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Non-invasive prenatal testing (NIPT) screens for common fetal chromosomal abnormalities through anal-
ysis of circulating cell-free DNA in maternal blood by massive parallel sequencing. NIPT reliability relies
on both the estimation of the fetal fraction (ff) and on the sequencing depth (sd) but how these param-
eters are linked is unknown. Several bioinformatics tools have been developed to determine the ff but
there is no universal ff threshold applicable across diagnostics laboratories. Thus, we developed two tools
allowing the implementation of a strategy for NIPT results validation in clinical practice: GenomeMixer, a
semi-supervised approach to create synthetic sequences and to estimate confidence intervals for NIPT
validation and TRUST to estimate the reliability of NIPT results based on confidence intervals found in this
study. We retrospectively validated these new tools on 2 cohorts for a total of 1439 samples with 31 con-
firmed aneuploidies. Through the analysis of the interrelationship between ff, sd and chromosomal aber-
ration detection, we demonstrate that these parameters are profoundly connected and cannot be
considered independently. Our tools take in account this critical relationship to improve NIPT reliability
and facilitate cross laboratory standardization of this screening test.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Chromosomal anomalies in the developing fetus can occur in
any pregnancy and lead to death prior to or shortly after birth or
to lifelong disabilities. It is of crucial importance to detect fetal
chromosomal aneuploidies early in the pregnancy, in order to help
parents to evaluate their options. Next-generation sequencing of
maternal blood samples, known as Non-Invasive Prenatal testing
(NIPT) provides a sensitive, and reasonably rapid screening of fetal
chromosomal anomalies [1]. This approach is based on the analysis
of circulating cell free (cf) DNA. cfDNA refers to the DNA that exists
as short fragments in plasma or other body fluids [2]. Maternal
plasma cfDNA contains both maternal and fetal sources [3]. One
limitation of this approach is that it relies on the fetal fraction
(ff) (i.e. the percentage of fetal DNA fragments present in maternal
blood). The fetal fraction is often very low in early pregnancies, and
difficult to estimate when at the same time crucial for both sample
quality control and statistical confidence [4,5]. The estimation of ff
guarantees that enough placental cfDNA is detectable in the mater-
nal plasma to perform a meaningful NIPT [6]. A second relevant
aspect of NIPT aneuploidy detection is sequencing depth (sd) [7].
The higher the sd, the more accurate the determination of aneu-
ploidies [8]. Conversely, if the sequencing depth is too shallow,
the number of read necessary to accurately estimate the ff is not
reached and the sensibility and specificity of the test decreases.
Higher sequencing depth (sd) can compensate for low ff, but a clear
description of this relationship is missing [9,10]. There is no uni-
versal ff threshold applicable across sequencing platforms [4], thus
a solution allowing interlaboratory comparisons of quality param-
eters is missing.

We developed: GenomeMixer a semi-supervised approach to
create synthetic sequences and to estimate confidence intervals
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for aneuploidies prediction and TRUST to test the reliability of NIPT
results based on confidence intervals. Using two 2 cohorts for a
total of 1439 samples with 31 confirmed aneuploidies, we show
that GenomeMixer and TRUST can help identify uncertain results
undetected by classical methods. We also demonstrate that ff, sd
and chromosomal aberration detection are profoundly connected
and cannot be considered independently. Altogether GenomeMixer
and TRUST allow the implementation of a strategy for NIPT results
validation in clinical practice, identifying ff and sd thresholds in a
laboratory-specific fashion.
2. Materials and methods

2.1. Patient cohort

Patient cohort was presented in Duboc et al. [11]. Briefly, NIPT
was performed on 377 samples from pregnant women at Nice uni-
versity hospital from January 2017 to September 2018 (cohort 1)
and 1062 samples at Marseille university hospital from January
2017 to December 2018 (cohort 2) after informed consent. Blood
samples from two non-pregnant women were also included. Shal-
low whole-genome sequencing of cfDNA was performed using
either a Proton or an S5XL sequencer (Thermo Fisher Scientific�,
Waltham, MA, USA), starting from 15 ng input of cfDNA. Pre-
processing quality control, trimming and mapping to GRCh37 were
performed using the Ion Torrent Suite *. Pipeline in use at the time
in the diagnostic laboratory. Mapping to GCRh38 would now be
recommended. For further details on cohort description see [11].

2.2. NIPT analysis

NIPT was performed on patient cohort sequencing using NiP-
TUNE with default configuration [11]. To verify that samples do
not have aberrant read count distributions, we applied the princi-
pal component analysis (PCA), as part of the NiPTUNE pipeline, on
binned count of normalized reads for samples belonging to each
cohort and the two non-pregnant samples (Fig. 2 of [11]). NiPTUNE
yields the fetal fraction calculated by Seqff [12] and Defrag_a [13],
the aneuploidy detection based on the Z-score calculation with
WisecondorX [7].

2.3. GenomeMixer

In order to study how ff and sd affect the prediction of chromo-
somal abnormalities, we established a strategy to increase the
number of aneuploid samples at our disposal. Specifically, we
needed to modulate either the ff or sd of the sequencing input to
identify minimal thresholds for these two parameters. We rea-
soned to set up a bioinformatic tool to create the missing samples
based on two strategies. On the one hand, to create synthetic
sequences with lower ff (GenomeMixer_ff), the reads from the
original alignment file need to be replaced by reads from a control
sample, from non-pregnant women. Specifically, in order to reduce
the ff while keeping the sd stable, the reads to be replaced need to
originate from the fetal genome. On the other hand, to decrease the
sd (GenomeMixer_sd), the reads to be removed should belong to
both maternal and fetal populations while keeping the ratio
between the two populations unchanged. It is, however, impossi-
ble to clearly distinguish fragments of maternal or fetal origin.
We thus reasoned to associate to each read a weight that repre-
sents its propensity to be coming from the fetal or maternal DNA.

It is widely accepted in the literature, that fragments of fetal ori-
gin are shorter than maternal one [14,15]. We confirmed this
observation on euploid samples from our cohorts and decided to
take advantage of this property to calculate the weights to be
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associated to each read. The procedure is detailed in Supplemen-
tary Fig. 1. Briefly, we merged all aneuploid samples with trisomy
18 (T18), proceeded similarly for samples with trisomy 21 (T21)
and the samples from non-pregnant women and calculated the
reads length distributions. These three distributions represent
the ‘‘reference distributions” for each category (Supplementary
Fig. 1A). Then, we calculated the difference between the reference
distributions associated to each trisomy pool and the samples from
non-pregnant women (Supplementary Fig. 1B). These curves repre-
sent the quantification of the difference in the frequency of each
read length between the aneuploid sample pools and samples from
non-pregnant women. As expected, the curves show one peak at
around 170 bp that shows the depletion of longer reads in samples
from pregnant women in favor of non-pregnant ones. It is preceded
by shouldering with multiple peaks corresponding to read lengths
comprised between 110 and 150 bp that represents the enrich-
ment of smaller reads in samples from pregnant women. To max-
imize the difference between the two distributions, we applied a
step function. The amplitude of the step related to the distance
between the minimal local maximum of the difference between
the curves of the read lengths of the trisomic samples and the con-
trol samples (Supplementary Fig. 1C). Equal weights are applied to
equal read lengths. The weights allow to prioritize the selection of
reads belonging to the fetal population (Supplementary Fig. 1D)
over the maternal ones to be replaced for GenomeMixer_ff, and
to maintain fetal/maternal reads ratio fixed while removing reads
for GenomeMixer_sd.

In order to apply our strategies to build synthetic sequencing,
we performed a weighted probability sampling on the sequenced
genomes presenting a chromosomal aberration. We prioritized
reads from the putative fetal fragment population as candidate
reads to be replaced or removed, depending on the strategy. The
samples from non-pregnant women are used only for GenomeMix-
er_ff. Each sampling is done at chromosomal level. The amount of
reads to be replaced or removed is a user-defined percentage, how-
ever the two strategies are slightly different. For GenomeMixer_ff,
the reads to be replaced from the sample from pregnant women
with fetal aberration are selected from the samples from non-
pregnant women using the 1- the weights defined above. On the
aneuploid chromosome, half of the reads sampled from the fetal
population are replaced and half of them are suppressed (see para-
graph ‘‘Modeling chromosome-specific contribution to ff” for
detailed explication). At the end of the process, the result is a syn-
thetic sequencing with the same number of reads of the original
one, with an error of less than 0.001%, but coming from different
sources. For GenomeMixer_sd, in order to keep the ff stable while
lowering the sd, the reads to be removed are selected respecting
the proportion of ff. For instance, if we want to remove 100 reads
and the ff is 10%, thus we remove 10 reads from the reads labeled
as most likely belonging to the fetal population and 90 reads
labeled with the opposite weights.
2.3.1. Modeling chromosome-specific contribution to ff
Gazdarica et al. [16], defined lambda-score profiles using pro-

gressive elimination of fragment based on several length limits.
They showed that the lambda scores of aneuploid samples deviates
from euploids, leading to the idea that there is an extra contribu-
tion of fetal reads of aneuploid chromosomes to the ff compared
to euploid samples. We used this property, to define the epsilon
value (e_value) to improve the prediction accuracy.

In the previous paragraph we observed that samples from preg-
nantwomenare enriched in reads of a specific length range (Supple-
mentary Fig. 1D) compared to samples from non-pregnant women
(fetal_range). We reasoned that we can approximate the contribu-
tion of fetal reads to the read count on a chromosome as the number
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of reads with length in the fetal_range times the ff: ff � nchrT
ðfetal rangeÞ.

Moreover, based on the assumption that fetal reads are randomly
distributedon thegenome,we reasoned that the fetal readsoriginat-
ing froma chromosome can be estimated as the product of the num-
ber of reads in the fetal_range times the ff, and the proportion of
reads on the chromosome of interest. This proportion is defined as
the number of reads on the chromosome of interest divided by the
total number of reads. We canmodel fetal reads as uniform random
draws originating from a binomial distribution with variance
(vChrT ¼ ngenome

ðfetal rangeÞ � ff � pchrT 1� ff � pchrTð ÞÞ. The e_value is defined

as:

EChrT ¼
ff � nchrT

ðfetal rangeÞ � ngenome
ðfetal rangeÞ � ff � pchrTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ngenome
ðfetal rangeÞ � ff � pchrT 1� ff � pchrTð Þ

q

where pchrT is the ration between the number of reads on the chrT
and the total number of reads on the genome.

The more the e_value deviates from 0 the more likely the chro-
mosome is to present an anomaly, as showed in Supplementary
Fig. 2.

The calculation of the e_value is provided as an additional mod-
ule of the NIPT analysis tool NiPTUNE.

Decision tree approach to identify the minimal thresholds of ff
and sd needed to achieve reliable NIPT

Aneuploid samples fromthe twocohorts and synthetic aneuploid
samples generated with GenomeMixer were used to calculate the
minimal thresholds for sd, ff and e_value to obtain a reliable NIPT.
We used a decision tree approach using the R package caret, specif-
ically the function rpart. Briefly, we used WisecondorX to calculate
the Z-score of synthetic samples and Seqff and Defrag_a to assess
their ff. The sd and the e_values were calculated using the modules
despina.py and nereid.py from theNiPTUNEpipeline. A threshold of 5
on the Z-score was used to classify samples as ‘‘Aneuploid” (Z-score
>=5) and ‘‘Euploid” (Z-score < 5). This threshold is defined as the
default one by the tool WisecondorX. Then, we fed the decision tree
with the_values of sd, ff, e_value and the classification to obtain a
decision tree that groups samples. Two decision trees were com-
puted, one for Seqff and one for Defrag_a.

2.4. TRUST

We implemented a web application called TRUST: Trisomy Reli-

ability Unique Score Test, to test the reliability of NIPT test based
on the_values of the parameters: ff, sd and e_value. Using the deci-
sion trees, the application calculates the reliability score (Rscore)
and classifies the NIPT results as:

‘‘highly reliable”: Rscore is between 0.8 and 1. Sd, ff and e_value
provided for the samples fulfill the required values to achieve a
reliable prediction.
‘‘reliable”:Rscore is between0.2and0.8.Oneormoreparameters
are below the threshold, thus a potential abnormality might be
missed by the Z-score calculation. In this case, redoing the sam-
pling can be considered if a higher level of accuracy is needed.
‘‘not reliable”: Rscore is between 0 and 0.2. Parameters do fulfil
the required standards, thus abnormality assessment by Z-score
calculate on is not reliable. New sampling is strongly
recommended.

2.5. Code availability

There are restrictions to the availability of code due to patent
application for the GenomeMixer algorithm. The code are available
from the corresponding author on request.
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3. Results and discussion

3.1. GenomeMixer: A novel bioinformatic tool to create synthetic
sequencing of pregnant women

A sufficient ff is needed to insure the sensibility and specificity
of NIPT. In our previous work [11], we have shown that bioinfor-
matics tools to estimate ff provide very different results. ff values
in different clinical laboratories are therefore not comparable and
a gold standard threshold of ff to validate NIPT results cannot be
determined. Higher sd could compensate for low ff but a clear
description of this relationship is missing [10]. The determination
of these minimal values requires a very large range of both ff and
sd in aneuploid samples, very difficult to obtain in clinical practice.
We thus developed GenomeMixer, a semi-supervised data aug-
mentation approach that generates synthetic samples while con-
trolling the ff (i.e. GenomeMixer_ff) or the sd (i.e.
GenomeMixer_sd). Briefly, GenomeMixer creates synthetic align-
ment files mixing sequencing reads, from ‘‘native” samples from
pregnant women with fetal confirmed aneuploidies and from
non-pregnant women in order to modulate either the ff, keeping
the number of reads stable, or the sd keeping the ff stable. The
cfDNA in pregnant woman plasma is a mixture of fragments either
belonging to the mother or the fetus. Thus, there is no way to easily
distinguish their origin. One of the properties that can be used to
label the reads is their length. It is established that the population
of fetal cfDNA is enriched of smaller fragments compared to the
maternal ones with a main fetal peak around 143 bp and the
maternal one around 166 bp [14,15]. We observed this pattern
when we calculated the read length distributions for our cohorts
(Fig. 1A-1B). The ‘‘maternal” peak, that for our cohorts is found at
167 bp, is preceded by a shouldering composed of shorter frag-
ments of potential fetal origin. Fig. 1A shows that, depending on
the ff, read length distributions are quite different: at low ff values
correspond a greater number of long reads. The highest peak
(found at 167 bp) is indeed observed for lower ff values. As the ff
raises, this peak decreases concomitantly to an increase of the
number of shorter fragments. We reasoned that we could associate
a weight to a fragment length, thus representing the likelihood for
the fragments to belong to one or the other population (maternal
or fetal). The workflow is fully described in Fig. 1C. It first applies
a supervised approach to associate a weight to each fragment
depending on its length, then weighted random sampling is used
to either mix the fragments populations in order to lower the ff
or to proportionally remove fragments from both populations to
reduce the sd.

In order to study how the ff impacts the prediction of chromo-
somal aberrations, we used GenomeMixer_ff to create samples
with increasingly lower ff but with constant number of reads. Gen-
omeMixer_ff takes as input samples from pregnant women with
confirmed fetal trisomy and samples from non-pregnant women
(Fig. 1C). We dispose of two cohorts of pregnant women: Nice (co-
hort 1) and Marseille (cohort 2), composed by 377 samples, includ-
ing 11 fetal aneuploidies and by 1062 samples, including 20 fetal
aneuploidies, respectively. For each sample from pregnant women
with fetal trisomy, we generated 19 new samples by replacing
increments of 5% of the initial reads counts of the sample from
pregnant women with the equivalent amount from the samples
from non-pregnant women (see materials and methods for
detailed explanation). On the aneuploid chromosome, half of the
reads sampled from the fetal population are replaced and half of
them are suppressed. We used samples from pregnant women
samples with either T21 or T18 identified by a Z-score � 5 to feed
GenomeMixer. Thus, from 23 native aneuploid (NA) samples with
fetal T21 and 7 NA samples with T18, we generated respectively



Fig. 1. GenomeMixer: a novel bioinformatic tool to create synthetic sequencing of pregnant women. Read length distributions of euploid samples from pregnant women
(SPW) and samples from non-pregnant women (SNPW) from cohort 1 A) and cohort 2B). Distributions are colored according to the ff estimated by Seqff for the corresponding
sample. A gradient of shades of one color is used to represent the range of ff for each cohort. samples from non-pregnant women were added as control. Color code: cohort 1,
gold; cohort 2, grey; samples from non-pregnant women (SNPW), black. C) GenomeMixer workflow. Main steps of GenomeMixer are reported in the first column. Cartoons
depict how samples are generated by GenomeMixer_sd or GenomeMixer_ff, respectively. Both take as input samples from pregnant women with trisomy, and
GenomeMixer_ff uses samples from non-pregnant women as well. Reads are labeled, using length-dependent weights, as most likely belonging to maternal or fetal
population. n reads are then sampled, where n depends on the percentage of reads chosen by the user. Finally, GenomeMixer_sd removes the sampled reads, while
GenomeMixer_ff replaces them with reads sampled among samples from non-pregnant women reads. The procedure is iterated depleting or replacing increments of a fixed
percentage of reads from the initial read count until all reads are either removed or substituted. Color code: black bars, samples from pregnant women (SPW) reads before
labeling; violet bars, samples from non-pregnant women (SNPW) reads; green bars, reads labeled as fetal reads; red bars, reads labeled as maternal reads. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

D. Pratella, Véronique Duboc, M. Milanesio et al. Computational and Structural Biotechnology Journal 20 (2022) 1028–1035
437 and 133 synthetic aneuploidies (SA). We calculated the fetal
fraction with two tools, Seqff and Defrag_a because previous
benchmark showed that these tools are the best performing [11].
Seqff estimated ff for all SA obtaining ranges from 0.88 to 35.5.
Defrag_a estimated ff for 197 out of 345 SA originating from NA
male fetuses. The ff minimal value range from 3.04 to 37.91.

To evaluate the impact of sd on chromosomal abnormalities
prediction, we used GenomeMixer_sd (Fig. 1C). It takes as input
only samples from pregnant women with fetal chromosomal aber-
rations. In order to generate new samples with increasingly lower
sd, we removed increments of 5% of initial reads counts while
keeping the ratio between fetal and maternal reads stable. We iter-
ated this process 19 times for each NA obtaining 437 and 133 SA,
with a sd range from 360261 to 15002811. Both Seqff and Defrag_a
could not estimate ff for the totality of SA generated with Genome-
Mixer_sd (28/670 for Seqff and 154/345 for Defrag_a).

Altogether our results show that Seqff estimates ff even for very
low values, while Defrag_a could not for ff lower than 3.
3.2. The impact of ff and sd on fetal chromosomal aberration
prediction

Fig. 2 reports results for all samples generated by Genome-
Mixer, including both T18 and T21, with ff values calculated with
Defrag_a or Seqff. Overall, ff of samples generated with Genome-
Mixer_ff decreases consistently with the percentage of replaced
reads (Fig. 2A-B), while sd does not change (Fig. 2C-D). We thus
verified that the developed approach is able to decrease ff while
the number of reads stays stable. With a same percentage of
removed reads, we expect a proportional decrease of ff for all sam-
ples as we observed with the analysis by Defrag_a (Fig. 2A). Sur-
prisingly, we observed that for high percentages of replaced
reads, this proportionality is not found with Seqff (Fig. 2B). This
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variability suggests that ff calculation with Seqff becomes less reli-
able for samples with low ff.

Then, we calculated the Z-scores using the tool WisecondorX for
SA and plotted the Z-scores versus the ff for all samples (native and
synthetic). A linear relationship between the Z-score and ff was
found, either calculated with Defrag_a (correlation: spearman
0.96, pearson 0.94) (Fig. 2E) or Seqff (correlation: spearman 0.88,
pearson 0.92) (Fig. 2F). This analysis demonstrates that the estima-
tion of fetal aneuploidies strongly depends on the ff found in
sequenced samples. Furthermore, we observed that there are SA
with low ff associated to a Z-score less than 5, highlighting the
importance to find a threshold on the minimal ff needed to achieve
a reliable prediction of chromosomal aberrations.

Using the same strategy, we validated that samples generated
with GenomeMixer_sd had increasingly lower sd (Fig. 2G-H). As
expected, no significant variation of ff calculated with Defrag_a
was observed (Fig. 2I-J). By contrast, the reliability of ff calculation
with Seqff decreases proportionally with the number of depleted
reads, suggesting that sd impacts the validity of ff calculation by
Seqff (Fig. 2J). Finally, we plotted the relationship between the Z-
scores for SA and NA, and the sd (Fig. 2K-L). We observed two
trends: a flat behavior of Z-scores while depleting reads until a lim-
iting value is reached after which the Z-scores dramatically drop.
This result suggests that Z-score calculation is quite robust regard-
ing sd. However, the Z-score is not able to identify with confidence
aberrant samples for extremely low sd.

For the first time, we provided an analysis of the relationship
between Z-scores and either ff or sd. Seqff appears less reliable
than Defrag_a for ff calculation in case of low ff values, increasing
the difficulty to determine a threshold for a minimal ff value
needed to guaranty reliable NIPT. On the contrary, Z-scores seem
less affected by sd. However, when the Z-score for NA is around
the threshold of 5, the decrease of sd shortly leads to a drop of
the Z-score and a false negative result. Altogether, our data high-



Fig. 2. The impact of ff and sd on fetal chromosomal aberration prediction. Samples generated with GenomeMixer_ff, upper panel (A-F) or GenomeMixer_sd lower panel, (G-
L). Starting from 30 native aneuploid (NA) samples, we generated 19 synthetic aneuploid (SA) samples per NA by replacing increments of 5% from the initial reads counts. NA
starting pools comprise either male fetuses only for Defrag_a (A-E, G-K) or all NA for Seqff (B-F,H-L). Trends of the modulated parameters (ff: A-B, sd: G-H) during generation
of synthetic samples are shown. Trends of parameters to keep stable (sd: C-D, ff: I-J) along iterations are shown. Relationships between modulated parameters (ff: E-F, sd: K-L)
during generation of samples and the Z-score are shown. Samples with Z-score below 5 are colored in red. Samples with Z-score above 5 are colored in black. NA samples are
represented as squares, SA as triangles. Samples in E with ff of 0 are samples for which Defrag A could not assess the estimations of ff because of the low ff of these samples.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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light the interdependence between ff, sd and Z-scores but the
relationship between these 3 important parameters is still
missing.

3.3. Assessment of confidence intervals for reliable NIPT for clinical
practice

We set up a decision tree based approach to find the relation-
ship between sd, ff, Z-score and the e_value. The e_value models
the chromosomal specific contribution to ff and helps to classify
samples (details in materials and methods). Here, the decision tree
is not used for samples classification instead of running Wisecon-
dorX, but to find the confidence intervals of sd, ff and e_value for
a reliable NIPT outcome from WisecondorX.

We used NA and SA generated with GenomeMixer, as identified
by the Z-score ranges, to feed a decision tree. Groups of samples
were isolated based on combinations of ff, sd and e. We run the
decision tree approach using the ff estimated either by Seqff, or
by Defrag_a in order to identify a minimal threshold for ff, sd
and e_value specific to each tool. Fig. 3A reports the results of
the decision tree approach using Seqff. We observed several levels
of classification: the first divides samples based on their sd, with a
discriminant threshold of 5.6 millions of reads. The second level
groups samples with higher sd than the previous discriminant
threshold, based on their ff with a discriminant value of 6.7%. Sam-
ples with lower sd than the threshold in level 1 are grouped based
on their e_value, with a discriminant threshold of 0.61. The follow-
Fig. 3. Assessment of confidence intervals for reliable NIPT for clinical practice with ff e
parameters: e, sd and ff calculated with Seqff. Each node represents a discriminant value
reported for each confidence interval at the bottom of the tree. Percentage of SA by Rsc
replaced or removed reads. Top histograms are showing counts of samples for which ff
NE21, NA18, NA21, SA18, SA21). Color code: green, ‘‘highly reliable”; yellow, ‘‘reliable”; r
the reader is referred to the web version of this article.)
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ing levels depend on different combinations of sd, ff and e_value.
Finally, a total of 14 combinations of parameters was found to
stratify samples.

The same approach was used with Defrag_a (Supplementary
Fig. 3A). Five levels were identified. The first divides samples based
on their ff, with a threshold value of 11%. For the second level, the ff
discriminant value is of 9.4%. The subsequent level is defined by
the sd. For ff higher than 9.4%, the sd of 11 millions of reads sepa-
rates samples. For ff smaller that 9.4%, samples are further grouped
based on their sd, with a threshold of 8.2 millions of reads. Samples
in this last level are further grouped based by their e_value
(threshold of 1.3) and then by their ff (threshold of 8.5%). In total,
seven combinations of parameters were determined to stratify
samples. This decision tree has fewer combinations than the previ-
ous one. This could be explained by the lower complexity of the
samples analyzed as Defrag_a fails to estimate ff for both low sd
and ff, and provides results for males only.

To facilitate the stratification of samples, we defined a reliabil-
ity score, the Rscore, associated to samples belonging to each
groups, that represents the probability that the prediction of the
aneuploidy based on the Z-score calculation is reliable regarding
the_value of ff, sd and e_value. Rscore values go from 0 to 1. For
ease of usage, we defined three categories: ‘‘highly reliable” when
Rscore is between 0.8 and 1; ‘‘reliable” when Rscore is between 0.2
and 0.8 and ‘‘not reliable” when Rscore is lower than 0.2. It is
important to note that Rscore is calculated for each pair of
chromosomes.
stimated by Seqff. A) Decision trees showing the confidence intervals for the three
for one of the parameters (sd: circle, ff: rectangle, e: smoothed rectangle). Rscore is
ore, generated with either B) GenomeMixer_ff or C) GenomeMixer_sd for each % of
could be determined. D) Percentage of samples by Rscore for each category (NE18,
ed, ‘‘not reliable”. (For interpretation of the references to color in this figure legend,
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Validation of the Rscore and development of the web applica-
tion TRUST

We tested the identified confidence intervals on our cohorts,
including native euploid (NE), NA and SA generated with Genome-
Mixer (Supplementary Table 1).

First, we focused on SA. We demonstrated that the lower the ff
(Fig. 3B, supplementary Fig. 3B) or sd (Fig. 3C, supplementary
Fig. 3C), greater the count of Rscores belonging to a ‘‘not reliable”
category. This result reinforces the importance of these 2 parame-
ters in NIPT reliability. For SA generated by GenomeMixer_ff, 60%
of replaced reads result in ‘‘not reliable” NIPT outcome in 3% of
cases. When more than 85% of reads are replaced, it increases to
more than 50% (Fig. 3B). As expected SA samples with Zscore less
than 5 are found in ‘‘not reliable” category. For SA generated with
GenomeMixer_sd, when 85% of reads are depleted, a ‘‘not reliable”
score is obtained in less than 20% of cases (Fig. 3C). Similar trends
are observed for ff estimated by Defrag_a on male SA samples
(Supplementary Fig. 3B and C). The lower number of non-reliable
samples for Defrag A reflects the limitation of this tool to estimate
ff for samples with either low ff or low sd. Overall, this analysis
indicates that the reliability of the test is more affected by low ff
than by low sd, independently of the tool used to estimate ff.

Most of the native samples, both euploid and aneuploid (72.5%
NE18 and 73.9% NE21; 62.5% NA18 and 92% NA21) fall in the con-
fidence interval with the highest Rscore (R>=0.8) for Seqff tree
(Fig. 3D). Similar percentages are obtained for Defrag_a tree:
86.6% NE18 and 86.6% NE21; 66.7% NA18 and 81.8% NA21 (Supple-
mentary Fig. 3D). A smaller percentage of NE samples is classified
in the intermediate level (‘‘reliable”): 23.7% NE18 and 21.8% NE21,
for Seqff and 13.3% NE18 and 13.3% NE21, for Defrag_a. Only 3
NA18 and 2 NA21 are classified as ‘‘reliable” in Seqff decision tree
(Supplementary Fig, 4B). The 3 NA18 samples have a low ff (1_240:
4.25%, 2_477: 4.96%, 1_40: 6.42%). Both samples NA21 are classi-
fied as ‘‘reliable” in the Defrag_a tree as well (Supplementary
Fig. 4D). This result is due to the sd of the two samples:
8,162,972 and 8,819,954 for samples 2_1012 and 1_128, respec-
tively. The sample 2_1012 carries also a T18 and is classified as ‘‘re-
liable” with Defrag_a decision tree while it has a ‘‘highly reliable”
outcome for Seqff. The difference in the Rscore outcome is due to
the e_value that plays a less important role in Defrag_a tree com-
pared to the Seqff one. Importantly, none of the NA samples in both
trees, very few NE samples (less than 4%) for Seqff and none for
Defrag_a, are classified as ‘‘not reliable” (Fig. 3D and S3D).

The decision tree modelling helped in spotting problematic
samples undetected by classical methods. It helps decreasing false
negative results rate and improves the reliability of NIPT by iden-
tifying the deficient parameter and its specific correction (i.e. addi-
tional sample sequencing or novel blood test). We showed that the
e_value can help stratifying samples especially for low ff and/or
low sd. It had been suggested that higher sd could compensate
for low ff. Our data showed that this parameter can be used to
improve test reliability in case of low ff values.

In order to render these intervals available for diagnostic, we
developed TRUST, Trisomy Reliability Unique Score Test, a web
application that attributes a chromosome-specific Rscore to NIPT
results.
4. Conclusions

In this study, we have measured the real impact of ff and sd on
accuracy of fetal aneuploidies detection thanks to our tools Geno-
meMixer and TRUST. The validation of the NIPT results is per-
formed by GenomeMixer that generates synthetic samples with a
decision tree strategy in order to identify thresholds of ff, sd and
e_value to stratify samples in laboratory-specific settings. Finally,
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TRUST allows a rapid estimation of test reliability using the inter-
vals identified in this study.

We provide the first study of the relationship between ff, sd, e_-
value and Z-score showing that they are profoundly connected.
Importantly, we have demonstrated that single thresholds for ff,
sd and e_value do not suffice to achieve reliable NIPT but more
complex entangled threshold are needed to stratify tests. Further-
more, we showed that, depending on the tool used to calculate ff,
different thresholds and intervals are obtained. This result yields
the conclusion that thresholds of ff, sd and e_value need to be
assessed for each data analysis pipeline, chromosome and cohort.

GenomeMixer is of wide interest because it will help to identify
these thresholds in a laboratory-specific fashion. GenomeMixer is
restricted so far to the study of T18 and T21, that are the most fre-
quent aneuploidies detected by NIPT. However, the model based
on weighting the reads according to their length and the e_value,
can be applied on any chromosome. Thus, the collection of appro-
priate samples would allow to optimize GenomeMixer for the
study of other chromosomal anomalies such as T13 or twin preg-
nancies, and help resolve recurrent false positives.

In conclusion, we have developed a reliable method to generate
aneuploid samples with a limited amount of retrospective data
that, joint to decision tree approach, allow validating with high
accuracy NIPT results. GenomeMixer and TRUST should be rapidly
used by laboratories that perform NIPT thanks to their easy config-
uration and adaptability to pipelines and can complement already
existing risk score analysis, such as Tynan et al. [17].
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