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Abstract: In this paper, a new approach for the synthesis of Parylene–metal multilayers was examined.
The metal layers were derived from a metal salt solution in methanol and a post-drying plasma
reduction treatment. This process was designed as a one-pot synthesis, which needs a very low
amount of resources and energy compared with those using electron beam sputtering processes.
The Parylene coatings were obtained after reduction plasma treatments with Parylene C. Therefore,
a Parylene coating device with an included plasma microwave generator was used to ensure the
character of a one-pot synthesis. This process provided ultra-thin metal salt layers in the range of
1–2 nm for layer thickness and 10–30 nm for larger metal salt agglomerates all over the metal salt
layer. The Parylene layers were obtained with thicknesses between approx. 4.5 and 4.7 µm from
ellipsometric measurements and 5.7–6.3 µm measured by white light reflectometry. Tensile strength
analysis showed an orthogonal pulling stress resistance of around 4500 N. A surface roughness of
4–8 nm for the metal layers, as well as 20–29 nm for the Parylene outer layer, were measured. The
wettability for non-polar liquids with a contact angle of 30◦ was better than for polar liquids, such as
water, achieving 87◦ on the Parylene C surfaces.

Keywords: Parylene C; Parylene multilayer; barrier coatings; chemical vapour deposition

1. Introduction

The sustainable sealing of component parts or electronic components that are heavily
stressed by external influences plays a major role in many areas, such as the electrical
industry, sensor technology, space travel, electro-optical assemblies, and many more. This
sealing to protect against external influences is generally called barrier coating. Such barrier
coatings can be achieved in different ways. A widespread method for barrier coating
applications is to seal with polymers from the liquid or gaseous phase or lacquers. The
advantages of this method are the low process costs and the often-simple handling and
applicability. However, this method also has the disadvantage that a layer thickness in the
range of 10–100 µm is required for effective barrier sealings [1,2].

As a result, precisely shaped components lose their fitting accuracy, and contour sec-
tions that may be important for installation could be blurred. Further disadvantages are, on
the one hand, that optical signal transmission is affected by the high coating thickness, and,
on the other hand, that the high, potentially toxic exposure to solvent vapours can have
health consequences. Therefore, an alternative is low-pressure chemical vapour deposition
(CVD) with Parylene [3]. This is a semicrystalline coating material that partially alternates
between aromatic and aliphatic parts, and forms barrier properties in the single-digit
micrometre range [4]. Dependent on the pressure at the CVD process, Parylene coatings
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vary in their crystallinity and stiffness [5]. Crucial application fields are the protection of
biomedical implants in the aspect of corrosion resistance [6] and usage as an electric insula-
tion due to its dielectric properties [7]. A big disadvantage, however, is that barrier sealing
with Parylene does not allow any signal transmission except for optical signals outside
the layer absorption range [8–13]. Furthermore, light transmission in certain wavelength
ranges can also become problematic if the substrate to be protected is sensitive to certain
wavelengths. To compensate these problems, research for the modification possibilities of
Parylene layers by creating a multilayer coating system is of great interest. For example,
the combination of Parylene layers with other materials in the field of biomedical implants
is a great advantage because small transparent, flexible and stretchable electronic devices
can be fabricated. Von Metzen et al. [14] demonstrated a multilayer system on this topic,
which consisted of two 10 µm thick layers of Parylene C with enclosed platinum conductor
structures with a thickness of 300 nm. One possible application is the implementation in
the process structure of microelectromechanical systems (MEMS) in order to ultimately
gain access to new implant technologies.

Hogg et al. [15] found that a key advantage of Parylene-based implants was the protec-
tion of the implant from body fluids and the protection of the body from toxic components
of the implant using a comparatively thin layer thickness. Furthermore, a multilayer system
was presented in that study, which provided an increased barrier effect. It was created
through a combinable process within a process chamber by thermal and plasma-assisted
chemical vapour deposition, incorporating SiOX components into the Parylene layers.
Kuo et al. [16] also worked on the incorporation of alternating SiOX and SiNX layers in the
order of 50 nm per layer to improve the barrier protection of Parylene layers for implant
materials. In the long term, these biomedical implants are intended to provide support
in the cerebral area; for example, to correct faulty bioelectrical signal transmissions by
means of targeted electrical impulses. Due to the complex geometric conditions within
the human body, and also brain, the use of inflexible implants with little movement is
extremely difficult. Therefore, Kwon et al. [17] researched a Parylene multilayer implant
solution to overcome these difficulties. The use of such flexible technologies in the brain,
for example, can alleviate neural diseases, such as Parkinson’s, or even certain physical
impairments. Parylene–metal multilayer constructs can be used in retinal implants to act
as wireless current transfer agents [18] to facilitate drug delivery, or to stimulate nerves
to compensate for specific conditions in this area as well. However, useful fields of appli-
cation of Parylene-based multilayer systems are not limited to the medical sector; further
usages in the electronic and sensory fields are also possible. For example, Yang et al. [19]
used Parylene–metal multilayers as a membrane component of ultrasonic transducers to
implement a thin-film barrier isolation option in miniature devices. In general, Parylene
in combination with metal layers are used as flexible [20–24], stretchable [21] and light
transmissive [21,25,26] matrices, and as protective [25–27], isolating [28–30] and dielec-
tric material [24,31–33] for OLED design [26,29], organic solar cells [25], microelectronic
devices [20,22,24,28,31,33], prostheses [22], implants [34] and coplanar waveguides [32].
Those systems are also reported to improve the fracture resistance in dental ceramics and
composite materials [27].

It is known that transition metals and their salts can inhibit the deposition of polymeric
Parylene films on substrate surfaces by one-electron-reduction between radical polymer
chains and transition metals [35]. However, this also provides new application possibilities.
Vaeth et al. [36] used this inhibition effect to implement a selective chain growing process
within the Parylene deposition by the use of different transition metal compounds. It was
shown that the inhibition potential directly correlated with the formation of nucleation sites.
Another usage of Parylene–metal salt interaction was the creation of differently structured
polymer surfaces in combination with organic thiols [37].

In many multilayer systems, elementary metal layers or structures have been produced
in the nanometre range by sputtering processes or electron beam deposition. Such thin
layers give access to new applications in the field of electrical devices on smaller scales
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and in geometries that are difficult to access. Furthermore, they save considerable amounts
of material and also produce new properties. For example, layers of gold nanoparticles
can also exhibit plasmon resonant effects, whereby analytical and sensory tasks can be
performed in addition to the usual electrical signal transmission functions. This allows the
development of metal thin-film multilayer generation suitable for future applications in
the microelectronics field, to meet further challenges. However, deposition via sputtering
systems involves increased operational, energetic, equipment-related, and thus financial
costs. Therefore, this study explores the possibility of accessing metallic thin films in the
nanometre range at a lower cost by modifying and modelling the plasma treatment option
of a conventional Parylene coating system in the sense of a one-pot synthesis from metal
salt layers, in order to demonstrate an overall more cost-effective alternative.

2. Materials and Methods
2.1. Sample Preparation

The plasma and coating experiments were carried out using the LAB Coater 300 LV 35
RR (Plasma Parylene Systems GmbH, Rosenheim, Germany) with a volume of approx. 40 L
inside the coating chamber, which also corresponded to the volume of the gas discharge
of the low-pressure plasma used. This coating system operated at pressures of 4–10 Pa
and consisted of a coating unit with integrated evaporation and pyrolysis device, as well
as a coating chamber with a microwave generator. The microwave generator ignited a
low-pressure plasma inside the coating chamber. A cold trap with a connected rotary vane
vacuum pump generated the vacuum required for coating and plasma treatment. The
process gas for plasma treatment was Varigon gas (Linde AG) consisting of 95% argon and
5% hydrogen.

The plasma treatments were carried out at a microwave frequency of f = 2.45 GHz and
a microwave power of P = 850 W. This corresponds to a power density of 21.25 W/L. These
parameters were found to be the most suitable to ignite hydrogen for reduction purposes.
Using internally installed mass flow controllers, the gas flow rate was set to 1000 sccm.
The coatings were applied with Parylene C. The powdered precursor was introduced into
the evaporator unit, evaporated at a temperature of 110–120 ◦C and pyrolysed at 720 ◦C.
The coating deposition onto the substrates was conducted at about 40–45 ◦C. A simplified
reaction scheme of the Parylene C polymerization as an own representation based on the
research of Fortin et al. [38] is shown in Figure 1. All coatings generated for this study
took place in a pressure range between 9 and 11 Pa and were carried out with a precursor
quantity of 10 g to obtain a layer thickness of around 5 µm, which has found to the most
suitable for analytical purposes.
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Figure 1. Own representation of the polymerisation reaction to obtain Parylene C.

To generate the multilayer coating systems, different sample types were created, each
representing specific production steps, thus enabling a more in-depth analysis, a better
understanding of the different components and their interaction with each other in the
coating system. The used sample types are defined for this purpose in Table 1.

In this respect, iron(III) chloride (FeCl3), copper(II) chloride (CuCl2) and iron(II)
sulphate (FeSO4) were selected for this study. This metal compounds have different sta-
ble contiguous oxidation states which can be altered by plasma reduction. FeSO4 has
the advantage that this compound can be treated both reductively and oxidatively. All
three compounds were treated in a Varigon low-pressure plasma for 30 min under the
given parameters. The application followed a specific reproducible scheme. First, metal
salt concentrations in a suitable solvent were determined. The solvent in this study was
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methanol, as its lower boiling point makes it easier to remove than water. The concentra-
tions used in total were 0.29 mol/L, 0.15 mol/L, 0.07 mol/L, 0.04 mol/L, 0.02 mol/L and
0.01 mol/L. For the ellipsometric analysis, concentrations from 0.04 mol/L to 0.29 mol/L
were used to verify a possible dependence on the formed metal salt layer thickness by the
applied concentration. The solutions with concentrations of 0.02 mol/L and 0.01 mol/L
were defined as solution 1 and solution 2. These two concentrations were chosen to main-
tain the transparent character of the glass slide substrates, whereas coating with solutions
of higher concentrations led to relevant turbidity due to the stronger formation of metal
salt agglomerates. Thus, samples with a coating of solution 1 and solution 2 served as
representative samples for the multilayer coating system, and the solutions with higher
concentrations for better handling in specific analytical procedures. The intention was to
create metal salt layers as thin as possible so that a plasma treatment directly affected most
of the layer materials. On the other hand, for most applications of Parylene–metal multilay-
ers, the metal layer thickness was usually in the nanometre range. It was considered best
to obtain a thickness in the low nanometre scale to preserve a wide application field and
to ensure a plasma impact as effective as possible. However, the drop-on procedure also
required process uniformity to ensure reproducibility in the production and statement of
the analytical results.

Table 1. Sample types used for the multilayer coating systems.

Type 1 Type 2 Type 3 Type 4

Glass slide yes yes yes yes

Metal salt layer yes yes yes yes

Varigon plasma no yes no yes

Parylene layer no no yes yes

The procedure was standardised to a specific drip volume and application method
by applying a defined drop volume of the metal salt solutions, averaging 19 µL per drop.
Five drops, applied at even intervals, were used for application to the glass slides. To
ensure better distribution, a second glass slide was placed flush after dripping so that the
solution could spread over the entire area between the slides. For drying, the superimposed
glass slides were separated, placed in the low-pressure coating chamber, and dried at
5–10 Pa for 30 min. Subsequently, further steps such as plasma treatments and/or coatings
could be carried out with these samples.

2.2. Surface Analysis and Evaluation

Both a white light reflectometer consisting of a halogen spectral lamp with a TranSpec
MC-UVNIR-H spectrometer (range: 190–1020 nm) and an EP4 ellipsometer (from Accurion
GmbH) were used to analyse the layer thicknesses. The optical inspection of the coatings
was carried out with a digital microscope (VHX 6000 from Keyence Corp.). The surface
wetting properties were determined with a Mobile Surface Analyzer handheld device
(MSA) from Krüss GmbH using the test liquids water and diiodomethane (1 µL per drop
each). Atomic force microscopy (AFM) measurements and corresponding calculations were
made with an Easyscan 2 measurement module (Nanosurf AG). The area examined via AFM
had a dimension of 50 × 50 µm2 and this area was scanned with a rate of 512 lines with a
measurement time of 1.5 s for each line. Evaluations were carried out via the device control
software of the Nanosurf Easyscan 2, whereby both the arithmetic mean and the mean over
the least squares were taken into account in the roughness determination.
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3. Results and Discussion
3.1. Metallic Layer Modification

Attenuated total reflection infrared analysis (ATR-IR) of copper(II) chloride and iron(II)
sulphate treated with Varigon plasma did not yield any results because the ratio of metal
salt layer thickness and the thickness of the microscope cover glass was too large, so that
only the glass was detected. For this reason, ATR-IR analysis with a thicker metal salt layer
provided signals from this very layer, but no changes in the spectra of the samples could be
detected over the plasma treatment times. This circumstance can be explained by the fact
that the plasma effect only took place in the upper atomic layers of the metal salt [39,40].
Therefore, in the case of an increase in the metal salt layer thickness, a significant part of
the layer material was not affected by the plasma treatment. Due to the comparatively high
information depth of the ATR-IR analysis, the majority of the untreated layer material was
detected, which meant that the final spectra did not show any changes. This meant that the
ATR-IR analysis could be ruled out as a suitable means of identifying the plasma effect on
the metal salt layer.

3.2. Multilayer System Characterisation

In order to check the influence of the metal salt on sample types 1–4, several measure-
ments via atomic force microscopy were made. The detailed results are given in the bar
charts in Figure 2. It was found that the roughness of the glass slides was nearly identical
for sample types 1 and 2, so the plasma treatment showed no effect. For this reason, the
results were calculated and plotted together in Figure 2 and labelled “Uncoated Samples”.
The roughness of the Parylene surface was also unchanged for the samples which were
treated with plasma before Parylene coating compared with the untreated samples. This
observation leads to the conclusion that the upper layers of the Parylene material were
unaffected by previous Varigon plasma treatment. Due to that, the roughness measurement
results were also combined in calculation and plotting with the label “Coated Samples”.
Samples of types 1 and 2 were in the range of 4–8 nm for the arithmetic mean (Ra) and
7–12 nm for the least squares method (Rq). After Parylene treatment, the roughness was
much higher. Thus, both with and without plasma treatment, sample types 3 and 4 showed
an increase in roughness to Ra = 20–29 nm and Rq = 26–38 nm. It is noticeable here that
for sample types 1 and 2, coating with iron salts FeSO4 and FeCl3 showed very similar
roughness values. The samples from types 1 and 2 for CuCl2 had twice as much roughness
as the iron samples. After Parylene coating, the roughness behaviour changed. For sample
types 3 and 4, FeCl3 and CuCl2, i.e., the two chloride salts in the highest oxidation states,
were approx. 20–22 nm for Ra and approx. 27–28 nm for Rq. Significantly higher roughness
values were determined for FeSO4with approx. Ra and Rq = 29 and 38 nm, respectively.
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In Figure 3, AFM images of the metal salt layers from sample types 1 and 2, the
surface of the glass slide as a reference picture, and a coated example of an FeCl3 type 3
sample, are shown. It can be seen that the metal salt surfaces are populated with larger
objects in micrometre size, as well as smaller ones in the sub-micrometre range. These
larger formations were identified as crystalline structures with the help of microscopical
examinations, such as those shown later in this study. A comparison between the AFM
images of the type 1 and type 2 samples revealed that there were no clues of plasma etching
detected. This observation confirms the conclusion drawn at the roughness measurements,
that there were no significant plasma etching effects within the experimental setup of
this study.

For quality control of the coating deposition, the respective batch layer thickness
was determined by means of white light reflectometry with the help of a reflective silicon
reference surface. It was enclosed with the respective coating batch. The literature refractive
index was used, since the layer thickness can only be calculated on the basis of the Fresnel
equations with a known refractive index. During these measurements, it was observed that
a layer thickness in the range of 4.579–6.304 µm was formed at a weight of around 10 g of
the precursor for the coating with Parylene C. Thus, it can be concluded that per gram of
Parylene C precursor weighed in, approx. 0.5–0.6 µm Parylene C layer thickness resulted.
Another possibility of determining the layer thickness is the method of ellipsometry. With
this method, even very thin layers can be measured without knowing their refractive
index. These measurements (exemplary for the type 4 samples with CuCl2) confirmed,
on the one hand, that the measurements by means of white light interferometry provided
realistic results, and determined, on the other hand, how strongly the thickness of the metal
salt layer formed with the same drop-on volume. By predetermining the Parylene layer
thickness via white light reflectometry, the ellipsometric measurements over the visual
to infrared spectral range (400–800 nm) could be carried out more time-efficiently, as a
measurement in the UV range was no longer necessary.
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(top right), as well as the surface images of glass coated with CuCl2- (2nd row), FeCl3- (3rd row) and
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The ellipsometric measurements showed a varying layer thickness between 1 and
30 nm. These values were derived from a specific sample spot. There were also larger
crystalline structures, which could have a size in the micrometer range, as can be seen
in Figure 3. In awareness of these crystals, the ellisometric measurement spots were
chosen away from those. This procedure ensured that the ellipsometric modelling was
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in a realistic thickness regime. For most of the measurement spots, a metal salt layer of
1–2 nm was observed, but sometimes also some in the range of 10–30 nm. Due to the fact
that every measurement showed a metal salt layer, these results were extrapolated to a
usual layer thickness of 1–2 nm. Sometimes, aside from the observed crystal structures,
there were agglomerations of metal salt material in the range of 10–30 nm. To compare the
yield of coating thickness to the precursor weight, Tables 2 and 3 show the results of the
ellipsometric and white light reflectometry measurements.

Table 2. Determined Parylene C layer thicknesses by ellipsometric measurements, compared with
the precursor weight.

Parylene C Precursor Weight (g) Parylene C Layer Thickness (µm)

10.05 4.579

10.05 4.716

10.05 4.687

10.05 4.714

Table 3. Determined Parylene C layer thicknesses by white light reflectometry measurements com-
pared with the precursor weight.

Parylene C Precursor Weight (g) Parylene C Layer Thickness (µm)

9.914 5.825

9.987 5.739

9.997 6.304

10.09 5.742

In order to determine the strength of the laminated bond, the vertical pull-off force
of aluminium test dollies, which were bonded to the type 1–4 specimens with an epoxy-
based two-component adhesive, was determined. For this purpose, the Positest Automatic
Adhesion Tester from the manufacturer DeFelsko was used, which consisted of a cylindrical
pull-off tester for removing the dollies and a control unit for starting the measurement
and displaying the stress–strain diagrams and the breaking force. The results of these
measurements are shown in Figure 4.

During the peel tests, the metal salt and Parylene layers mostly broke, or, better,
detached (adhesion breakage). However, complete destruction of the glass slides occurred
in the samples of types 1 and 2. In a few samples without Parylene coating, the glass
slides remained intact and an adhesive fracture (cohesion fracture) could be observed. This
circumstance made it possible to determine the cohesive strength of the two-component
adhesive at nearly 4500 N. For the other samples without Parylene coating, the destruction
of the glass slides occurred at around 500 N. For the Parylene C coated samples of types 3
and 4, the adhesion failure also occurred at about 4500 N. Thus, the adhesive cohesion and
the coating adhesion were in the same order of magnitude. Approximately the same values
were obtained for both the samples with and without plasma treatment. This allows the
conclusion that the treatment with a Varigon microwave plasma did not exert a significant
influence on the layer adhesion of the individual sub-layers. From a chemical point of
view, this observation also makes sense. Varigon gas consists of a gas mixture of hydrogen
and argon. For plasma-enhanced adhesion improvement, an effective way is to create
chemical bonding groups between the substrate material and the layer. These bonds are
formed by linking two mostly polar functional groups. To generate such groups, the plasma
discharge process gas should accordingly provide the components of these groups. For the
generation of OH-groups, the process gas should contain certain proportions of oxygen
and hydrogen. This can be achieved, for example, by using ambient air, as this contains
both molecular oxygen and water due to the presence of humidity. However, neither
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component is present in the Varigon gas for the formation of such functional groups for
the chemical bonding of the layer material to the substrate surface. This also explains
the fact that there was no improvement in adhesion after plasma treatment. An adhesion
improvement could be possible with the application of an oxygen-containing plasma, but
this would also reoxidise the reduced metal salt surface of the interlayer. For this reason, a
plasma-enhanced adhesion improvement was not an acceptable method for this study.
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Figure 4. Comparison of the tensile tests between the different solutions and types with the salts
CuCl2, FeCl3 and FeSO4.

Furthermore, the wetting properties were investigated with the help of contact angle
measurements. For this purpose, two liquids were used to analyse the wetting behaviour
of polar and non-polar fluids. Deionised water was used as a representative of the polar
fluid family and diiodomethane as a representative of non-polar fluids. When examining
sample types 1 and 2, i.e., the samples with metal salt coating without a Parylene layer, a
Varigon plasma with five different treatment times, namely, 10, 20, 30, 40 and 50 min, was
used. The obtained results are displayed in Figure 5. However, there were no discernible
deviations in the contact angles among the plasma treatments and in comparison, to the
reference samples. This was due to the fact that the metal salt compounds were dissolved
by the analysis liquids, which was observed after the contact angle measurements. On one
hand, this changes the properties of the surface tension of the liquid droplets, and, on the
other hand, the metal salt layer is significantly damaged by this dissolution process to such
an extent that no polarity properties of this layer could be obtained. Particularly, the last
two treatment times of 40 and 50 min for iron(III) chloride generated a water contact angle
of 0◦, because the droplet immediately spread out on the sample surface after the contact.
This behaviour made it difficult to observe a plasma treatment time-dependent wetting
capacity. As explained earlier, the contact angle measurement had a dissolving effect on the
metal salt layer, due to the contact angles of 0◦, which can be explained by the assumption
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that higher Varigon plasma treatment times lead to higher drying effects within the metal
salt material. This could lead to a higher water absorption during the water droplet tests.
The contact angle measurements of the samples coated with Parylene C gave a very solid
picture of the polarity properties of the Parylene layers, which reflect a congruent wetting
behaviour across all coated samples regardless of the metal salt type, as the Parylene layer
was thick enough to exclude any influence of the associated metal compound.
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In Figure 6, a more detailed overview of the layer distributions and characteristics
on the surfaces of the glass slide substrates is shown by microscopic imagery. Random
magnification images were taken at defined points on the samples using digital light
microscopy. Here, the samples of types 1 and 2 provide insight into the layer expression
of the metal salt layers. The comparison between these two sample types also shows the
colour changes of the oxidised metal species after the application of a reductive Varigon
plasma. When observing the images from the edge to the centre of the slide substrates,
it is noticeable, in all samples, that larger crystalline agglomerates formed at the edge,
while smaller crystalline agglomerates and powder-like equivalents appeared towards the
centre. Colour changes in these agglomerates also provided information about redox-based
changes within the metal layer material. The density of larger agglomerates decreasing
towards the centre is an indicator that the support method, in which a glass slide dripped
with metal salt solution is flush covered by another and thus weighed down, forces more
metal salt solution outwards to the edges of the slide, as can be seen in Figure 6.
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In addition, type 1 and 2 samples were found to have formed specifically elongated
crystalline structures. A possible explanation for this behaviour could be the presence of
small scratches on the glass slide surface. These scratches provided the forming crystal
nuclei with an anchorage point, at which the critical mass of crystal nuclei, necessary for
the onset of crystallisation, could be reached and exceeded. Thus, these small scratches
offered a very attractive opportunity for crystallisation. A disadvantage of this observation
is that thicker material appears to have formed there, which was only superficially affected
by reductive plasma treatment. In general, thicker agglomerates should be avoided, as
they cannot be completely brought to the desired oxidation state, and only the surface
is influenced.

It could also be seen from the smaller crystalline deposits that the coating enclosed
these structures, as shown in Figure 7. The conclusion can be made that at this agglomera-
tion size, the drying time was sufficient to prevent the release of further volatile material.
The presence of such bubbles around agglomerated metal salt material not only allowed
conclusions to be drawn about volatile residues in the crystalline material, but also the
presumption of the formation of a small oxidative atmosphere between the metal salt
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layer substrate and the Parylene layer. This trapped gas could, for example, consist
of the dissolved water of crystallisation, not yet completely evacuated solvent residues
(methanol), and air components such as nitrogen and oxygen. Some of these substances
have the potential to reoxidise freshly reduced surface portions of the substrate material.
These circumstances could lead, in some cases, to the result that the concretely targeted
oxidation state of the metal salt material is at least partially changed via reoxidation pro-
cesses by the formation of mixed phases of the most diverse oxidation states. This can
also result in changes in the properties of the metal salt interlayer and thus of the entire
multilayer system.
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4. Conclusions

In this work, a new way of depositing metallic thin films in combination with Parylene-
based barrier layers as a Parylene–metal multilayer system from solution was examined.
It was found that the multilayer system resulted in different concentrations of two-layer
components when applied in the same way. One was the uniformly covering base layer,
which was approx. 1–2 nm thick and formed independently of the concentration. The other
layer component consisted of larger crystal agglomerates, which occurred more frequently
with increasing concentrations of the metal salt solution. Their size was measured between
10 and 30 nm. The surface roughness values were 4–8 nm for the metal salt layers and
20–30 nm for the surface of the Parylene layers, as an arithmetic mean. The orthogonal
peel strength was between 4.4 and 4.7 kN. Despite the partially inhomogeneous formation
of the metal salt layers, the application of a plasma-modified metal-containing thin film
from a metal salt solution and subsequent Parylene coating provided a resource saving
method to a one-pot synthesis of Parylene–metal multilayer systems. Future applications
of these multilayer system production process could be in the time and cost-efficient
creation of flexible wireless power and data transfer devices, as well as for UV-protective
Parylene coatings, or mobile and durable catalytic surfaces, which can be applied in difficult
geometric situations.
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