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Abstract: Leukemia is one of the most dangerous types of malignancies affecting the bone marrow
or blood in all age groups, both in children and adults. The most dangerous and deadly type of
leukemia is acute lymphoblastic leukemia (ALL). It is diagnosed by hematologists and experts in
blood and bone marrow samples using a high-quality microscope with a magnifying lens. Manual
diagnosis, however, is considered slow and is limited by the differing opinions of experts and
other factors. Thus, this work aimed to develop diagnostic systems for two Acute Lymphoblastic
Leukemia Image Databases (ALL_IDB1 and ALL_IDB2) for the early detection of leukemia. All
images were optimized before being introduced to the systems by two overlapping filters: the average
and Laplacian filters. This study consists of three proposed systems as follows: the first consists
of the artificial neural network (ANN), feed forward neural network (FFNN), and support vector
machine (SVM), all of which are based on hybrid features extracted using Local Binary Pattern (LBP),
Gray Level Co-occurrence Matrix (GLCM) and Fuzzy Color Histogram (FCH) methods. Both ANN
and FFNN reached an accuracy of 100%, while SVM reached an accuracy of 98.11%. The second
proposed system consists of the convolutional neural network (CNN) models: AlexNet, GoogleNet,
and ResNet-18, based on the transfer learning method, in which deep feature maps were extracted
and classified with high accuracy. All the models obtained promising results for the early detection
of leukemia in both datasets, with an accuracy of 100% for the AlexNet, GoogleNet, and ResNet-18
models. The third proposed system consists of hybrid CNN–SVM technologies, consisting of two
blocks: CNN models for extracting feature maps and the SVM algorithm for classifying feature maps.
All the hybrid systems achieved promising results, with AlexNet + SVM achieving 100% accuracy,
Goog-LeNet + SVM achieving 98.1% accuracy, and ResNet-18 + SVM achieving 100% accuracy.

Keywords: acute lymphoblastic leukemia; machine learning; convolutional neural network; hybrid
method; local binary pattern; gray level co-occurrence matrix; fuzzy color histogram

1. Introduction

Blood is one of the significant elements of the human body, consisting of 55% plasma
and 45% red blood cells (RBCs) [1]. There are also white blood cells (WBCs) and platelets,
comprising less than 1% of the blood. There are three main blood components according
to the shape, color, size, composition, and texture of the blood: RBC [2], WBC [3], and
platelets [4]. RBC is the most important blood sample, and hemoglobin is one of its basic
components, giving blood its red color and transporting oxygen to all parts of the body.
When hemoglobin levels are reduced, oxygen decreases, causing fatigue and weakness. The
RBC rate ranges from 4,000,000 to 6,000,000 per microliter of blood, representing 40–45%
of the total blood volume [5]. WBCs are the cells that defend against germs and give us
immunity and resistance; they range from 4500 to 11,000 per microliter of blood [6]. The

Sensors 2022, 22, 1629. https://doi.org/10.3390/s22041629 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22041629
https://doi.org/10.3390/s22041629
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2546-2450
https://orcid.org/0000-0002-7508-7601
https://doi.org/10.3390/s22041629
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22041629?type=check_update&version=2


Sensors 2022, 22, 1629 2 of 31

platelets range from 150,000 to 450,000 per microliter of blood and are responsible for
blood clotting [7]. Thus, an increase or decrease in any of the basic blood components
will cause problems to a person’s health, such as leukemia, thalassemia, and anemia. A
high WBC volume leads to poor body immunity because it covers both the RBCs and
platelets. Medical practitioners classify it into four types according to its development,
speed, and impact: acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia,
acute myeloblastic leukemia, and chronic myeloblastic leukemia. Of these, ALL is the
most common, representing 70% of all leukemia cases, and the most fatal. Additionally,
environmental and genetic factors have an active role in the development of the disease.
The cause of ALL is the excessive and uncontrollable proliferation of lymphocytes in the
bone marrow [8].

ALL is classified into three morphological types: L1, L2, and L3 [9]. L1 cells are
the smallest, with a uniform population and coarse chromatins. L2 cells have nuclear
heterogeneity and are larger than L1 cells. L3 cells have vacuoles protruding into the cells
and are larger than L1 cells. Thus, early diagnosis of ALL plays a key role in recovery,
especially for children [10]. The fact that the normal and lymphoid cell types have many
similar characteristics, however, poses a challenge for the early diagnosis of lymphocytes.
Thus, lymphocytes were classified into three types: normal, atypical, and reactive. Normal
lymphocytes are characterized by homogeneity and round, small, and rough nuclei; atypical
cells, by a large size and nucleus and the fact that they have lumpy chromatins; and reactive
cells, by their heterogeneity and the fact that they are surrounded by red cells. Microscopic
examination is the method of diagnosing the lymphocyte types; it involves taking blood or
bone marrow samples, which are diagnosed by a pathologist [11]. An adequate diagnosis of
leukemia, however, involves taking a bone marrow sample and analyzing it. As the analysis
is made manually, it is tedious, time consuming, and sensitive to the differing opinions of
experts. Therefore, an accurate manual diagnosis depends on the skill of the pathologist,
although human errors may occur. Several researchers have proposed automated ways of
detecting leukemia by extracting the WBC features from microscopic images. Thus, the
automatic detection of blood cell images will lead to a rapid and reliable diagnosis and
will allow the examination of many cells from each person. Machine and deep learning
techniques can solve manual diagnostic problems. It has been proven that many of the
shortcomings of manual diagnosis and medical imaging can be analyzed and solved by the
convolutional neural network (CNN), which has a superior ability to distinguish between
normal and blast cells. In this study, the two datasets ALL_IDB1 and ALL_IDB2 were
analyzed for leukemia diagnosis using several machine and deep learning networks and
hybrid techniques.

Below are the main contributions of this study:

• All images were optimized in both datasets by overlapping filters to obtain high-
quality images

• A hybrid feature extraction technique was applied using the LBP, GLCM, and FCH
algorithms, and then all the features were fused in one vector and classified using
three classifiers: ANN, FFNN, and SVM

• The hybrid technique was applied between CNN models to extract deep features clas-
sified using the SVM algorithm, obtaining promising diagnostic performance results.

• Systems were developed for analyzing blood microscopy images to assist hematolo-
gists and experts in making accurate diagnostic decisions

The rest of the paper is organized as follows. Section 2 reviews a set of relevant
previous studies. Section 3 analyzes the materials and methods that were used for the
processing of the images in the ALL_IDB1 and ALL_IDB2 datasets. Section 4 reviews the
diagnostic performance results of the proposed systems. Section 5 discusses and compares
the diagnostic performances of the proposed systems. Section 6 concludes the paper.
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2. Related Work

This section presents methods and techniques for leukemia analysis and detection, im-
age optimization, segmentation, classification, and manual and deep feature extraction [12].
In a study by Abhishek et al., the image optimization phase enhanced the region of interest,
which affected the segmentation result [13]. Shirazi et al.’s images were improved, and the
aliased and false edges were removed using the wiener filter [14]. Dhanachandra et al.’s
pre-processing techniques were applied through k-means clustering, median filtering, and
contrast stretching to obtain high-resolution segmented images [15]. In the study by Sell
et al., the images were processed using three components of two-color spaces, CMYK and
HSV, to produce new images for determining the most important features through principal
component analysis to obtain WBC nuclei [16]. Saba et al. introduced the deep learning
(SDL) approach to leukocyte segmentation and classification in the pre-processing and
segmentation steps and conducted optimization using a generative adversarial network
through its normalization, followed by deep feature extraction with the DarkNet-53 and
ShuffleNet models [17]. Pouria et al. enhanced images to reduce the brightness when
converting from RGB to HSV, and then applied fuzzy c-means to segment the cores and
separate them from the rest of the image (the watershed transform method separates the
link between the cores and the background and then extracts the most important geometric
and statistical features) [18]. Angelo et al. presented an adaptive unsharpening method
for improving images sorted by machine learning algorithms, and used deep learning
techniques for cell diameter normalization, image improvement, focus sharpening, and
diagnosis [19]. Subrajeet et al. presented a quantitative microscopic method for distinguish-
ing malignant lymphocytes from normal blood-stained images and diagnosed lymphocytes
first through segmentation using shadowed C-means clustering, and then through classifi-
cation by five classification algorithms [20]. Nasir et al. discussed several phenotypic and
environmental features and their feeding to four classification algorithms for diagnosing
leukemia; all the algorithms obtained superior diagnosis results in all age groups [21].
Nashat et al. conducted feature selection using the particle swarm optimization algorithm
with the ensemble learning method and rated the selected features using five classification
algorithms; the algorithms obtained good results [22]. Supriya et al. introduced a method
of diagnosing cancer cells by extracting essential features (e.g., irregularly shaped nucleus
and adjacent nuclei, which indicate cancer cells) using multiple learning algorithms [23].
Israet al. presented an effective system for evaluating the blood dataset for diagnosing
leukocytes, with the following stages: augmenting images, composing wavelets, and train-
ing the dataset and classifying the inputted classes using the CNN model [24]. Reena et al.
presented a semantic segmentation method of isolating leukocytes from the rest of the
image to extract deep feature maps using DeepLabv3 and ResNet-50; the system obtained
good WBC classification results [25]. Jens et al. used a CNN model to analyze two datasets
as a function of training; they trained the model, and when the images increased during
the training phase, they concluded that the model was more efficient the most training
datasets [26].

3. Materials and Methodology

This section presents the techniques, methods, and materials that were used to analyze
the ALL_IDB1 and ALL_IDB2 datasets for the early detection of leukemia, as shown in
Figure 1. Data were collected from patients with and without leukemia. All the images were
improved, and the noise therein was removed. Then, three sets of techniques were used
to analyze the improved images: (1) neural networks and machine learning algorithms
based on image segmentation and hybrid feature extraction via LBP, GLCM, and FCH;
(2) CNN models for extracting deep feature maps and for classifying them on the basis of
the transfer learning technique; and (3) hybrid technologies consisting of two blocks each:
deep learning and machine learning.
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Figure 1. Morphological diagram for leukemia diagnosis from the ALL_IDB1 and ALL_IDB2 dataset.

3.1. Description of the Two Datasets

This study evaluated neural networks, machine learning, deep learning, and hybrids
on the publicly available ALL-IDB dataset containing micrographs of blood samples. The
dataset focuses on ALL, the deadliest form of leukemia. All the lymphomas in each picture
were identified and classified by lymphoma experts. All the images were obtained with an
optical microscope with a Canon PowerShot G5 in JPG format, RGB color space (24-bit),
and a high resolution (2592 × 1944). There are two types of ALL-IDB datasets: ALL_IDB1
and ALL_IDB2. The ALL_IDB1 dataset contains 108 images: 49 images of lymphomas and
59 images of normal people. Each image contains approximately 39,000 blood elements
classified by lymphoma experts. The ALL-IDB2 dataset, on the other hand, contains
260 images: 130 images of lymphomas and 130 images of normal cells [27]. The ALL-
IDB2 dataset is a set of regions cropped from blast cells and normal cells from the ALL-
IDB1 dataset. Figure 2 shows samples from the ALL-IDB1 and ALL-IDB2 datasets (https:
//www.kaggle.com/nikhilsharma00/leukemia-dataset (accessed on October 2021).
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3.2. Enhancement of Images

Preprocessing is the first step in diagnostic imaging. When blood samples are analyzed
under a microscope, the microscope light is adjusted to obtain images of the samples. Thus,
the brightness of the microscope varies from time to time, and the reflections also vary due
to the light, all of which lead to the deterioration of the performance of artificial intelligence
(AI) imaging techniques. Thus, noise reduction techniques are useful in obtaining improved
images [28]. In this study, the images were enhanced by calculating the area of the RGB
color channels, and then the colors were fixed through scaling. Thereafter, two filters
namely, average and Laplacian filters were used to remove the noise and increase the
contrast of the edges. The size of the average filter was 6 × 6. The filter was moved around
the image until the image had been smoothed. The differences between the pixels were
reduced by replacing each central pixel with an average of 35 adjacent pixels. Equation (1)
shows the average candidate’s work.

z(m) =
1
M

M−1

∑
i=0

y(m− 1) (1)

where z(m) is the input, y(m − 1) is the previous input, and M is the number of pixels in
the image.

Next, a Laplacian filter that detects edges was applied. This filter detects changing
regions, such as blast cells. Equation (2) describes how a Laplacian filter works.

∇ 2 f =
∂ 2 f
∂ 2 x

+
∂ 2 f
∂ 2 y

(2)

∇ 2 f represents a differential second-order equation, and x, y are the coordinates of
the binary matrix.

Finally, an enhanced image was obtained by subtracting the image enhanced by the
Laplacian filter from the image enhanced by the average filter, as in Equation (3).

Enhanced image = z(m)−∇ 2 f (3)

Each image and its location in Figure 3 after enhancement is the same as the image
with the same location in Figure 2 before enhancement.
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3.3. Neural Networks and Machine Learning Technique
3.3.1. Adaptive Region-Growing Algorithm

The images obtained under the microscope showed healthy lymphocytes and blast
cells. Therefore, the analysis of complete images leads to extraction of features from healthy
cells that cause a poor prognosis. The fractionation techniques take care only of the target
cells and leave the unnecessary cells. In this work, the adaptive region-growing algorithm
was applied. This algorithm separates similar pixels representing the pixels of lymphocytes
called a region of interest (ROI) [29]. For a successful segmentation process, the following
conditions must be met:

� ∪N
i=1x i = x, where m is the number of regions

� x = 1, 2, . . . . . . , N is connected
� P(x i) = TRUE f or 1, 2, . . . . . . , N
� P

(
x i ∪ xj

)
FALSE f or i 6= j, where x i and x j are neighboring regions

For a successful segmentation process, the following conditions must be met: (1) the
segmentation process must be complete; (2) all similar pixels must be represented in
the same region; (3) specific and similar pixels must be correct when applied to other
regions; and (4) no two pixels should be the same and belong to two different regions. The
algorithm is based on the bottom-up approach, starting with a seed (pixel) and creating
similar grouped pixels to form a region. The basic idea of the algorithm begins with many
different pixels as the raw seeds for forming regions, and the regions grow gradually until
all similar pixels in the same region are joined together. Figure 4 shows samples from the
two datasets after the segmentation of infected and healthy cases.
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3.3.2. Morphological Method

The morphological method is a process for improving segmented images. After
the segmentation process, holes not belonging to the ROI are left; these holes lead to
a lack of diagnosis [30]. There are many morphological processes that remove these
holes, such as opening, erosion, closing, and dilation. Morphological processes create a
structure element with a 5 × 5 size, move it to each location of the segmentation image,
and compare it with the neighboring pixels. The processes test if the structure element
“fits in” with its neighbors or not, and the “hits” process tests the intersection between
neighbors. The process continues until the whole image is scanned and an optimized binary
image is produced. Figure 5 shows samples of dataset images obtained before and after the



Sensors 2022, 22, 1629 7 of 31

application of morphological processes. Where it is noted, the images were improved by
filling in the gaps not belonging to the ROI.
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3.3.3. Feature Extraction

As medical images contain thousands of data that are difficult to analyze with high effi-
ciency, feature extraction is one of the essential stages of medical image processing because
it reduces the dimensions of the original image and extracts the essential representative
features only from the ROI area [31]. In this work, features from the ROI were extracted
using three algorithms: LBP, GLCM, and FCH. Thereafter, all the features extracted through
these three methods were combined to produce robust representative feature vectors. The
feature fusion method is a modern method whose purpose is to obtain more significant
and representative features for high-performance diagnostic systems.

The LBP algorithm is a feature extraction method that works by selecting the central
pixel and the pixels adjacent thereto [31]. The algorithm is set to a 5 × 5 size. In each
iteration, the algorithm selects the central pixel (gc), its neighboring pixels (gp), and the
radius R, which is 24 neighboring pixels for each central pixel. Equations (4) and (5)
describe how the LBP algorithm works by replacing each central pixel according to the
algorithm equation with 24 adjacent pixels. The process is repeated until all the pixels of
the image are covered. A total of 203 representative features were extracted from each
image using this method, which were stored in a feature vector [32].

LBP (xc, yc)R,P =
P−1

∑
P=0

s
(
(gp − gc

)
.2P (4)

x(c) =
{

0, c < 0
1, c ≥ 0

(5)

where P is the number of pixels in the whole image and R is the number of neighboring
pixels for each central pixel.

The GLCM algorithm is one of the best algorithms for extracting texture features from
the ROI. It shows the multiple synthetic grey levels in the ROI Additionally, it calculates the
statistical features according to the GLCM. The algorithm relies on spatial information to
distinguish between smooth pixels with close pixel values and coarse pixels with divergent
pixel values. Spatial information is important for determining the correlation between
pairs of pixels in terms of distance d and the directions between pixels θ that determine the
location of the first pixel from the second. The directions are selected on the basis of four
directions: 0◦, 45◦, 90◦, and 135◦. The value of d is 1 when the angle θ between the pairs of
pixels is 0 or 90, while the value of d is

√
2 when the angle θ between the pairs of pixels is
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45 or 135 [33]. Thirteen representative statistical features were extracted from each image
using this method, all of which were stored in a feature vector.

The FCH algorithm is one of the most important algorithms for extracting color
features from the ROI. Color is a vital feature for lymphocyte diagnosis, and each color is
represented in the histogram bin. Thus, each color in the ROI represents several histogram
bins [31]. The algorithm deals with two similar colors in the same histogram bin. Even if
two colors are almost the same, they are considered different when they are in different
histogram bins. Thus, the algorithm uses the membership value of each pixel to check for
color similarity. The colors of a histogram in the ROI are considered I containing n pixels as
X(I) = x1,x2, . . . . . . . . . xi, where ni refers to the pixels of the image, ith refers to all the color
bins, and xi=ni/n indicates the probability that any image gain belongs to several color bins.

xi =
n

∑
j=1

pi/j pj =
1
n

n

∑
j=1

pi/j (6)

where pj refers to image pixels converted into conditional probability pi/j, which means
the probability of the jth pixel belonging to I color bins using the FCH algorithm.

pi/j =

{
1, if jth pixel belongs to the ith color bin
0, Otherwise

(7)

Sixteen color features were extracted from each image using the aforementioned
method, all of which were stored in a feature vector.

Finally, the features extracted from the three aforementioned methods were merged
or fused into one feature vector for each image to obtain highly efficient representative
features. The LBP algorithm produces 203 features; the GLCM algorithm, 13; and the
FCH algorithm, 16. Thus, when all the features are combined in one vector, the number of
representative features becomes 232 for each image. Figure 6 shows the process of fusion of
all the features extracted by the LBP, GLCM and FCH algorithms.
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3.3.4. Classification
Artificial Neural Network and Feed Forward Neural Network Algorithms

In this section, the ANN, FFNN, and SVM algorithms are used to evaluate the ALL-IDB
dataset. ANN is a type of intelligent network consisting of many neurons interconnected
with each other and with other layers. It has the ability to obtain, analyze, and interpret
information from raw and complex data. It also has the ability to adapt to any data in
any circumstance and reduces the possibility of errors for any entry belonging to any
class. Data pass from the ANN, flow between neurons and layers, and are stored between
neurons as points called weights. ANNs consist of an input layer that receives the features
extracted from the previous stage. Many complex mathematical operations are performed
to carry out the required tasks and to solve the problems in many of the hidden layers.
The output layer consists of many neurons (classes) [34]. The network is characterized
by many features as a unit for processing the required tasks and the activation function,
by weights connecting neurons, and by a spread bias that activates neurons with external
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inputs. It is also characterized by the rule of learning and calculating the error signals
through the minimum sum squared, which measures the error rate between the actual
and predicted outputs, as shown in Equation (8). The algorithm continuously updates the
weights until the minimum square error is obtained between the actual output X and the
predicted output Y.

MSE =
1
n

n

∑
i=1

( Xi −Yi)
2 (8)

In this work, the ANN algorithm consisted of an input layer containing 232 neurons
representing the features extracted from the previous stage. There were 10 hidden layers
for handling all the required tasks. Each hidden layer had many neurons interconnected
with specific weights. The output layer, which contained two neurons, indicated if the case
was a leukemia case or was a normal case. Figure 7 shows the architecture of the ANN
algorithm for evaluating the ALL-IDB dataset.
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the ALL-IDB dataset.

The FFNN algorithm is a computational network used to solve complex problems.
Its architecture is similar to that of the ANN algorithm, consisting of input, hidden, and
output layers. For the algorithm’s mechanism, the input layer receives 232 inputs (features)
and the hidden layer is fed with the outputs of the input layer. The hidden layer contains
many neurons interconnected by connections called weights (w). The network contains
10 hidden layers. Information flows between the neurons in a forward direction. Each
neuron produces an output on the basis of its weight multiplied by the output of the
previous neurons. The weights are updated and modified from the hidden layer to the
output layer until a minimum sum squared is obtained. The minimum sum squared is
calculated on the basis of the MSE equation above, representing the difference between the
actual and predicted outputs.

Support Vector Machine Algorithm

The SVM algorithm is a machine learning algorithm used to solve classification and
regression problems. The algorithm plots each data element as a point in an n-dimensional
space (n is the number of features to be extracted). The points are then categorized into two
separate classes by hyperplane. Hyperplanes are what help classify the data and are the
decision boundaries of the algorithm. All data points on either side of a hyperplane are
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different data points, where all the points above the hyperplane are classified as Class 1
and all the points below the hyperplane are classified as Class 2. At the same time, the data
points located on or near a hyperplane are called support vectors. Support vectors are used
to maximize the margin of the algorithm. Changing or deleting support vectors causes
hyperplanes to change, so these points help build an SVM classifier. The algorithm produces
multiple hyperplanes, and the hyperplanes with a maximizing margin are selected. The
margin between points is maximized through a loss function that helps maximize the
margin between hyperplanes and data points.

3.4. Convolutional Neural Networks (CNNs)

Deep learning is a machine learning technique in which many layers of information
processing units are used in the unsupervised learning of characteristics and for the analysis
or classification of patterns (supervised learning) [35]. The essence of deep learning is to
obtain multiple levels of representation, from simple nonlinear modules that transform
the representation from one level to a higher and more abstract one. For classification
purposes, the higher representation layers amplify the aspects of the input that are most
important for discriminating between classes and suppress the variations that are irrelevant.
Architecture depth refers to the number of levels of nonlinear operations learned. As the
algorithms commonly used in machine learning correspond to superficial architectures,
ANN researchers have made efforts to replicate this type of architecture [36]. Deep neural
networks have been successfully applied in classification, regression, dimension reduction,
texture modeling, motion modeling, object segmentation, medical image classification,
robotics, natural language processing, image recognition, speech recognition, signal pro-
cessing, and others. A CNN consists of many layers: the convolutional layer, the max- or
average-pooling layer, the fully connected layer (FCL), and other auxiliary layers.

One of the most critical layers is the convolutional layer, which gives CNNs their
name. This layer performs a linear operation called convolution between filter w(t) and
image x(t), and writes (x*w)(t) or s(t), as in Equation (9). There are three parameters that
control the convolution layer: filter size, zero padding, and p-step. The larger the filter
size, the larger the wrapping around the images. Each filter is designed to detect specific
features in the input image. For example, a filter is designed to detect edges, another is
designed to detect geometric features, and another is designed to detect textures and colors.
Thus, this capability of CNNs is called translation invariance. Zero padding is used to
maintain the size of the original input. The size of the zero pad is determined on the basis
of the sizes of the convolutional filter and original input. The p-step parameter is used to
determine the number of steps taken by the filter on the image at a time.

s(t) = (x ∗w)(t) =
∫

x(a)w(t− a) da (9)

where s(t) represents the convolution output, which produces a feature map. If t and w are
both integer values, the convolution is represented by Equation (10).

s(t) = (x ∗w)(t) =
∞

∑
−∞

x(a)w(t− a) (10)

In CNN implementation, emphasis should be placed on an image’s dimensions and
color spaces; thus, convolutional filters are adapted to the input images. In the case of
two-dimensional (2D) images, the convolutional layer of filter K with input image I as
shown in Equation (11).

s(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n) K(i−m, j− n), (11)

In the case of the input RGB images, the convolutional layers work on 2D convolutions
for each color: one for color R, one for color G, and one for color B. Several convolutional
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layers are followed by a rectified linear unit (ReLU) layer for further processing. This
layer passes the positive input and suppresses the negative input and converts it into
0. Equation (12) describes how the ReLU layer passes only positive values and converts
negative values into 0.

ReLU(x) = max( 0, x ) =

{
x, x ≥ 0
0, x < 0

(12)

As convolutional layers produce millions of parameters, an overfitting problem occurs.
CNNs provide a solution to this problem by using a dropout layer. The dropout layer stops
50% of the neurons and pass 50% on each iteration, and the process continues. In this study,
the dropout layer was set to 50%. However, this layer doubles the training time.

Convolutional layers produce high-dimensional feature maps that slow down the
training process. Thus, to speed up the training process, CNNs provide pooling layers to
reduce the dimensions. Pooling layers interact within CNNs with the same convolutional
layer mechanism. There are two types of pooling layers: the max- and average-pooling
layers. In the max-pooling layer work mechanism, the maximum value is chosen from the
specified values, as shown in Equation (13). In the average-pooling layer work mechanism,
on the other hand, the average specified values are calculated and replaced by the average
value, as shown in Equation (14).

P(i; j) = maxm,n=1....k A[(i− 1)p + m; (j− 1)p + n] (13)

P(i; j) =
1
k2 ∑

m,n=1....k
A[(i− 1)p + m; (j− 1)p + n] (14)

where A is the pooling layers’ filter size; m, n are the filter size dimensions; p is the filter
step size; and k is the filter capacity.

The FCL is the layer responsible for classification in CNNs. The FCL is characterized
by the interconnection of all neurons. The FCL layer converts 2D deep feature maps into
one-dimensional maps. The number of FCLs varies from one CNN to another; some
networks have more than one FCL, which classify each image into the correct class. Finally,
the FCL output is fed to the softmax activation function to produce neurons with the same
number of classes entered. In this study, softmax produced two neurons (classes): leukemia
and normal. Equation (15) shows how the softmax function works.

y(xi) =
exp xi

∑n
j=1 exp xj

(15)

where y(x) is softmax, which is between 0 ≤ y(x) ≤ 1.
This study focused on three CNN models: AlexNet, GoogLeNet, and ResNet-18.

3.4.1. AlexNet Model

AlexNet is a CNN containing 25 layers divided into many layers from the input of
images to the final classification. The most important layers are five convolutional layers,
several ReLU layers, three max-pooling layers, two dropout layers, three FCLs, and a
softmax layer [37]. AlexNet also contains 650,000 neurons, 62 million parameters, and
630 million connections between neurons. Figure 8 shows the AlexNet architecture and the
most critical layers it contains for analyzing the ALL-IDB dataset and classifying the data
into two classes: leukemia and normal.
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3.4.2. GoogLeNet Model

GoogLeNet is a CNN used for pattern recognition and other computer vision applica-
tions. It has 27 layers, including pooling layers. The model is characterized by its significant
reduction of image dimensions, high computational efficiency, and ability to preserve im-
portant information [38]. The convolutional layer contains a filter with a 7 × 7 size, a large
size that reduces the image dimensions dramatically as it represents 49 pixels by one pixel.
GoogLeNet works to reduce the image dimensions and reduces the image height and width
through three max-pooling layers 3 × 3 in size, in addition to one with a 7 × 7-layer size,
which significantly reduces the dimensions of the image. The network also produces more
than seven million barometers. Figure 9 shows the GoogLeNet architecture for analyzing
the ALL-IDB dataset and classifying the data into either leukemia or normal classes.
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3.4.3. ResNet-18 Model

ResNet-18 is a CNN belonging to the ResNet-xx family of models. ResNet-18 contains
18 layers: five convolutional layers to produce feature maps, a ReLU layer, an average-
pooling layer for dimensionality reduction, an FCL, a softmax activation function that
classifies the ALL-IDB dataset images into two classes (leukemia or normal), and many
auxiliary layers [39]. Figure 10 shows the infrastructure of the ResNet-18 network, which
produces more than 11.5 million parameters.
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3.5. Deep Learning–Machine Learning Hybrid Techniques

In this section, we present new techniques: hybrid techniques between machine
learning and deep learning for evaluating the ALL-IDB dataset for the early detection of
leukemia. These hybrid techniques are proposed because the use of deep learning networks
poses some challenges, such as the requirement of high-specification computers and the
time-consuming process of training the dataset [40]. Thus, the hybrid techniques require
medium-specification computers, and the process of training the dataset is fast and not
time consuming. In this study, hybrid techniques consisting of two blocks each were used.
The first block consisted of the CNN models namely AlexNet, GoogleNet, and ResNet-18,
which extract deep features and feed them into the second block. The second block was the
SVM classification algorithm, which classifies the deep feature maps extracted from the
CNNs. Figure 11a–c show the hybrid architecture consisting of two blocks: deep learning
and machine learning (called AlexNet + SVM and GoogleNet + SVM, respectively) and
ResNet-18 + SVM. It can be seen in the figure that the FCLs in the CNNs (the first block)
have been replaced by the SVM classifier (the second block).
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4. Experimental Results
4.1. Dataset Splitting and Environment Setup

All the systems proposed in this study were implemented on the ALL_IDB1 and
ALL_IDB2 datasets. The ALL_IDB1 dataset contains 108 images divided into two classes:
leukemia (49 images; 45.37%) and normal (59 images; 54.63%). The ALL_IDB2 dataset, on
the other hand, contains 260 images equally divided between the leukemia and normal
classes (130 images per class). The two datasets were divided into 80% for training and
validation (80:20%) and 20% for testing. Table 1 shows the splitting of the ALL_IDB1
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and ALL_IDB2 datasets during the training, validation, and testing phases for both the
leukemia and normal classes. All the proposed systems were implemented with the Intel®

i5 processor, 12 GB RAM, and GPU 4 GB GEFORCE computer specifications and the
MATLAB 2018b environment.

Table 1. Splitting the ALL_IDB1 and ALL_IDB2 datasets for training and testing.

Dataset ALL_IDB1 ALL_IDB2

Phase 80% for training and validation (80:20%) 20% for
testing

80% for training and validation (80:20%) 20% for
testingClasses Training (80%) validation (20%) Training (80%) validation (20%)

Leukemia 31 8 10 83 21 26
Normal 38 9 12 83 21 26

4.2. Evaluation Metrics

In this section, we describe the statistical metrics that were used to evaluate the diag-
nostic performances of the proposed systems (the ANN, FFNN, and SVM techniques; the
CNN models AlexNet, GoogleNet, and ResNet-18; and the hybrid techniques AlexNet +
SVM, GoogleNet + SVM, and ResNet-18 + SVM) in the ALL_IDB1 and ALL_IDB2 datasets,
or to determine if they were effective or not. The metrics that were used were accuracy,
precision, sensitivity, specificity, and area under the curve (AUC), described in Equations
(16)–(20), respectively. The equations’ information was obtained through the confusion
matrix, which was in turn obtained from the outputs of the proposed systems. The con-
fusion matrix contained the classification information for all the inputted images. There
were correctly rated images called TP and TN and incorrectly rated images called FP and
FN [41].

Accuracy =
TN + TP

TN + TP + FN + FP
∗ 100% (16)

Precision =
TP

TP + FP
∗ 100% (17)

Sensitivity =
TP

TP + FN
∗ 100% (18)

Specificity =
TN

TN + FP
∗ 100 (19)

AUC =
True Positive Rate
False Positive Rate

=
Sensitivity
Specificity

(20)

where TP is the number of correctly classified leukemia patients, TN is the number of
correctly classified normal patients, FN is the number of leukemia patients wrongly clas-
sified as normal patients, and FP is the number of normal patients wrongly classified as
leukemia patients.

4.3. Results of the ANN, FFNN and SVM Algorithms

Neural networks algorithms are among the most efficient algorithms for diagnostic
imaging. Such algorithms depend on performance accuracy in the previous stages of image
processing: preprocessing, segmentation, and feature extraction. As shown above, the
dataset was divided into a training and validation set and a system proficiency testing set.
Figure 12 shows the training of the dataset for the ANN and FFNN algorithms, with the
input layer containing the input neurons (232 extracted features or neurons) and 10 hidden
layers for carrying out all the required tasks and calculations for diagnosing leukemia.
The output layer consisted of two neurons: leukemia and normal. We will discuss the
diagnostic performances of the ANN, FFNN, and SVM algorithms in detail.
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Figure 12. Training of the feed forward neural network classifier of the ALL_IDB1 and ALL_IDB2
datasets.

4.3.1. Performance Analysis

One measure of the performances of the ANN and FFNN algorithms is cross-entropy,
which measures the error rate between the actual and predicted outputs. Figure 13 shows
the performance of the ANN algorithm for the ALL_IDB1 and ALL_IDB2 datasets dur-
ing the training, validation, and testing phases. The red color depicts the algorithm’s
performance during the testing phase; the blue color, during the training phase; and the
green color, during the validation phase. The best performance was extracted through
the intersecting lines. The error rate between the actual and predicted outputs decreased
as the epochs increased; the training stopped when the algorithm reached the minimum
error value. It can be seen in Figure 13a that for the ALL_IDB1 dataset, the ANN algorithm
achieved the best validation performance of 0.043769 during epoch 5, and that all the
stages had the same performance. As can be seen in Figure 13b, on the other hand, for
the ALL_IDB2 dataset, the ANN algorithm achieved the best validation performance of
0.006686 during epoch 7.
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4.3.2. Gradient

Gradient values and validation check are among the performance measures of the
ANN and FFNN algorithms, measuring the error rates. Figure 14 shows the performance
of the ANN algorithm for the ALL_IDB1 and ALL_IDB2 datasets during the training phase.
It can be noted in Figure 14a that for the ALL_IDB1 dataset, the ANN algorithm achieved
the minimum error value at a 0.3916 gradient value at epoch 1000 and a validation check
value of 2 at epoch 1000. As can be seen in Figure 14b, on the other hand, for the ALL_IDB2
dataset, the ANN algorithm achieved the minimum error value at a 0.046368 gradient value
at epoch 53 and a validation check value of 6 at epoch 53.
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4.3.3. Receiver Operating Characteristic (ROC)

ROC is an effective measure of the performances of classification algorithms such as
ANN and FFNN. ROC is also called area under the curve (AUC). An algorithm achieves
the best AUC when the curve approaches the left corner. AUC is calculated by dividing the
sensitivity value by the specificity level, where sensitivity represents the y-axis called true
positive rate and specificity represents the x-axis called false positive rate. Figure 15 shows
the performance of the ANN algorithm for the ALL_IDB1 and ALL_IDB2 datasets during
the training, validation, testing, and overall phases. It can be seen in Figure 15a that for the
ALL_IDB1 dataset, the performance of the ANN algorithm achieved an overall average
AUC of 94.52%, whereas it can be seen in Figure 15b that for the ALL_IDB2 dataset, the
ANN algorithm achieved an overall AUC ratio of 99.21%.
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4.3.4. Error Histogram

The error histogram measures the performances of classification algorithms such as
ANN and FFNN. It evaluates an algorithm’s performance to reach the minimum error
between the actual and expected outputs represented by the x-axis. Errors occurring during
the training phase are represented by the blue histogram bin whereas those occurring
during the validation and testing phases are represented by the red histogram bin. A
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dataset may contain outliers, so the histogram bin provides information about the outliers
or the values that are behaving differently from the original values. Figure 16 shows the
performance of the ANN algorithm for the ALL_IDB1 and ALL_IDB2 datasets during the
training, validation, and testing phases. It can be seen in Figure 16a that the performance of
the ANN algorithm for the ALL_IDB1 dataset reached the minimum error value between
the actual and expected outputs, with 20 bins between −0.8142 and 1.204, whereas in
Figure 16b, for the ALL_IDB2 dataset, the ANN algorithm reached the minimum error
value between the actual and predicted outputs, with 20 bins between −0.5247 and 1.091.
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4.3.5. Regression

Regression is one of the performance measures of neural networks algorithms. It
predicts a continuous variable on the basis of the other variables. Algorithms predict
the predicted output on the basis of the actual output, by comparing the actual and
expected outputs. When the value of R is close to 1, this means that the prediction of the
predicted output based on the actual output has reached the minimum error value, and
the relationship between the predicted and actual outputs is strong. Figure 17 shows the
performance regression of the FFNN algorithm for the ALL_IDB1 and ALL_IDB2 datasets
during the training, validation, and testing phases. It can be seen in Figure 17a that the
performance of the FFNN algorithm for the ALL_IDB1 dataset reached the minimum error
value between the actual and predicted outputs, and the global regression value reached
0.98899. On the other hand, in Figure 17b, the performance of the FFNN algorithm for
the ALL_IDB2 AUC dataset reached the minimum error value between the actual and
expected outputs, and the overall regression value reached 1. This means that the actual
output–predicted output relationship was 100% and reached the minimum error value 0.

4.3.6. Confusion Matrix

The confusion matrix is the most critical measure of the performances of all classifiers
and networks, describing all the images that enter the system. It is the output of the
algorithm and is similar to a matrix with rows and columns. Each row is a class that
represents the correctly categorized images in the primary diameter cell, and the rest of
the cells are considered incorrectly categorized images. The confusion matrix contains
incorrectly rated images called TP and TN, and incorrectly rated images called FP and
FN. The FFNN and ANN algorithms produced a confusion matrix for the ALL_IDB1 and
ALL_IDB2 datasets, where Class 1 represents images of abnormal blood samples (leukemia)
and Class 2 represents images of normal blood samples. Figure 18 describes the confusion
matrix ANN for the ALL_IDB1 and ALL_IDB2 datasets. It can be seen in Figure 18a that the
performance of the ANN algorithm for the ALL_IDB1 dataset achieved only 94.4% accuracy
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whereas in Figure 18b, the performance of the ANN algorithm for the ALL_IDB2 dataset
achieved 100% accuracy. Figure 19 shows the confusion matrix of the FFNN algorithm for
the ALL_IDB1 and ALL_IDB2 datasets. It can be seen in Figure 19a,b, respectively, that the
performance of the FFNN algorithm for the ALL_IDB1 dataset and the performance of the
FFNN algorithm for the ALL_IDB2 dataset both achieved 100% accuracy.
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Figure 19. Confusion matrix for the FFNN algorithm of the (a) ALL_IDB1 and (b) ALL_IDB2 datasets.

Table 2 summarizes the performance results of the FFNN, ANN, and SVM algorithms
for the ALL_IDB1 and ALL_IDB2 datasets for the early detection of leukemia. It was noted
that the FFNN algorithm is superior to the rest of the algorithms in both the ALL_IDB1 and
ALL_IDB2 datasets, achieving 100% accuracy for all the measures. The ANN algorithm
achieved 94.4% accuracy, 100% precision, 91.55% sensitivity, 91.55% specificity, and 94.52%
AUC for the ALL_IDB1 dataset, whereas for the ALL_IDB2 dataset, it achieved 100%
accuracy, 100% precision, 100% sensitivity, 100% specificity, and 99.21% AUC. The SVM
algorithm, on the other hand, achieved 90.91% accuracy, 100% precision, 84.62% sensitivity,
100% specificity, and 91.99% AUC for the ALL_IDB1 dataset, whereas for the ALL_IDB2
dataset, it achieved 98.11% accuracy, 95.83% precision, 100% sensitivity, 96.67% specificity,
and 97.86% AUC.

Table 2. The performance of the ANN and FFNN algorithms on the ALL_IDB1 and ALL_IDB2 datasets.

Dataset ALL_IDB1 ALL_IDB1

Classifiers ANN FFNN SVM ANN FFNN SVM

Accuracy % 94.4 100 90.91 100 100 98.11
Precision % 100 100 100 100 100 95.83

Sensitivity % 91.55 100 84.62 100 100 100
Specificity % 91.55 100 100 100 100 96.67

AUC % 94.52 100 91.99 99.21 100 97.86

Figure 20 describes the performances of all the neural networks algorithms (ANN,
FFNN, and SVM) for the ALL_IDB1 and ALL_IDB2 datasets in a graph.
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Figure 20. Performances of all the ANN, FFNN and SVM algorithms for the ALL_IDB1 and ALL_IDB2
datasets.

4.4. Results of the Convolutional Neural Network Models

In this section, the performances of the three CNN models AlexNet, GoogLeNet, and
ResNet-18 for the ALL_IDB1 and ALL_IDB2 datasets using the transfer learning technique
is discussed. The models were trained on millions of images for classification into more
than a thousand classes, and then the transfer learning technique was used to transfer the
acquired experience to the performance of new tasks for the ALL_IDB1 and ALL_IDB2
datasets. Both datasets contain few images, affecting the diagnostic accuracy because CNN
models require a large dataset. The CNN models address this challenge by applying the
data augmentation technique. This technique was used for the AlexNet, GoogLeNet, and
ResNet-18 networks. The images were artificially augmented from the same dataset, and
many operations were applied, such as image rotation at several angles, flipping, cropping,
and displacement.

Table 3 summarizes the sizes of the two datasets before and after the application of
the data augmentation method to obtain a sufficient number of images for training the two
datasets and to solve the problem of overfitting and balancing the datasets. An increase in
the images was noted during the training phase, with the images for the leukemia class
in the ALL_IDB1 dataset being increased 20 times. On the other hand, the images for the
normal class were increased 17 times to obtain a balanced dataset during the training phase.
For the ALL_IDB2 dataset, the images for the two classes were increased 10 times.

Table 3. Balancing ALL_IDB1 and ALL_IDB2 datasets during the training phase.

Dataset ALL_IDB1 ALL_IDB2

Phase During the training phase During the training phase

Classes Leukemia Normal Leukemia Normal

No images before
augmentation 39 47 104 104

No images after augmentation 780 799 1040 1040
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Table 4 shows the tuning of the CNNs AlexNet, GoogLeNet, and ResNet-18, where
the optimizer was set to adam, Mini Batch Size, Max Epochs, Validation Frequency, Initial
Learn Rate, and Execution Environment.

Table 4. Adjust training parameters options for AlexNet, GoogLeNet and ResNet-18 models.

Options AlexNet GoogleNet ResNet-18

training Options adam adam adam
Mini Batch Size 130 20 15

Max Epochs 10 5 8
Initial Learn Rate 0.0001 0.0003 0.0001

Validation Frequency 50 3 5
Execution Environment 4 GB GPU 4 GB GPU 4 GB GPU

The parameters of the CNN models were set by many experiments. In each experiment,
the results of the performance of the CNN models were recorded until the best performance
of the CNN models was reached when setting the parameters shown in the table.

Table 5 shows the performance results of the CNNs AlexNet, GoogLeNet, and ResNet-
18. The GoogLeNet model outperformed the rest of the models in evaluating the ALL_IDB1
and ALL_IDB2 datasets for leukemia detection, achieving 100% accuracy, precision, sensi-
tivity, specificity, and AUC. The AlexNet model obtained a score of 100% for all the metrics
for the ALL_IDB1 dataset, whereas for the ALL_IDB2 dataset, it achieved 94.2% accuracy,
92.3% precision, 96.2% sensitivity, 94.5% specificity, and 99.26% AUC. As for the ResNet-18
model, it obtained a score of 100% for all the metrics for the ALL_IDB1 dataset, whereas
for the ALL_IDB2 dataset, it achieved 97.44% accuracy, 97.4% precision, 97.4% sensitivity,
97.4% specificity, and 99.93% AUC.

Table 5. The results of the AlexNet, GoogLeNet and ResNet-18 models on the ALL_IDB1 and
ALL_IDB2 datasets.

Dataset ALL_IDB1 ALL_IDB2

Measure AlexNet GoogLeNet ResNet-18 AlexNet GoogLeNet ResNet-18

Accuracy % 100 100 100 94.2 100 97.44
Precision % 100 100 100 92.3 100 97.4

Sensitivity % 100 100 100 96.2 100 97.4
Sepecificy % 100 100 100 94.5 100 97.4

AUC % 100 100 100 99.26 100 99.93

Figure 21 shows the performances of all the CNN models for the ALL_IDB1 and
ALL_IDB2 datasets in a graph.

Figure 22 shows the confusion matrix representing the AlexNet model for the early
detection of leukemia from the ALL_IDB1 and ALL_IDB2 datasets. The confusion matrix
contains all the dataset samples correctly labeled in the primary diameter (TP and TN) and
incorrectly classified in the secondary diameter (FP and FN). Figure 22a shows that the
AlexNet model achieved an overall accuracy rate of 100% in each class diagnosis for the
ALL_IDB1 dataset, whereas Figure 22b shows that the same model achieved 94.2% overall
accuracy, 96.2% leukemia diagnosis accuracy, and 92.3% normal-sample diagnosis accuracy
for the ALL_IDB2 dataset.
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Figure 21. Performances of all the convolutional neural network models for the ALL_IDB1 and
ALL_IDB2 datasets.
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Shown in Figure 23 is a confusion matrix representing the output of the GoogleNet
model for the early detection of leukemia from the ALL_IDB1 and ALL_IDB2 datasets.
Figure 23a,b show that the GoogleNet model reached 100% overall accuracy for each class
diagnosis for both the ALL_IDB1 and ALL_IDB2 datasets.

Figure 24 shows the confusion matrix representing the ResNet-18 model for the early
detection of leukemia from the ALL_IDB1 and ALL_IDB2 datasets. Figure 24a shows that
the ResNet-18 model achieved 100% overall accuracy of each class diagnosis from the
ALL_IDB1 dataset, whereas Figure 24b shows that the same model achieved 97.4% overall
accuracy, 97.4% leukemia diagnosis accuracy, and 97.4% normal-sample diagnosis accuracy
from the ALL_IDB2 dataset.
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4.5. Results of the Hybrid Convolutional Neural Network Models with the Support Vector
Machine Classifier

In this section, the results of the new CNN (AlexNet, GoogleNet, and ResNet-18)–
machine learning classifier (SVM) hybrid techniques are presented. One of the reasons for
applying these hybrid techniques is their flexibility with regard to computer resources, as
they require only medium-specification computers, unlike CNN models, which require
high-specification computers. In addition, hybrid techniques are characterized by their
speed during training, unlike CNN models, which consume much time for training. Thus,
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hybrid techniques consisting of two blocks were applied: (1) CNNs (AlexNet, GoogleNet,
and ResNet-18), with the task of extracting deep feature maps; and (2) an SVM classifier,
with the task of classifying deep feature maps with high accuracy and speed. Thus, these
hybrid techniques were AlexNet + SVM, GoogleNet + SVM, and ResNet-18 + SVM.

Table 6 shows the performance results of the AlexNet + SVM, GoogleNet + SVM, and
ResNet-18 + SVM hybrid techniques. It can be seen that ResNet-18 + SVM achieved better
results than the other networks for both the ALL_IDB1 and ALL_IDB2 datasets (100%
accuracy, precision, sensitivity, specificity, and AUC). AlexNet + SVM achieved a score of
100% for all the metrics for the ALL_IDB1 dataset, whereas for the ALL_IDB2 dataset, it
achieved 96.2% accuracy, 96.2% precision, 96.2% sensitivity, 96.2% specificity, and 98.56%
AUC. GoogLeNet + SVM achieved 95.5% accuracy, 95.45% precision, 100% sensitivity,
91.7% specificity, and 99.34% AUC for the ALL_IDB1 dataset and 98.1% accuracy, 98%
precision, 96.2% sensitivity, 100% specificity, and 99.87% AUC for the ALL_IDB2 dataset.

Table 6. The results of the AlexNet, GoogLeNet and ResNet-18 models on the ALL_IDB1 and
ALL_IDB2 datasets.

Dataset ALL_IDB1 ALL_IDB2

Measure AlexNet +
SVM

GoogLeNet +
SVM

ResNet-18 +
SVM

AlexNet +
SVM

GoogLeNet +
SVM

ResNet-18 +
SVM

Accuracy % 100 95.5 100 96.2 98.1 100
Precision % 100 95.45 100 96.2 98 100

Sensitivity % 100 100 100 96.2 96.2 100
Specificity % 100 91.7 100 96.2 100 100

AUC % 100 99.34 100 98.56 99.87 100

Figure 25 shows the performance of all the hybrid techniques for the ALL_IDB1 and
ALL_IDB2 datasets in a graph.
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Figure 25. Performances of all the hybrid techniques for the ALL_IDB1 and ALL_IDB2 datasets.

Figure 26 shows the confusion matrix generated by the AlexNet + SVM hybrid tech-
nique for the early detection of leukemia from the ALL_IDB1 and ALL_IDB2 datasets.
Figure 26a shows that the AlexNet + SVM model achieved 100% overall accuracy of each
category diagnosis from the ALL_IDB1 dataset, whereas Figure 26b shows that the same
model achieved 96.2% overall accuracy, 96.2% leukemia diagnosis accuracy, and 96.2%
normal-sample diagnosis accuracy for the ALL_IDB2 dataset.
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Figure 26. Confusion matrix for the AlexNet + SVM hybrid technique for the (a) ALL_IDB1 and (b)
ALL_IDB2 datasets.

The confusion matrix shown in Figure 27 represents the performance of the GoogLeNet
+ SVM hybrid network for the early detection of leukemia from the ALL_IDB1 and
ALL_IDB2 datasets. Figure 27a shows that the GoogLeNet + SVM network achieved
95.5% overall accuracy, 100% leukemia sample diagnosis accuracy, and 91.7% normal-
sample diagnosis accuracy, whereas Figure 27b shows that the same network achieved
98.1% overall accuracy, 96.2% leukemia diagnosis accuracy, and 100% normal-sample
diagnosis accuracy for the ALL_IDB2 dataset.
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Figure 28 shows the confusion matrix of the ResNet-18 + SVM hybrid technique for
the early detection of leukemia from the ALL_IDB1 and ALL_IDB2 datasets. Figure 28a,b
show that the ResNet-18 + SVM model achieved 100% overall superior accuracy for each
class for both the ALL_IDB1 and ALL_IDB2 datasets.
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5. Discussion and Comparison with Previous Studies

In this section, we discuss the proposed techniques, which were developed for the early
detection of leukemia from the ALL_IDB1 and ALL_IDB2 datasets: neural networks and
machine learning algorithms (ANN, FFNN, and SVM), CNN models (AlexNet, GoogLeNet,
and ResNet-18), and CNN–SVM hybrid techniques (AlexNet + SVM, GoogLeNet + SVM,
and ResNet-18 + SVM). All the images were optimized for the two datasets, and all the
proposed systems were optimized using the same technique. The two datasets were
divided into 80% for training and 20% for testing, taking into account the data augmenta-
tion technique during the training phase of the CNN model (AlexNet, GoogLeNet, and
ResNet-18).

In the first proposed system, lesion segmentation was caried out, the ROI was obtained,
and the most important features were extracted by the LBP, GLCM, and FCH algorithms.
The three methods’ features were combined into one vector, which produced 232 character-
istics for each image, and hybrid features were fed into ANN, FFNN, and SVM classifiers.
All the features were classified as either leukemia or normal. All the algorithms achieved
superior accuracy for both the ALL_IDB1 and ALL_IDB2 datasets.

In the second proposed system consisting of CNNs (AlexNet, GoogLeNet, and ResNet-
18), for the ALL_IDB1 dataset, all the models achieved 100% scores for all the metrics. For
the ALL_IDB2 dataset, the GoogLeNet model achieved better results than the other models
(100% for all the metrics).

In the third proposed system consisting of hybrid technologies (AlexNet + SVM,
GoogLeNet + SVM, and ResNet-18 + SVM), feature maps were extracted from CNN models
and were classified by an SVM classifier. For the ALL_IDB1 dataset, AlexNet + SVM and
ResNet-18 + SVM achieved superior results (100% for all the metrics). For the ALL_IDB2
dataset, all the networks achieved superior results, but ResNet-18 + SVM outperformed the
rest of the networks, achieving a score of 100% for all the metrics.
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Table 7 summarizes the levels of diagnostic accuracy achieved by all the proposed
systems for the ALL_IDB1 and ALL_IDB2 datasets. For the ALL_IDB1 dataset, the best
leukemia diagnostic accuracy was obtained by the FFNN, AlexNet, GoogLeNet, ResNet-18,
AlexNet + SVM, GoogLeNet + SVM, and ResNet-18 + SVM networks, all of which achieved
100% accuracy. For the ALL_IDB2 dataset, the best leukemia diagnostic accuracy was
obtained by the ANN, FFNN, SVM, GoogleNet, and ResNet-18 + SVM networks, which
achieved 100% accuracy. Figure 29 compares the performances of all the proposed systems
in diagnosing leukemia of the two datasets.

Table 7. The accuracy reached by proposed system in the diagnosis each class.

Dataset Diseases

Neural Networks and Machine
Learning Deep Learning Hybrid

ANN FFNN SVM Alex-Net Google-
Net Res-Net-18 AlexNett +

SVM
GoogleNet

+ SVM
ResNet-18

+ SVM

ALL_IDB1 Leukemia 87.4 100 84.62 100 100 100 100 100 100
Normal 100 100 100 100 100 100 100 91.7 100

ALL_IDB2 Leukemia 100 100 100 96.2 100 97.4 96.2 96.2 100
Normal 100 100 95.83 92.3 100 97.4 96.2 100 100
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Figure 29. Comparison of the performances of the proposed systems for diagnosing leukemia from
the two datasets.

Table 8 summarizes the evaluation results of previous systems compared to the per-
formance of our proposed relevant systems. It is noted that the accuracy reached by the
previous systems ranged between 89.40% and 93.7%, while the accuracy of our proposed
system reached 100%. As for precision, the previous systems reached 90.10% and 94.01%,
while our proposed system reached 100%. Regarding the sensitivity, the previous systems
reached between 89.40% and 93.7%, while the sensitivity of our proposed system reached
100%. As for the specificity, the previous systems reached 87.50% and 98.4%, while our
proposed system reached 100%. Finally, the previous systems reached an AUC of 83.20%
and 97.46%, while our system achieved 100%.
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Table 8. Comparing the performance of the proposed systems with the performance of the relevant
previous studies.

Previous Studies Accuracy % Precision % Sensitivity % Specificity % AUC %

S. Ramaneswaran.; et al. [42] 89.40 90.10 88.90 - 83.20
Sarmad Shafique.; et al. [43] 93.33 94.01 94.82 98.4 -
Lorenzo Putzu.; et al. [44] 93.00 - 98.00 - -
Javaria Amin.; et al. [45] 91.59 - 93.33 87.50 97.46

Sarmad Shafique.; et al. [46] 93.70 - 92.00 91 -
Proposed model 100.00 100.00 100.00 100.00 100.00

Figure 30 display the performance comparison of our proposed system with previous
related systems.
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Figure 30. Comparing the performance of our proposed system with the previous systems.

6. Conclusions and Future Work

AI algorithms have emerged in the medical sector to provide powerful analytical
and diagnostic tools with high efficiency. Machine and deep learning techniques address
the challenges of shortcomings in manual diagnosis, differing opinions of experts, and
the time-consuming tracking of blood samples. These techniques play a key role in the
early detection of leukemia. This study presented many of the proposed systems for the
ALL_IDB1 and ALL_IDB2 datasets, distributed as follows. The first set of proposed systems
consist of the three algorithms ANN, FFNN, and SVM, whose classification is based on the
algorithms extracted in a hybrid way by LBP, GLGM, and FCH; all the systems achieved
superior results for both datasets. The second set of proposed systems consists of the three
CNN models AlexNet, GoogLeNet, and ResNet-18, which categorize the feature maps
extracted by the FCL on the basis of the transfer learning method. All the models achieved
promising results for both datasets. The third set of proposed systems consists of the three
hybrid CNN–SVM technologies AlexNet + SVM, GoogLeNet + SVM, and ResNet-18 +
SVM, each of which consists of two blocks: (1) CNN models for extracting deep feature
maps and (2) the SVM algorithm for classifying the feature maps extracted from the first
block. All the hybrid techniques obtained superior results for both datasets.
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CNN models require a large data set to avoid overfitting, and this is one of the
limitations in this study because the data set is insufficient to train CNN models. This
limitation was overcome by using the data augmentation technique.

Future work of the proposed systems would involve applying a hybrid technique
between the features extracted by CNN models and combining them with the features
extracted by the LBP, GLCM and FCH algorithms in feature vector; then, feeding them
into classifiers of neural networks (ANN and FFNN) and machine learning algorithms to
classify them.
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