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Learning deep features for dead
and living breast cancer cell
classification without staining

Gisela Pattarone®?, Laura Acion®®, Marina Simian*®, Roland Mertelsmann®, Marie Follo® &
Emmanuel larussi®’"

Automated cell classification in cancer biology is a challenging topic in computer vision and machine
learning research. Breast cancer is the most common malignancy in women that usually involves
phenotypically diverse populations of breast cancer cells and an heterogeneous stroma. In recent
years, automated microscopy technologies are allowing the study of live cells over extended

periods of time, simplifying the task of compiling large image databases. For instance, there have
been several studies oriented towards building machine learning systems capable of automatically
classifying images of different cell types (i.e. motor neurons, stem cells). In this work we were
interested in classifying breast cancer cells as live or dead, based on a set of automatically retrieved
morphological characteristics using image processing techniques. Our hypothesis is that live-dead
classification can be performed without any staining and using only bright-field images as input. We
tackled this problem using the JIMT-1 breast cancer cell line that grows as an adherent monolayer.
First, a vast image set composed by JIMT-1 human breast cancer cells that had been exposed to a
chemotherapeutic drug treatment (doxorubicin and paclitaxel) or vehicle control was compiled. Next,
several classifiers were trained based on well-known convolutional neural networks (CNN) backbones
to perform supervised classification using labels obtained from fluorescence microscopy images
associated with each bright-field image. Model performances were evaluated and compared on a
large number of bright-field images. The best model reached an AUC = 0.941 for classifying breast
cancer cells without treatment. Furthermore, it reached AUC = 0.978 when classifying breast cancer
cells under drug treatment. Our results highlight the potential of machine learning and computational
image analysis to build new diagnosis tools that benefit the biomedical field by reducing cost, time,
and stimulating work reproducibility. More importantly, we analyzed the way our classifiers clusterize
bright-field images in the learned high-dimensional embedding and linked these groups to salient
visual characteristics in live-dead cell biology observed by trained experts.

Breast cancer is the most frequently diagnosed malignancy in women worldwide; one out of eight women are
expected to develop breast cancer at some point in their lifetime’. As a disease, it involves biologically diverse
subtypes with high intratumor heterogeneity that determine different pathological characteristics and have
different clinical implications. Understanding the intricacy of the molecular cross-talk within the cell death
pathway highlights the need for developing methods to characterize the morphological cell response to therapy
with anticancer drugs. The emergence of automatic microscopes made it possible to develop large datasets of
live fluorescence images and single cell analysis, and more recently, these data started to be massively studied
by means of computational tools. Some efforts are focused on developing image processing programs able to
identify cells and separate them from the extracellular matrix, performing segmentation and tracking cells using
contrast fluorescence?. More recent efforts are based on automatic classification of images using deep learning
techniques®*, a form of automatic learning™° enabling improved data analysis for high-throughput microscopy”
8, For example, deep convolutional neural networks have been trained’® with labeled images from different cell
types like motor neurons, stem cells, and Jurkat cells'’. In order to label each cell, Hoechst and DAPI have been
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Figure 1. (a) Experimental and computational steps in our automated cell classification pipeline (diagram
created using Adobe Illustrator CC 2019 https://www.adobe.com/products/illustrator.html). (b,c) Top: bright-
field and corresponding fluorescence images resulting from the imaging step (experimental workflow). High
fluorescence values (white and red areas) indicate cell death. Bottom: as a post-process, images are cropped
into 224 x 224 px patches and paired with their corresponding fluorescence patch. Notice cropping overlaps
contiguous patches (horizontal and vertical) in order to augment the number of images (images rendered using
Matplotlib 3.3.3 https://matplotlib.org/).

used to identify nuclear areas, CellMask to highlight plasma membranes and Propidium Iodide to spot cells with
compromised membranes. These automatic methods were able to make accurate pixel predictions of the location
and intensity of the different structures represented by the fluorescence. More recently, machine learning classi-
fiers were trained to perform stain-free hierarchical classification of human white blood cells in flow cytometry
images'!. Similar methods have been used to distinguish dead from living microalgae Chlorella vulgaris with
features extracted from individual cells'%. In both cases, the acquisition technique isolates cells, simplifying
segmentation and labeling tasks in the image preprocessing step. In the context of cancer cell growth, this type
of isolation is difficult to achieve, making it necessary to use techniques which can aggregate image information
and automatically extract features for classification. Other innovative biological applications related to automated
image processing methods are morphological classification of hematopoietic cells, pluripotent stem cells'® and
3D cell boundary and nuclear segmentation'*.

Empowered by recent advances in image processing and deep learning, in this work we were interested in
the study of morphological characteristics showing death signs in breast cancer cells. Particularly, in the context
of live cell fluorescence, the live-dead labeling method has many limitations like low contrast or differences in
pixel intensities, resulting in heterogeneous staining for individual cells and requiring a final human-assisted cell
segmentation. Additionally, fluorescent stains are expensive and usually several stains are required to precisely
identify a cell'. Fluorescence-free cell classification could potentially offer substantial improvements in detection
specificity, sensitivity, and accuracy for physiological and pathological cell condition diagnosis. Furthermore,
the cells could remain in their regular culture conditions without any intervention. Our purpose is to evaluate
the potential of automatically classifying cancer cells as live or dead without staining, using only bright-field
images as input.

First, we present a new massive dataset of breast cancer cell images of the JIMT-1 breast cancer cell line'.
We studied cellular growth before and after the introduction of in vitro drugs treatments with Doxorubicin and
Paclitaxel. After characterizing the biological behavior within chambered coverslips, each image was split into
smaller patches containing a very limited amount of cells and properly tagged as live or dead using the infor-
mation available in the form of fluorescence images from calcein and propidium iodide. To our knowledge, no
other dataset of labeled JIMT-1 cell images has been compiled and publicly released before. We then used this
dataset to train deep CNN models for cell image classification. These trained classifiers learned to label cancer
cells as live or dead without staining and using only bright-field images as input. A diagram of the presented
workflow is shown in Fig. 1a. We additionally studied the learned embeddings and identified clusters of images
with similar visual cues which are often associated with living and dead cells. We believe our results could be
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helpful as a diagnostic and complementary tool for cancer and normal cell biology, allowing a better understand-
ing of the capabilities of image-based automatic classification. Furthermore, we foresee potential applications
in the pharmaceutical field, as automatic live/dead cell classification in preclinical trials for drug tests is of high
interest, complementing the information related to pharmacokinetics and pharmacodynamics characteristics
of new anti-cancer drugs development.

Results

Cell preparation and image acquisition. To ensure a biologically representative set of breast cancer cell
images in our dataset, we first analyzed and characterized the development of JIMT-1 within the Ibidi chamber
slides. JIMT-1 cells are positive for cytokeratins 5/14 and 8/18, are estrogen and progesterone receptor negative,
and overexpress HER2 as a consequence of HER2 amplification. JIMT-1 cells are classified as basal-like and rep-
resent the subgroup that occasionally carry HER2 amplifications. JIMT-1 cells act like a triple negative subtype
breast cancer given their lack of response to trastuzumab'. To induce JIMT-1 cell death we designed a treatment
scheme consisting of a 4 h exposure to doxorubicin followed by 24 h of paclitaxel. In order to capture the images,
we performed live fluorescence imaging using a live-dead cell imaging kit of cells cultured in chambered cover-
slips with 8 independent wells and a non-removable polymer coverslip-bottom, over extended time periods. This
setup has high optical quality, with a total growth area per well of 1.0 cm?, tolerates live fluorescence, and allows
the tracking of breast cancer cells during a maximum of five days. We constructed a biologically representative
dataset of breast cancer cells grown in culture medium supplemented with the sequential treatment of doxo-
rubicin followed by paclitaxel. After cultivation and drug treatment, we measured the effect of the therapeutic
agents on the percentage area shown by calcein and propidium fluorescence. Both were studied in comparison
with a control sample. The area of activity of the PI fluorescence was higher in comparison to control. Simulta-
neously, the calcein percentage area was lower at the end of the treatment. Both facts combined showed that the
treatment with drugs was effective in inducing cell death and ensured that our image dataset contained both cells
states, live and dead. We compiled 964 raw images into a dataset we named Doxo/Paclitaxel. We additionally col-
lected 339 raw images from the cell growth and death process occurring spontaneously (without therapy) during
the same time period and named it No treatment. In both datasets, each bright-field image has a corresponding
fluorescence PI image indicating cell death (Fig. 1b,c, top).

Image pre-processing. We curated the raw images to be suitable for training automatic classifiers. We
identified several problems with the raw images that we solved individually in order to prepare the final image
set. The first issue relates closely to the image size. Raw images cover large areas of the Ibidi device with a reso-
lution of 1344 x 1024 pixels, and often the associated PI fluorescence strongly varies across it. This represents
a problem in our setup, since a single label indicating live or dead must be assigned to each image to train the
classifier. Therefore, we decided to partition raw images into smaller patches (Fig. 1b,c, bottom). By cropping
smaller areas, we increased the reliability of the labels for each patch, since neighboring cells often have the
same state. However, setting a proper granularity for this operation is not trivial. On the one hand, individu-
ally labeling each cell could lead to very accurate labels, but the topology of cell growth in the device makes it
difficult to automatically isolate cells. On the other hand, cropping large areas could lead to overlapping labels,
with interfering residual fluorescence from neighboring patches. Despite the fact that PI has the characteristic of
only entering the cell when its membrane is compromised, we noticed the fluorescence spectrum emissions are
not uniform and may overlap or even occupy more than one cell diameter. We therefore found a compromise
between these two options by using a fixed size sliding cropping window. Conveniently, we cropped 224-pixel
wide square patches, a standard size that facilitates the use of widespread CNN backbones (see “Classifiers train-
ing”). In our datasets, each bright-field cropped patch has a corresponding cropped fluorescence image (Fig. 2a).

After cropping, we noticed many image patches did not capture any cells. This is especially common in data
coming from the first culture days, where a uniform distribution is not yet achieved. When training automatic
classifiers, empty images can decrease network performance because no real feature extraction process occurs
without cells in the image. We therefore implemented a mechanism to easily detect and discard empty patches.
First, we manually labeled a subset of 226 bright-field patches that didn’t contain any cells or unsuitable data,
such as out of focus images, and 226 patches containing properly captured cells (Fig. 2b, left). For each of these
images, we computed a 512-feature vector by taking the output of the last convolutional layer from a pretrained
ResNet-18 on ImageNet!'®. We did not perform any fine-tuning of this network using our images. Reusing fea-
tures from other CNN-learned representations is a common practice in anomaly and outlier detection!” 8. The
no-cell dataset contained patches from both: no treatment and Doxo/Paclitaxel data partitions. We then trained
a support vector machine (SVM)"? to perform outlier detection using ResNet-18 features. The trained model
learned to detect most of the empty images (f1-score = 0.833). Figure 2 (b) presents a 2D t-distributed stochastic
neighbor embedding (t-SNE)* visualization of the learned high-dimensional decision function when classifying
image patches as with or without cells. After cropping and filtering empty patches, the No treatment set contains
21,848 images and the Doxo/Paclitaxel set contains 56,632 images.

Once most empty images were removed from the datasets, we prepared them for supervised training, that
requires a single binary label indicating whether the image represents live or dead cells. We therefore averaged
the fluorescence values and set up a threshold splitting the image in two non-overlapping sets: a set labelled as
containing live cells and another containing dead cells. We found the threshold for defining each set by comput-
ing histograms of the mean fluorescence intensities for the No treatment and Doxo/Paclitaxel datasets (Fig. 3a).
Choosing a very high threshold (high fluorescence values) would assure more certainty for image patches labeled
as dead, but it would end up labeling as alive many images that are far from the low fluorescence values indicating
live signs. Conversely, the opposite effect would be observed if choosing a very low threshold. We solved this
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Figure 2. (a) Bright-field and corresponding propidium iodide fluorescence images. The columns under Live
patches (green) show images with mostly live cells. The columns under Dead patches (red) present images

with mostly dead cells in our dataset (images rendered using Matplotlib 3.3.3 https://matplotlib.org/). (b) Left,
samples of empty and non-empty patches with the associated barcode visualization of the 512-dimensional
feature vector from ResNet-18 last convolutional output per image. Right, dimensionality reduction
visualization of patch features and the high-dimensional decision function (green level-sets) learned by the
SVM. Notice how empty patches mostly lie inside the highlighted region (images rendered using Seaborn 0.11.1
https://seaborn.pydata.org/ and Matplotlib 3.3.3 https://matplotlib.org/).
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Figure 3. (a) Histograms of mean fluorescence per patch on each dataset. (b) Scatter diagram showing the
samples distribution after the automatic patch labeling based on their mean fluorescence. Due to treatment,
Doxo/Paclitaxel has significantly less live patches (images rendered using Seaborn 0.11.1 https://seaborn.pydata.
org/).

issue by fitting a Gaussian mixture model* to the No treatment distribution of means which contained the most
balanced number of live and dead cells. We identified two main clusters in data: one with very low fluorescence
values containing mostly live cells ( Xj;,e = 224.51, sjiy, = 34.46), and another one with high fluorescence values
containing mostly dead cells (Xjeq4 = 550.44, S4eqq = 153.55). We used this model to label as live all images with
mean fluorescence lower than Xy, + siive = 258.97, and as dead all the images with mean fluorescence above
Xdead — Sdead = 396.89. Patches in the range (Xjive + Siive> Xdead — Sdead) Were discarded. We applied the same
threshold to both, No treatment and Doxo/Paclitaxel datasets (Fig. 3b). Only very low fluorescence values are
considered as containing live cells. Table 1 summarizes the number of images included in each pre-processing
step and available in this repository: https://github.com/emmanueliarussi/live-dead-JIMT-1.

Classifiers training. We trained three different CNN backbone architectures to perform binary live-dead
classification using the curated cell image dataset: ResNET-18%2, SqueezeNET?, and Inception-v3**. Each
network architecture was trained twice using a cross entropy loss function and the No treatment and Doxo/
Paclitaxel dataset partitions. Three splits for each dataset were constructed to allow training and subsequent
evaluation tasks (Table 1). Approximately 80% of the images were used for training, 10% for validation and
10% for testing, as suggested in the literature. Since each cropped image patch was tagged with an identifier
corresponding to the ID of the raw image from which it came, we were able to avoid patches from the same raw
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Raw Cropped Valid. Valid. Test
images images Total live | Total dead | Train live | Train dead | Train total | Valid. live | dead total Test live | Testdead | total
g‘;{:{eat' 339 21,848 10,464 11,384 8680 9480 18,160 891 925 1816 979 893 1872
Doxo/
paclitaxel | 964 56,632 5081 51,551 4195 42,966 47,161 437 4314 4751 449 4271 4720
Table 1. Dataset summary. The first row corresponds to raw, full resolution images (1344 x 1024 pixels). The
number of cropped images are reported after empty patch filtering. The classification classes are unbalanced,
particularly for the Doxo/Paclitaxel data.
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Figure 4. (a) ROC curves showing the classification performance over the testing datasets for each CNN
architecture. The Inception-v3 model outperforms ResNET and SqueezeNET (plotted in Matplotlib 3.3.3
https://matplotlib.org/). (b) Mean fluorescence vs. classifier-score analysis for the model that performed best
over No treatment data (Inception-v3). Higher mean fluorescence intensities tend to cluster together for lower
classification scores used to label dead cells. Simultaneously, lower mean fluorescence intensities are grouped
near higher classification scores that signal live cells (images rendered using Seaborn 0.11.1 https://seaborn.
pydata.org/).

image to belong to more than one partition simultaneously. In other words, there are no overlapping images
among training, validation, and testing partitions since we carefully selected patches from different raw images
for each set.

A common problem when training classifiers is their sensitivity to class imbalance?. Therefore, to compen-
sate for the strong imbalance in our dataset, we sampled images by means of a weighted random sampler with
replacement. Weights were computed as the inverse of the sample count for each class. Additionally, data were
augmented by random 90-degree rotations and vertical/horizontal flipping of each image. This type of data
augmentation leads to better generalization performance''. We empirically found that fine-tuning network
weights pre trained on Image-NET* performed significantly better than training from a random initialization.
Therefore, we adopted a transfer-learning approach for all the reported results. Training hyperparameters were
adjusted based on the network performances over the validation set. More training details can be found in the
Methods section.

After training, each model was validated using non-augmented instances from the validation set. In order to
evaluate and compare the performances of the trained classifiers, we relied on several metrics. In particular, we
computed the balanced accuracy, which is defined as the average of the recall obtained on each class?® ?°. This
metric is well-suited for our setup, since it does not favor a classifier that exploits class imbalance by biasing
toward the majority class. Together with the balanced accuracy, we computed confusion matrices and pairwise
relationships between mean fluorescence and the classifier score. Figure 4a summarizes the performance of the
trained classifiers. Overall, the three models outperformed random performance for both datasets and were
able to automatically extract relevant image features in order to classify JIMT-1 cell images as living or dead.
Inception-v3 was the best performant model, with over 85% accuracy over both testing datasets, No treatment
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Figure 5. Visualization of the Inception-v3 learned feature space for our No treatment testing dataset. The
2048-dimension features were projected to a 2D space using t-SNE, and colored according to ground truth
labels (a), and predicted labels (b). Cells with the same state tend to cluster together. Visual inspection of the
images in each cluster further reveals the shared characteristics within each group. All images were rendered
using Seaborn 0.11.1 https://seaborn.pydata.org/ and Matplotlib 3.3.3 https://matplotlib.org/.

balanced accuracy = 0.866 (95% CI = [0.851, 0.881]), AUC = 0.941; Doxo/Paclitaxel balanced accuracy = 0.923
(95% CI = [0.916, 0.930]), AUC = 0.978. Confusion matrices and ROC curves in Fig. 4 further illustrate the
classifiers’ performance. Furthermore, we computed the correlations between the mean values of PI and the
classification score obtained for each image in the testing set to explore the association between classification
and fluorescence images. A significative inverse Pearson correlation was found in both training scenarios, No
treatment: r = — 0.705 (p = 0.024) and Doxo/Paclitaxel: r = — 0.281 (p = 0.025), indicating the scores are correlated
to the fluorescence levels, a relationship that could be explored in future work in order to predict fluorescence
images from bright-fields (Fig. 4b).

Visualizing learned features. In line with previous work!®11:3%31 we took advantage of well-known visu-
alization techniques in order to gain further insight into the classifiers’ automatically learned space to uncover
their biological meaning. We now show a series of complementary visual analytics and link the observed com-
mon patterns to salient visual characteristics in live-dead cell biology observed by trained experts and reported
in literature. The presented feature space visualizations and the class activation maps are intended to comple-
ment the quantitative study, providing ‘visual explanations’ for decisions from the CNN models. These visuali-
zation techniques are developed to reveal how these models localize discriminative regions for an input image.
Such understanding provided insights into the model to our biomedical specialist co-authors (Drs. Pattarone
and Simian), but is not intended to be used right away in a lab environment.

In particular, we applied a nonlinear dimensionality reduction technique suited for embedding high-
dimensional data into a low-dimensional space, namely t-SNE*, which preserves local structures of the high-
dimensional input space. The learned features of a CNN are encoded by the intermediate activation after the
last convolutional layer of the network. Therefore, given an input image which is fed to the CNN to perform
classification, we extract the activation pattern of the last layer before classification. This high-dimensional vector
becomes a signature of the input image. Scatter plots in Fig. 5a,b illustrate the emerging clusters after projecting
the 2048-dimensional features of Inception-v3 into two components for all testing samples. To further understand
each cluster, we also show a version of the scatter plot where each dot is replaced by the corresponding bright-
field image thumbnail (Fig. 5¢). This enhanced visualization reveals that groups of cell images with similar visual
characteristics tend to cluster together in the learned feature space. This visualization of the feature space learned
by the classifiers also provided a visual validation of the classification confusion occurring between live and dead
cells. We found that the boundary between main live and dead clusters (white dots in Fig. 5b) correspond to
images in which a mixture of live and dead cells appear.

Complementary, we investigated the relation between input bright-field images and the produced outcomes
by means of the gradient-weighted class activation mapping (Grad-CAM)*. This visualization technique uses
the class-specific gradient information flowing into the final convolutional layer of a CNN to produce a coarse
localization map of the important regions in the image which triggered the classifier output. These regions can
be visualized by means of a heatmap (Fig. 6).

Overall, in the case of living and untreated cells, morphology looks as expected, with the presence of an
uncompromised membrane, organelles, nuclei, and nucleolus (Fig. 6a). The membrane can be often seen clearly
without any special enhancement (green fluorescence rows in Fig. 6). This integrity of the cell membrane is
necessary to keep the position of its organelles, mainly rough endoplasmic reticulum and golgi apparatus. Cells
in this group have a mostly uniform gray color, scattered by very tiny dark circles, possibly corresponding to the
cell nuclei. These are expected morphological characteristics of a cell that remains active and where its chroma-
tin remains partially in the form of a nucleolus and that is decomposed and used according to the needs of the
biological machinery. Biological aspects of dead cells are different. It can be seen in patches containing stained
and classified as dead cells (red fluorescence rows in Fig. 6b), that the compromised membrane appears more
as a blurred dark halo. This is expected since the PI staining enters the cell only when the cell membrane has
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Figure 6. Bright-field testing patches paired with gradient-weighted class activation mapping (Grad-CAM)
visualizations for the Inception-v3 model. Live patches are shown on the left (a), and dead on the right (b). The
activation maps show which zones of the input bright-field are triggering the classifier response. These maps can
be computed for both labels and help to identify zones in the input images activating a live or a dead response
from the convolutional neural network. The maps also have an associated score, indicating the probability of
each label, which determines the final classifier response. All images were rendered using Grad-CAM 1.0 https://
github.com/jacobgil/pytorch-grad-cam and Matplotlib 3.3.3 https://matplotlib.org/.

been compromised and binds to DNA by intercalating between the bases with little or no sequence preference.
It can be generally observed that the harmonic disposition evidenced as a smooth gray of the organelles is lost,
probably due to a contraction of the cytoplasm that occurs in the processes of cell death. The cell death process
leads to a series of intracellular events, regulated, and coordinated by the activation of different enzymes that
perform proteolysis cascades and controlled destruction of organelles and genetic material. The final phase of
this process is evident inside the cells classified as dead. The circular genetic material known as nucleolus is not
evident, but rather there is a deletion of it as can be clearly noted in cells identified as dead. On the contrary, cells
identified as live maintain the central dark gray nucleoli. Differences in cell death images in the two groups, No
treatment and Doxo/Paclitaxel datasets, can be seen in the process of contraction of the cytoplasm and DNA
degradation. The pharmacological effect of Doxorubicin on the cancer cells is induced by intercalation into DNA
and disruption of topoisomerase-II-mediated DNA repair and generation of free radicals that damage cellular
membranes, DNA, and proteins®. This is supplemented by the effect of Paclitaxel on tubulin that polymerizes into
small tubes called microtubules, which are responsible for mitosis, cell movements, preservation of cell shape,
as well as the intracellular trafficking of organelles and macromolecules. Paclitaxel stabilizes microtubules and
reduces their dynamicity, promoting mitotic halt and cell death®*. Both pharmacological effects can be visualized
in the cytoplasms that present a kind of effacement and bright spot in the brightfield image, without evidence of
destruction of organelles and genetic material.

Discussion
All evaluated network architectures were able to autonomously extract relevant information from bright-field
imagery in order to perform live-dead classification. This automatic feature extraction can be improved in future
work, by combining it with cell characteristics i.e. cell diameter, area, and radius, similar to the work of Reimann
et al.’2, The mixture of learned and engineered features can improve performance as well as interpretability of
the classifier behaviour. In order to push further in this hybrid direction there is a need for more robust methods
able to individualize and segment cells growing as an adherent monolayer. At the beginning of this project, we
explored the alternative of segmenting and labeling each cell individually before classification, but the extremely
irregular cellular contours and the occasional overlap among them made this approach inapplicable. We believe
the work of Lugagne et al.*® highlights the next steps to overcome these issues.

The curated image data was of paramount importance for the achieved performances of the classifiers. In
general, the lack of large image datasets greatly hampers the applicability of deep learning techniques. Even if
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our dataset was big enough to learn and generalize to unseen samples, we believe a larger effort in building big-
ger and more diverse datasets is still necessary. For example, all our images come from a single capture device,
which could limit the applicability of the trained models to images from a different acquisition setup. We also
worked on a single cell line and stain. More data will definitely contribute to make these tools widely available
across the scientific and medical community. Future work should consider compiling images in a variety of
capture scenarios.

Another interesting research direction is to study how the applied techniques for providing visual explana-
tions can complement classification tasks in the laboratory. A first step in this direction could be to conduct
a comparative study using living and dead regions segmentations from the validation images and their corre-
sponding activation maps.

Automatic cell classification is a very challenging and interdisciplinary problem, involving simultaneous
efforts from computer vision, machine learning and biomedical research. In the context of human breast cancer,
machine learning can bring new tools to support diagnosis that benefit the biomedical field by reducing cost
and time. In this work we investigated the applicability of deep learning techniques to stain-free live-dead breast
cancer cell classification from bright-field images. Since our aim was that others may reuse our findings and data,
we used open-source Python packages and we made freely available our image dataset online.

Methods

Experimental methods. Cell culture. JIMT-1 cells ATCC 589 (DSMZ) were cultured in complete DMEM
medium (Gibco), supplement with fetal calf serum heat-inactivated (FBS) 10% (w/v) (Gibco), L-glutamine 2
mmol L 1 (Gibco), penicillin 100 units mL ~, streptomycin 100 g mL (Gibco) at 37 °C in an incubator with 5%
CO2. Cells were resuspended with trypsin 0.50 mg mL ~!and EDTA-4Na 0.2 mg mL ~'1 (Gibco), and incubated
at 37 °C for 3 min. Trypsin was inactivated with FBS and cells were washed with phosphate buffer solution (PBS)
(NaH2PO4 50 mmol L ~', NaCl 300 mmol L =", (pH 7.6) and centrifuged at 1200 rpm for 5 min. Finally, the
cells were resuspended in the same complete DMEM medium. We use the 8-well slide (Ibidi GmbH) and 12,000
cells per well were used to perform culture assays according to the manufacturer’s protocol.

Cell viability staining. We used the live-dead cell imaging kit (Sigma) to evaluate cell viability in the Ibidi chip.
The cells were loaded into the Ibidi devices and cell viability was evaluated at third, fourth, and fifth days; we PBS
to wash the culture chambers in the models for 1-3 min. Then, the cells were incubated with the live-dead cell
imaging kit for 15-30 min at 37 °C. Next, we used PBS again to wash out the reagent for 3-5 min and observed
the culture chambers under a fluorescent microscope.

Autophagy and apoptosis activity staining. We used the autophagy cell imaging kit (CYTO-ID) and caspase-3
and-7 cell imaging kit (Invitrogen). In both assays performed separately, the cells are stained green. The proce-
dure with negative and positive controls were performed as recommended by the manufacturers’ instructions
(Enzo ENZ-51031-K200) 32.

Doxorubicin and paclitaxel schematic treatment. For the drug schematic tests, the effects of paclitaxel (Sigma
Aldrich) and doxorubicin (Sigma Aldrich) combined were studied (Holmes 1996). First, JIMT-1, were loaded
into the Ibidi chips, as described previously, and 24 h later when the cells were adherent, the medium was
replaced with fresh culture medium supplemented with 0.01 M doxorubicin (DOX). Then, after 4 h it was subse-
quently replaced with a fresh medium containing 0.001 M paclitaxel (PAX) for 24 h. Live imaging and biological
characterization with different staining as described before was performed for the whole experiment.

Microscopy.  ell images were captured using the Olympus ScanR microscope. The images collected for the data-
set were taken in each biological step related to cellular growth and the use of different chemotherapeutic agents
and drug schemes. A 20x magnification was used, according to this each image has the dimension of 433 x
330 m, with a conversion factor 0.32250 m/pixel, and a final pixel per image 16 bit of 1346 x 1024 pixels. Each
brightfield image taken by the microscope was triplicated in the same position by different filters chosen to show
the biological structure labeled with the correspondent fluorescence. For the Hoechst filter we used an excitation
filter of 377/50 with an emission filter of 437-475 nm, for the propidium iodide filter we used an excitation filter
of 575/25 with an emission filter of 600-662 nm, and for autophagy and caspase we used an excitation filter of
494/20 with and emission filter of 510-552 nm.

Computational methods. Dataset construction. 'We converted the raw 16 bit microscope images to an
unsigned 8 bit type (both bright-field and fluorescence images). Pre-computations were implemented in Python
using OpenCV (Open Source Computer Vision Library) framework, an open source computer vision and ma-
chine learning software library.

Neural networks. The network architectures and training were implemented in Python using PyTorch
Framework®® and the aforementioned pre-trained models. We used the same hyperparameters for all network
architectures and training scenarios: learning rate Ir = 1e->5, batch size bz = 4, epochs e = 30. We optimized our
objective function by means of the Adam, a state of the art adaptive learning rate optimizer implemented in
PyTorch (b0 = 0.5; b0 = 0.999), with weight decay wd = le-5.
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Equipment. A notebook was used for the creation of the dataset. Training of the CNN was performed on an
Intel Xeon server equipped with two Graphics Processing Unit (GPU) Nvidia Titan Xp and 32 Gb of RAM.

Data availibility
The image dataset and further resources are available in the public github repository: https://github.com/emman
ueliarussi/live-dead-JIMT-1
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