectors adjacent to S1 may be the remnants of folds
created during the collision of the Narryer and Youanmi terranes,
but their disruption within S1 is likely due to synchronous or
subsequent transpression. In the lower crust, the surface along
which the Narryer Terrane was thrust over the Youanmi Terrane
is inferred to be T1 at the top of the reflective lower crust, i.e. the
Yarraquin Seismic Province. The subsurface extent of the Narryer
Terrane is constrained by following downward reflections that
project to its surface outcrop; where this is not possible our
interpretation is shown as less certain, though we note that
reworked Narryer rocks of the Yarlarweelor complex project
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Fig. 1 Geology of the northwest Yilgarn Craton showing the location of seismic profiles. The Narryer Terrane comprises exhumed amphibolite and
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along strike as far north as CDP 6000 on line CP3 (Fig. 1),
consistent with the terrane interpretation shown in Fig. 2b.

The Erabiddy Shear Zone, which is mapped as a corridor of
anastomosing north-dipping shear zones, separates the Narryer
Terrane from the Glenburgh Terrane47 in the upper crust, and we
denote the southern edge of this shear zone as the northern limit
of the Narryer Terrane at depth (S2 in Fig. 2b). Where identifiable
most near-surface reflectors in this corridor are north dipping,
and it appears to be a complex imbricated zone into which the
southernmost rocks of the Dalgaringa Supersuite are also
incorporated47. To the north of the Erabiddy Shear Zone, rocks
of the Dalgaringa Supersuite are underlain at 5 km by a strong
reflector (T4 in Fig. 2b) that deepens to the south, and this may
indicate a thrust along which Dalgaringa rocks were transported
during Proterozoic transpression. We interpret the prominent
south-dipping packages of reflectors that underlie the Dalgaringa
Supersuite as panels of the Glenburgh Terrane that were thrust
beneath the Narryer Terrane during the Glenburgh and
Capricorn orogenies47. We speculate that T2 represents an earlier
thrust fault that was subsequently disrupted by transpression
during the Capricorn Orogeny, which imbricated much of the
crust along moderately dipping shear zones, e.g., T3.

At depths >40 km between CDP 7500 and CDP 10000 on line
CP3, there is a zone of diffuse reflectivity that mostly exhibits
apparent dips to the south (Fig. 2a), and this region is likely to be
underthrust crust of the Glenburgh Terrane47 in which
eclogitization may have reduced the amplitude of the

deeper seismic reflections49. The shallower more prominent band
of reflections M1 at 14–18 s, which were recorded on line YU1,
have migrated to the position shown in Fig. 2 under a 2D
assumption; however, since these reflections originated out-of-
plane, their relation to the northward termination of the
shallower section of Moho and the crustal root is not completely
clear. It is possible that these reflections form the upper part of
the underthrust root or they could be located further south, away
from the suture zone.

Discussion
The Yilgarn Craton possesses a lithospheric mantle root char-
acterized by relatively high seismic velocities that extend up to
250 km depth50,51. At depths >60 km in the vicinity of the seismic
reflection profiles, the boundary between this high-velocity root
and lower velocity mantle to the north appears to be subvertical52,
which is consistent with a steep south-dipping conductor imaged
to at least 60 km depth below the southern limit of the Glenburgh
Terrane (Fig. 2b) by a long-period magnetotelluric survey53. If
this is an accurate representation of the edge of the high-velocity
root at 40–60 km depth, then seismic reflectors M1 and M2 lie
within the Archaean lithospheric mantle. Alternatively, if the
northern edge of the mantle root dips more shallowly to the
south, reflector M1 probably represents the boundary between the
Archaean lithospheric mantle associated with the Youanmi Ter-
rane and Proterozoic lithosphere. We consider two alternative
interpretations consistent with the seismic data: (a) the reflections

Fig. 2 Seismic reflection section showing lines YU1 and CP3. a Segment migration64 of combined seismic section constructed from seismic lines YU1 and
CP3. Prominent reflections, and the boundaries between major reflective units are interpreted. Overview of geological units: grey—Proterozoic and
Archaean metasedimentary rocks, green—volcanic greenstone rocks, pink/red—granites and granitic gneiss. b Kirchhoff migration superimposed on
interpretation of major crustal blocks and the shear zones related to their evolution. Dashed pink line—100Ω.m iso-resisitivity contour around a steeply
dipping to subvertical conductor associated with the boundary between the Glenburgh and Narryer Terranes. Dashed brown lines—interpreted sills, dashed
thick green line—possible more northerly position of M1 along line CP3.
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arise from a suture zone within Archaean lithosphere created by
the subduction of oceanic crust beneath the northern Youanmi
Terrane at >2.82–2.74 Ga, which ultimately resulted in the colli-
sion with the Narryer Terrane; (b) the reflections arose during
deep thrusting of the continental Glenburgh Terrane beneath the
Yilgarn Craton between 1.965 Ga and 1.77 Ga during the Glen-
burgh and Capricorn orogenies. The absence of Palaeoproter-
ozoic arc-related rocks on the northwest Yilgarn Craton and the

well-defined lower crust and Moho, which were established under
the Youanmi Terrane late in the Neoarchaean54 and have not
been subsequently disrupted by arc magmatism, preclude a
south-dipping subduction zone along the edge of the Yilgarn
Craton in the Palaeoproterozoic.

The greenstone sequences in the northwestern Yilgarn Craton
contain boninite-like rocks within the lower parts of both the
2.82–2.80 Ga Norie Group and the 2.80–2.74 Polelle Group
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(Fig. 1), which are associated with high-Mg andesites, sanukitoids
and hydrous mafic intrusions; the presence of these boninitic
rocks is best explained by volcanism in the forearc of some form
of, perhaps short-lived or intermittent, subduction zone25,26,
which may also have driven accretion of the Narryer Terrane22,27.
If reflector M1 lies within mantle of Archaean age, then we
suggest that these approximately south-dipping reflectors were
created to depths of at least 60 km by Archaean subduction of an
oceanic plate, and that the boninitic rocks were erupted on the
northwest margin of the Youanmi Terrane, which represented the
forearc of this subduction zone22 (Fig. 4). With a moderate dip of
~32° and a planar geometry imaged over a lateral distance of
40 km, i.e., showing no evidence for buckling or imbrication,
reflector M1 exhibits none of the features that might be expected
to arise from shallow underthrusting of buoyant, relatively weak
oceanic crust in a presubduction setting. It is possible that
reflector M2 is the remnant of an earlier phase of subduction,
which is consistent with the observation of two cycles of vol-
canism that produced boninite-like rocks25, and these two epi-
sodes of subduction may have led to the growth of the mantle
lithosphere by slab imbrication following step back of the sub-
duction zone55. Though delamination of a thickened crust by
peeling back of its dense eclogitic base has the potential to create
dipping reflections in the uppermost mantle, such a process could
not produce the hydrous volcanic rocks found at the surface. The
lack of observation of similar dipping reflectors in the interior of
the Youanmi Terrane indicates that subduction may only have
influenced the margin of this terrane. Since no subduction-related
rocks have been identified on the Narryer Terrane, subduction,
which was probably a relatively unstable process at that time7,

must have terminated or perhaps reversed polarity rather than
stepping back when the Narryer Terrane collided with the
Youanmi Terrane (Fig. 4). The intrusion of granites into both the
Narryer and Youanmi terranes at 2.66 Ga indicates that these two
terranes were in contact by this time; however, 1.82–1.77 Ga
dextral transpression and deformation along the Cagarah shear
zone and the Yalgar fault (Fig. 2b), which extends into the
Youanmi Terrane, indicate that obduction of the Narryer Terrane
onto the lower crust of the Youanmi Terrane was not complete
until following the Capricorn Orogen28.

If dipping reflections M1 are not related to Meso- to
Neoarchaean assembly of the Yilgarn Craton, then they must
have arisen during the Palaeoproterozoic Glenburgh and/or
subsequent Capricorn orogenies. Other examples of dipping
seismic reflections in the upper mantle have been tied to sub-
duction of an oceanic plate prior to terrane collision, but the well-
defined lower crust and absence of Palaeoproterozoic arc-related
rocks in the northwest Yilgarn Craton indicate that there was no
south-dipping subduction zone along the edge of the Yilgarn
Craton at this time. The location on the Glenburgh Terrane of
arc-related rocks of the Dalgaringa Supersuite and older detrital
zircons indicate that a north-dipping subduction zone existed
between the Yilgarn Craton and Glenburgh Terrane from 2.08 Ga
to 1.97 Ga38. With the closure of the ocean basin, the Glenburgh
Terrane was thrust below the Narryer Terrane, though the
magnitude of the crustal shortening at this time is unclear;
however, in this scenario, crustal rocks of the Glenburgh Terrane
are thrust to depths of at least 60 km beneath the northern edge of
the strong, relatively buoyant Archaean lithosphere of the Yilgarn
Craton by the end of the Capricorn Orogeny. In this case,
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Zone (ESZ), and further obducted the Narryer Terrane onto the lower crust of the Youanmi Terrane, a process which largely concluded with the
intracratonic Capricorn Orogen. b During assembly of the West Australian Craton the Glenburgh Terrane was thrust beneath the Narryer Terrane, which
had previously docked with the Youanmi Terrane during the Neoarchaean. In the subsequent Capricorn Orogen, the Glenburgh Terrane was partly
subducted beneath the edge of the lithospheric root of the Yilgarn Craton, creating the seismic reflectors that mark the top of deeply underthrust
continental crust. The obduction of the Narryer Terrane largely terminated at this time. v—indicates Archaean volcanic rocks with arc affinity.
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subparallel reflector M2 could be a shear zone created further
south within Archaean lithospheric mantle by Proterozoic
shortening.

Though the similarity in the strike of the mantle reflectors and
mapped faults related to Proterozoic transpression might seem to
favour the deep underthrusting of the Glenburgh Terrane, the
orientation of later structures may be inherited, because the edge
of an Archaean craton can act as a zone of shear localisation
controlling the geometry of subsequently accreted terranes and
the development, and even polarity reversal, of subduction zones
during the Palaeoproterozoic, as appears to have occurred along
the western edge of Slave Craton14. Given the steep dip currently
inferred for the northern edge of the high-velocity lithospheric
mantle near the seismic reflection profiles and the occurrence in
the northwest Youanmi Terrane of Archaean rocks with an arc-
affinity, we favour an interpretation of Archaean oceanic sub-
duction. The lack of Proterozoic rocks with an arc-affinity within
the Narryer Terrane, together with the lack of evidence for
modification of the underlying lower crust through even incipient
arc magmatism seem to preclude Palaeoproterozoic subduction as
an alternative model unless extremely short-lived.

Fundamental changes in the geological record, including the
appearance of passive margins56, arc volcanic rocks such as
boninites22,57, and paired metamorphic belts1,58 have been used
to suggest that plate tectonics and subduction began during the
Mesoarchaean59–61, and had become the dominant tectonic
regime by the end of the Archaean62; however, the timing of the
onset of plate tectonics remains controversial63. Our favoured
seismic interpretation pushes the evidence for subduction infer-
red from seismic reflectors in the upper mantle, which are also
linked to horizontal shortening in the overlying crust, back to
>2.8 Ga, representing the first example from the Mesoarchaean.
We recognise, however, that further observations to define better
the downward continuation of the Yilgarn mantle reflections and
the edge of the high-velocity Archaean lithospheric mantle are
required to characterise the extent of this process and to distin-
guish conclusively between our alternative interpretations.

Methods
Line YU1. Line YU1 was reprocessed to enhance deep reflections, using refraction
static and residual static corrections calculated for the original processing, which
had been carried out at Geoscience Australia42. CDP bins were assigned to a
smoothed slalom line through the acquisition profile, and evenly incremented every
20 m along an azimuth of 145° from north. Prestack processing included geometry
assignment, static corrections, amplitude recovery, spectral whitening over a
bandwidth of 6–60 Hz, automatic gain control with a 0.5 s window, and muting. At
every CDP location and time, the dip and strike values of the most coherent
reflection were determined43 from a supergather of the 64 adjacent CDP. The stack
was computed using 3D normal moveout, which accounts for a reflector’s dip and
strike, and a correction of the midpoint to the bin centre based on these orientation
values. A comparison of this unmigrated stack section with a stack obtained with
the same processing flow, but a 2D normal moveout correction, is shown in Fig. S1.
The benefit of the 3D reflector orientation information and incorporating data
from adjacent CDPs is apparent both before and after post-stack coherency fil-
tering. It should be noted that use of a dip moveout (DMO) correction in the
conventional processing flow would improve the visibility of shallow reflections,
but would have no significant effect at late times where the mantle reflections are
observed. Use of cross-dip corrections has the potential to improve reflection
stacking, but is difficult to apply where reflections have different 3D orientations.
Though the highest amplitude part of mantle reflection M1 is visible at the
northwest end of line YU1 after coherency filtering of the original processing, this
reflection does not appear in the migration, because it moves beyond the end of the
seismic profile.

Line CP3. To match the lateral smoothing implicit in the reflector orientation
processing of line YU1, the stack of line CP3 was subject to coherency enhance-
ment using summation over 21 traces along the most coherent dip at each time
sample, e.g., Fig. S4, and then appended to line YU1; lower crustal reflections
correlate well between the ends of the two lines. Trace amplitudes in the combined
stack were equalised using a time window of 14–19 s, which is later than the high
amplitude crustal reflections that might bias estimated amplitude values. The

composite section was then migrated using an algorithm that repositions reflec-
tions in the data based on their apparent dip, in a similar fashion to the line
migration of interpreted reflectors, which does not generate wave-equation
artefacts64.

Line SC1. Line SC1 was reprocessed in the same fashion as line YU1, but the
refraction statics were computed from a velocity model derived by tomographic
inversion of picked first arrivals.

Data availability
Seismic reflection data for lines YU1, CP3, and SC1 are available in SEGY format from
Geoscience Australia (https://www.ga.gov.au/about/projects/resources/seismic/wa-
datasets). The geological map was constructed using information available through
GeoView.WA (https://geoview.dmp.wa.gov.au/geoview/?Viewer=GeoView), the
interactive geological map of the Geological Survey of Western Australia.

Code availability
Seismic reflection processing was carried out using TomoPlus and ProMAX software
available from GeoTomo and Halliburton Corp respectively under commerical licensing
arrangements; additional code to compute reflector orientations and segment migration
are available from the authors as subroutines for ProMAX version 5000.0.3 on reasonable
request.
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